1
|
Huang J, Zhou Y, Li J, Lu A, Liang C. CRISPR/Cas systems: Delivery and application in gene therapy. Front Bioeng Biotechnol 2022; 10:942325. [PMID: 36483767 PMCID: PMC9723151 DOI: 10.3389/fbioe.2022.942325] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
The CRISPR/Cas systems in prokaryotes such as bacteria and archaea are the adaptive immune system to prevent infection from viruses, phages, or other foreign substances. When viruses or phages first invade the bacteria, Cas proteins recognize and cut the DNA from viruses or phages into short fragments that will be integrated into the CRISPR array. Once bacteria are invaded again, the modified CRISPR and Cas proteins react quickly to cut DNA at the specified target location, protecting the host. Due to its high efficiency, versatility, and simplicity, the CRISPR/Cas system has become one of the most popular gene editing technologies. In this review, we briefly introduce the CRISPR/Cas systems, focus on several delivery methods including physical delivery, viral vector delivery, and non-viral vector delivery, and the applications of disease therapy. Finally, some problems in CRISPR/Cas9 technology have been proposed, such as the off-target effects, the efficiency of DNA repair mechanisms, and delivery of CRISPR/Cas system safely and efficiently to the target location.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yitong Zhou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
2
|
Lin M, Chen Y, Zhao S, Tang R, Nie Z, Xing H. A Biomimetic Approach for Spatially Controlled Cell Membrane Engineering Using Fusogenic Spherical Nucleic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Minjie Lin
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Yuanyuan Chen
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Sisi Zhao
- Institute of Chemical Biology and Nanomedicine College of Biology Hunan University Changsha 410082 China
| | - Rui Tang
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Zhou Nie
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
3
|
Lin M, Chen Y, Zhao S, Tang R, Nie Z, Xing H. A Biomimetic Approach for Spatially Controlled Cell Membrane Engineering Using Fusogenic Spherical Nucleic Acid. Angew Chem Int Ed Engl 2021; 61:e202111647. [PMID: 34637590 DOI: 10.1002/anie.202111647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Engineering of the cell plasma membrane using functional DNA is important for studying and controlling cellular behaviors. However, most efforts to apply artificial DNA interactions on cells are limited to external membrane surface due to the lack of suitable synthetic tools to engineer the intracellular side, which impedes many applications in cell biology. Inspired by the natural extracellular vesicle-cell fusion process, we have developed a fusogenic spherical nucleic acid construct to realize robust DNA functionalization on both external and internal cell surfaces via liposome fusion-based transport (LiFT) strategy, which enables applications including the construction of heterotypic cell assembly for programmed signaling pathway and detection of intracellular metabolites. This approach can engineer cell membranes in a highly efficient and spatially controlled manner, allowing one to build anisotropic membrane structures with two orthogonal DNA functionalities.
Collapse
Affiliation(s)
- Minjie Lin
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuanyuan Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sisi Zhao
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| | - Rui Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Nie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Taguchi S, Kang BS, Suga K, Okamoto Y, Jung HS, Umakoshi H. A novel method of vesicle preparation by simple dilution of bicelle solution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1609. [PMID: 31797562 DOI: 10.1002/wnan.1609] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-based genome editing technology has become an important potential therapeutic tool for various diseases. A vital challenge is to reach a safe, efficient, and clinically suitable delivery of a CRISPR-associated protein and a single-guide RNA. A possible translational approach to applying CRISPR-based technology is the use of viral vectors such as adeno-associated virus. However, such vectors give long-term exposure in vivo that may increase potential off-target effects as well as the risk of immunogenicity. Therefore, limitations to clinical applications are addressed using nonviral delivery systems such as nanoparticle-based delivery strategies. Today, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapeutics because of its specific targeting, scale-up efficiency, efficacy of customization, minor stimulation of immune response, and minimal exposure to nucleases. In this review, we will present the most recent advances in developing innovations and potential advantages of the nanoparticle delivery system in CRISPR genome editing. We will also propose potential strategies of CRISPR-based technology for therapeutic and industrial applications. Our review will differ in focus from previous reviews and advance the literature on the subject by (a) focusing on the challenges of the CRISPR/Cas9 delivery system; (b) focusing on the application of nanoparticle-based delivery of CRISPR components (Cas9 and sgRNA), such as lipids and polymeric vectors; (c) discussing the potential nanoparticle-based delivery approaches for CRISPR/Cas9 application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | - Martin Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Glass Z, Lee M, Li Y, Xu Q. Engineering the Delivery System for CRISPR-Based Genome Editing. Trends Biotechnol 2018; 36:173-185. [PMID: 29305085 PMCID: PMC5801045 DOI: 10.1016/j.tibtech.2017.11.006] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-CRISPR-associated protein (CRISPR-Cas) systems, found in nature as microbial adaptive immune systems, have been repurposed into an important tool in biological engineering and genome editing, providing a programmable platform for precision gene targeting. These tools have immense promise as therapeutics that could potentially correct disease-causing mutations. However, CRISPR-Cas gene editing components must be transported directly to the nucleus of targeted cells to exert a therapeutic effect. Thus, efficient methods of delivery will be critical to the success of therapeutic genome editing applications. Here, we review current strategies available for in vivo delivery of CRISPR-Cas gene editing components and outline challenges that need to be addressed before this powerful tool can be deployed in the clinic.
Collapse
Affiliation(s)
- Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Matthew Lee
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
7
|
Kuai JH, Wang Q, Zhang AJ, Zhang JY, Chen ZF, Wu KK, Hu XZ. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently. World J Gastroenterol 2018; 24:351-359. [PMID: 29391757 PMCID: PMC5776396 DOI: 10.3748/wjg.v24.i3.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the capacity of newly developed epidermal growth factor receptor (EGFR)-targeted immune magnetic liposomes (EILs) vs epithelial cell adhesion molecule (EpCAM) immunomagnetic beads to capture colorectal circulating tumor cells (CTCs).
METHODS EILs were prepared using a two-step method, and the magnetic and surface characteristics were confirmed. The efficiency of capturing colorectal CTCs as well as the specificity were compared between EILs and EpCAM magnetic beads.
RESULTS The obtained EILs had a lipid nanoparticle structure similar to cell membrane. Improved binding with cancer cells was seen in EILs compared with the method of coupling nano/microspheres with antibody. The binding increased as the contact time extended. Compared with EpCAM immunomagnetic beads, EILs captured more CTCs in peripheral blood from colorectal cancer patients. The captured cells showed consistency with clinical diagnosis and pathology. Mutation analysis showed same results between captured CTCs and cancer tissues.
CONCLUSION EGFR antibody-coated magnetic liposomes show high efficiency and specificity in capturing colorectal CTCs.
Collapse
Affiliation(s)
- Jing-Hua Kuai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Qing Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Ai-Jun Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Jing-Yu Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Zheng-Feng Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Kang-Kang Wu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Xiao-Zhen Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| |
Collapse
|
8
|
Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. NANOSCALE 2017; 10:184-194. [PMID: 29210401 PMCID: PMC6450097 DOI: 10.1039/c7nr07255d] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Image-guided drug delivery is an emerging strategy in the field of nanomedicine. The addition of image guidance to a traditional drug delivery system is expected to achieve highly efficient treatment by tracking the drug carriers in the body and monitoring their effective accumulation in the targeted tissues. In this study, we developed multifunctional magneto-plasmonic liposomes (MPLs), a hybrid system combining liposomes and magneto-plasmonic nanoparticles for a triple-modality image-guided drug delivery. Tenofovir disoproxil fumarate, an antiretroviral drug used to treat human immunodeficiency virus type 1 (HIV-1), was encapsulated into the MPLs to enable the treatment in the brain microenvironment, which is inaccessible to most of the drugs. We found strong negative and positive contrasts originating from the magnetic core of MPLs in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), respectively. The gold shell of MPLs showed bright positive contrast in X-ray computed tomography (CT). MPLs achieved enhanced transmigration across an in vitro blood-brain barrier (BBB) model by magnetic targeting. Moreover, MPLs provided desired therapeutic effects against HIV infected microglia cells.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kurniawan J, Suga K, Kuhl TL. Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:211-217. [DOI: 10.1016/j.bbamem.2016.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 02/08/2023]
|
10
|
Hiwale AA, Voshavar C, Dharmalingam P, Dhayani A, Mukthavaram R, Nadella R, Sunnapu O, Gandhi S, Naidu VGM, Chaudhuri A, Marepally S, Vemula PK. Scaling the effect of hydrophobic chain length on gene transfer properties of di-alkyl, di-hydroxy ethylammonium chloride based cationic amphiphiles. RSC Adv 2017. [DOI: 10.1039/c7ra02271a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asymmetric hydrocarbon chains influence the efficiency of cationic lipids based liposomes in nucleic acid delivery. A systematic investigation of role of asymmetry in transfection efficiency.
Collapse
Affiliation(s)
- Ankita A. Hiwale
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| | | | - Priya Dharmalingam
- Centre for Stem Cell Research
- Christian Medical College Campus
- Vellore 632002
- India
| | - Ashish Dhayani
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| | - Rajesh Mukthavaram
- Translational Neuro-oncology Laboratories
- Moores Cancer Center
- University of California San Diego
- La Jolla
- USA
| | - Rasajna Nadella
- Centre for Stem Cell Research
- Christian Medical College Campus
- Vellore 632002
- India
| | - Omprakash Sunnapu
- National Institute for Pharmaceutical Education and Research
- Hyderabad 500018
- India
| | - Sivaraman Gandhi
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| | - V. G. M. Naidu
- National Institute for Pharmaceutical Education and Research
- Hyderabad 500018
- India
| | - Arabinda Chaudhuri
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
- Centre for Stem Cell Research
- Christian Medical College Campus
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| |
Collapse
|