1
|
Kido Y, Nanchi I, Matsuzaki T, Watari R, Kiyohara H, Seki N, Okuda T. Prediction of drug-drug interaction risk of P-glycoprotein substrate in drug discovery. Drug Metab Pharmacokinet 2024; 56:101008. [PMID: 38663183 DOI: 10.1016/j.dmpk.2024.101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 06/24/2024]
Abstract
We aimed at predicting the drug-drug interaction (DDI) risk of P-glycoprotein (P-gp) substrates by using P-gp expressing LLC-PK1 cells and its knockout mice (KO). The area under the curve (AUC) of 16 marketed drugs and plasma concentration (Cplasma) of 207 screening compounds, with corrected efflux ratio (CER) ≥ 2, were compared between P-gp KO mice and wild type mice (WT). At permeability (Papp) ≥ 10 × 10-6 cm/s in parent LLC-PK1 cells, AUC ratios (KO/WT) and Cplasma ratios (KO/WT) of these compounds were within 3-fold. AUC ratios (KO/WT) of clinical P-gp substrates, with human AUC ratios with and without P-gp inhibitor administration ≥2, were higher than 8.7. These observations led us to establish a work-flow of P-gp substrate assessment with the threshold AUC ratio (KO/WT) ≥ 9 leading to a DDI risk of AUC ratio (human) ≥ 2. A screening compound showing high CER (=57.6) was found, but its AUC ratio (KO/WT) was 3.7, had been presumed to be a weak risk and its AUC ratio (human) was 1.2 in a later clinical DDI study. Our proposed workflow should be useful for predicting the DDI risk of P-gp substrates in drug discovery.
Collapse
Affiliation(s)
- Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Isamu Nanchi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Hayato Kiyohara
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Naomi Seki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Tomohiko Okuda
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| |
Collapse
|
2
|
Li W, Iusuf D, Sparidans RW, Wagenaar E, Wang Y, de Waart DR, Martins MLF, van Hoppe S, Lebre MC, van Tellingen O, Beijnen JH, Schinkel AH. Organic anion-transporting polypeptide 2B1 knockout and humanized mice; insights into the handling of bilirubin and drugs. Pharmacol Res 2023; 190:106724. [PMID: 36907287 DOI: 10.1016/j.phrs.2023.106724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dilek Iusuf
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Els Wagenaar
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 71, 1105 BK, Amsterdam, the Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Miyake T, Tsutsui H, Haraya K, Tachibana T, Morimoto K, Takehara S, Ayabe M, Kobayashi K, Kazuki Y. Quantitative prediction of P-glycoprotein-mediated drug-drug interactions and intestinal absorption using humanized mice. Br J Pharmacol 2021; 178:4335-4351. [PMID: 34232502 DOI: 10.1111/bph.15612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE P-glycoprotein (P-gp) exhibits a broad substrate specificity and affects pharmacokinetics, especially intestinal absorption. However, prediction, in vivo, of P-gp-mediated drug-drug interaction (DDI) and non-linear absorption at the preclinical stage, is challenging. Here we evaluate the use of human MDR1 mouse artificial chromosome (hMDR1-MAC) mice carrying human P-gp and lacking their own murine P-gp to quantitatively predict human P-gp-mediated DDI and non-linear absorption. EXPERIMENTAL APPROACH The P-gp substrates (aliskiren, betrixaban, celiprolol, digoxin, fexofenadine and talinolol) were administered orally to wild-type, Mdr1a/b-knockout (KO) and hMDR1-MAC mice, and their plasma concentrations were measured. We calculated the ratio of area under the curve (AUCR) in mice (AUCMdr1a/b-KO /AUCwild-type or AUCMdr1a/b-KO /AUChMDR1-MAC ) estimated as attributable to complete P-gp inhibition and the human AUCR with and without P-gp inhibitor administration. The correlations of AUCRhuman with AUCRwild-type and AUCRhMDR1-MAC were investigated. For aliskiren, betrixaban and celiprolol, the Km and Vmax values for P-gp in hMDR1-MAC mice and humans were optimized from different dosing studies using GastroPlus. The correlations of Km and Vmax for P-gp between human and hMDR1-MAC mice were investigated. KEY RESULTS A better correlation between AUCRhuman and AUCRhMDR1-MAC (R2 = 0.88) was observed. Moreover, good relationships of Km (R2 = 1.00) and Vmax (R2 = 0.98) for P-gp between humans and hMDR1-MAC mice were observed. CONCLUSIONS AND IMPLICATIONS These results suggest that P-gp-mediated DDI and non-linear absorption can be predicted using hMDR1-MAC mice. These mice are a useful in vivo tool for quantitatively predicting P-gp-mediated disposition in drug discovery and development.
Collapse
Affiliation(s)
- Taiji Miyake
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Haruka Tsutsui
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Kenta Haraya
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Tatsuhiko Tachibana
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Kayoko Morimoto
- Research and Development Department, Trans Chromosomics, Inc., Yonago, Japan
| | - Shoko Takehara
- Research and Development Department, Trans Chromosomics, Inc., Yonago, Japan
| | - Miho Ayabe
- Discovery Technology Research Department, Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Japan
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan.,Chromosome Engineering Research Center, Tottori University, Yonago, Japan
| |
Collapse
|
4
|
Abstract
From the viewpoint of drug discovery, it is an important issue to elucidate the drug permeability at the human central nervous system (CNS) barriers and the molecular mechanisms in the cells forming CNS barriers especially during CNS diseases. I introduced quantitative proteomics techniques into the blood-brain barrier (BBB) study, then quantitatively investigated the transport system at the human BBB and clarified the quantitative differences in protein expression levels and functions of transporters and receptors between animals and humans, or in vitro and in vivo. Based on the difference in the absolute expression level of transporters between in vitro and in vivo, I demonstrated that the drug efflux activity of P-glycoprotein (P-gp) at in vivo BBB can be accurately reconstructed from the in vitro system, not only in mouse models but also monkeys similar to humans and pathological conditions. Furthermore, I discovered Claudin-11 as another tight junction molecule expressed at the CNS barriers, and clarified that it contributes to the disruption of the CNS barriers in multiple sclerosis. Furthermore, it was also elucidated that the P-gp dysfunction causes excessive brain entry of glucocorticoid which causes a nerve damage in cerebral infarct, and it can be suppressed by targeting Abl/Src kinases. These suggest that targeting the tight junctions and transporters, which are important molecules at the CNS barriers, would potentially lead to the treatment of CNS diseases. In this review, I would like to introduce a new CNS barrier study opened by quantitative proteomics research.
Collapse
Affiliation(s)
- Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
5
|
Wegler C, Prieto Garcia L, Klinting S, Robertsen I, Wiśniewski JR, Hjelmesaeth J, Åsberg A, Jansson-Löfmark R, Andersson TB, Artursson P. Proteomics-Informed Prediction of Rosuvastatin Plasma Profiles in Patients With a Wide Range of Body Weight. Clin Pharmacol Ther 2020; 109:762-771. [PMID: 32970864 PMCID: PMC7984432 DOI: 10.1002/cpt.2056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Rosuvastatin is a frequently used probe to study transporter‐mediated hepatic uptake. Pharmacokinetic models have therefore been developed to predict transporter impact on rosuvastatin disposition in vivo. However, the interindividual differences in transporter concentrations were not considered in these models, and the predicted transporter impact was compared with historical in vivo data. In this study, we investigated the influence of interindividual transporter concentrations on the hepatic uptake clearance of rosuvastatin in 54 patients covering a wide range of body weight. The 54 patients were given an oral dose of rosuvastatin the day before undergoing gastric bypass or cholecystectomy, and pharmacokinetic (PK) parameters were established from each patient’s individual time‐concentration profiles. Liver biopsies were sampled from each patient and their individual hepatic transporter concentrations were quantified. We combined the transporter concentrations with in vitro uptake kinetics determined in HEK293‐transfected cells, and developed a semimechanistic model with a bottom‐up approach to predict the plasma concentration profiles of the single dose of rosuvastatin in each patient. The predicted PK parameters were evaluated against the measured in vivo plasma PKs from the same 54 patients. The developed model predicted the rosuvastatin PKs within two‐fold error for rosuvastatin area under the plasma concentration versus time curve (AUC; 78% of the patients; average fold error (AFE): 0.96), peak plasma concentration (Cmax; 76%; AFE: 1.05), and terminal half‐life (t1/2; 98%; AFE: 0.89), and captured differences in the rosuvastatin PKs in patients with the OATP1B1 521T<C polymorphism. This demonstrates that hepatic uptake clearance determined in transfected cell lines, together with proteomics scaling, provides a useful tool for prediction models, without the need for empirical scaling factors.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Prieto Garcia
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Signe Klinting
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jøran Hjelmesaeth
- Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Masuda T, Mori A, Ito S, Ohtsuki S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metab Pharmacokinet 2020; 36:100361. [PMID: 33097418 DOI: 10.1016/j.dmpk.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
Proteomics refers to the large-scale study of proteins, providing comprehensive and quantitative information on proteins in tissue, blood, and cell samples. In many studies, proteomics utilizes liquid chromatography-mass spectrometry. Proteomics has developed from a qualitative methodology of protein identification to a quantitative methodology for comparing protein expression, and it is currently classified into two distinct methodologies: quantitative and targeted proteomics. Quantitative proteomics comprehensively identifies proteins in samples, providing quantitative information on large-scale comparative profiles of protein expression. Targeted proteomics simultaneously quantifies only target proteins with high sensitivity and specificity. Therefore, in biomarker research, quantitative proteomics is used for the identification of biomarker candidates, and targeted proteomics is used for the validation of biomarkers. Understanding the specific characteristics of each method is important for conducting appropriate proteomics studies. In this review, we introduced the different characteristics and applications of quantitative and targeted proteomics, and then discussed the results of our recent proteomics studies that focused on the identification and validation of biomarkers of drug efficacy. These findings may enable us to predict the outcomes of cancer therapy and drug-drug interactions with antibiotics through changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
7
|
Targeted Proteomics-Based Quantitative Protein Atlas of Pannexin and Connexin Subtypes in Mouse and Human Tissues and Cancer Cell Lines. J Pharm Sci 2020; 109:1161-1168. [DOI: 10.1016/j.xphs.2019.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
8
|
Fujita K, Yamada H, Iijima M, Ichida K. Electrochemical analysis of uric acid excretion to the intestinal lumen: Effect of serum uric acid-lowering drugs and 5/6 nephrectomy on intestinal uric acid levels. PLoS One 2019; 14:e0226918. [PMID: 31891613 PMCID: PMC6938314 DOI: 10.1371/journal.pone.0226918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Recently, extensive efforts have been made to understand the importance of the extra-renal uric acid (UA) excretion pathways and their contribution to UA-related diseases. However, the method typically used to measure UA concentrations in the intestinal lumen is difficult to real time and dynamic analysis. In this study, UA excretion in the rat intestinal lumen was measured in real time using an electrochemical method. A sensitive electrode to detect UA was constructed using a gold electrode modified with a mixed self-assembled monolayer. Excretion rate of UA in the intestine was calculated using time course data. A decrease in UA excretion rate was observed in the intestine after administration of serum UA-lowering drugs (benzbromarone, febuxostat, and topiroxostat). Inhibition of ATP-binding cassette transporter G2 (ABCG2) which has been reported as an important exporter of UA was suggested by administration of these drugs. On the other hand, an increase in excretion rate of UA was observed in the intestine of 5/6 nephrectomy rats. Upregulation of mRNA expression of the UA transporter organic anion transporter OAT3, which is related to the secretion at the basal membrane, suggested an enhancement of UA excretion by ABCG2, a high-capacity UA exporter. Observed urate excretion dynamics and mRNA expression of UA transporters in the intestine upon administration of serum UA-lowering drugs and 5/6 nephrectomy improve our understanding of the underlying mechanisms of intestinal UA excretion.
Collapse
Affiliation(s)
- Kyoko Fujita
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
- * E-mail:
| | - Hiroki Yamada
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Masahiro Iijima
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
9
|
Pan Y, Omori K, Ali I, Tachikawa M, Terasaki T, Brouwer KLR, Nicolazzo JA. Increased Expression of Renal Drug Transporters in a Mouse Model of Familial Alzheimer's Disease. J Pharm Sci 2019; 108:2484-2489. [PMID: 30825461 PMCID: PMC6888996 DOI: 10.1016/j.xphs.2019.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 01/18/2023]
Abstract
It is well established that the expression and function of drug transporters at the blood-brain barrier are altered in Alzheimer's disease (AD). However, we recently demonstrated in a mouse model of AD that the expression of key drug transporters and metabolizing enzymes was modified in peripheral organs, such as the small intestine and liver, suggesting that systemic drug absorption may be altered in AD. The purpose of this study was to determine whether the expression of drug transporters in the kidneys differed between 8- to 9-month-old wild-type mice and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a mouse model of familial AD, using a quantitative targeted absolute proteomics approach. The protein expression of the drug transporters-multidrug resistance-associated protein 2, organic anion transporter 3, and organic cation transporter 2-was upregulated 1.6-, 1.3-, and 1.4-fold, respectively, in kidneys from APP/PS1 mice relative to wild-type mice. These results suggest that in addition to modified oral absorption of certain drugs, it is possible that the renal excretion of drugs that are multidrug resistance-associated protein 2, organic anion transporter 3, and organic cation transporter 2 substrates could be altered in AD. These changes could affect the interpretation of studies conducted during drug development using this mouse model of AD and potentially impact dosage regimens of such drugs prescribed in this patient population.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kotaro Omori
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Izna Ali
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
10
|
Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. Proteomic analysis of small intestinal epithelial cells in antibiotic-treated mice: Changes in drug transporters and metabolizing enzymes. Drug Metab Pharmacokinet 2019; 34:159-162. [DOI: 10.1016/j.dmpk.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/16/2018] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
11
|
Yamasaki Y, Kobayashi K, Okuya F, Kajitani N, Kazuki K, Abe S, Takehara S, Ito S, Ogata S, Uemura T, Ohtsuki S, Minegishi G, Akita H, Chiba K, Oshimura M, Kazuki Y. Characterization of P-Glycoprotein Humanized Mice Generated by Chromosome Engineering Technology: Its Utility for Prediction of Drug Distribution to the Brain in Humans. Drug Metab Dispos 2018; 46:1756-1766. [PMID: 29777024 DOI: 10.1124/dmd.118.081216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (P-gp), encoded by the MDR1 gene in humans and by the Mdr1a/1b genes in rodents, is expressed in numerous tissues and performs as an efflux pump to limit the distribution and absorption of many drugs. Owing to species differences of P-gp between humans and rodents, it is difficult to predict the impact of P-gp on pharmacokinetics and the tissue distribution of P-gp substrates in humans from the results of animal experiments. Therefore, we generated a novel P-gp humanized mouse model by using a mouse artificial chromosome (MAC) vector [designated human MDR1-MAC (hMDR1-MAC) mice]. The results showed that hMDR1 mRNA was expressed in various tissues of hMDR1-MAC mice. Furthermore, the expression of human P-gp was detected in the brain capillary fraction and plasma membrane fraction of intestinal epithelial cells isolated from hMDR1-MAC mice, although the expression levels of intestinal P-gp were extremely low. Thus, we evaluated the function of human P-gp at the blood-brain barrier of hMDR1-MAC mice. The brain-to-plasma ratios of P-gp substrates in hMDR1-MAC mice were much lower than those in Mdr1a/1b-knockout mice, and the brain-to-plasma ratio of paclitaxel was significantly increased by pretreatment with a P-gp inhibitor in hMDR1-MAC mice. These results indicated that the hMDR1-MAC mice are the first P-gp humanized mice expressing functional human P-gp at the blood-brain barrier. This mouse is a promising model with which to evaluate species differences of P-gp between humans and mice in vivo and to estimate the brain distribution of drugs in humans while taking into account species differences of P-gp.
Collapse
Affiliation(s)
- Yuki Yamasaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kaoru Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Fuka Okuya
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Naoyo Kajitani
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kanako Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Satoshi Abe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shoko Takehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shingo Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Seiryo Ogata
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Tatsuki Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Genki Minegishi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kan Chiba
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Mitsuo Oshimura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Yasuhiro Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| |
Collapse
|
12
|
Pan Y, Omori K, Ali I, Tachikawa M, Terasaki T, Brouwer KLR, Nicolazzo JA. Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer's Disease. Mol Pharm 2018; 15:4073-4083. [PMID: 30074800 DOI: 10.1021/acs.molpharmaceut.8b00500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug transporter expression and function at the blood-brain barrier is altered in Alzheimer's disease (AD). However, the impact of AD on the expression of transporters and metabolizing enzymes in peripheral tissues has received little attention. The current study evaluated the expression of drug transporters and metabolizing enzymes in the small intestine and liver from 8- to 9-month-old female wild-type (WT) and APPswe/PSEN 1dE9 (APP/PS1) transgenic mice, a widely used AD model, using a quantitative targeted absolute proteomics (QTAP) approach. Furthermore, the general morphological appearance of the liver was assessed by immunohistochemistry, and lipid content was visualized using Oil Red O staining. The small intestines of APP/PS1 mice exhibited a significant 2.3-fold increase in multidrug resistance-associated protein 2 (Mrp2), a 1.9-fold decrease in monocarboxylate transporter 1 (Mct1), and a 3.6-fold increase in UDP-glucuronosyltransferase (Ugt) 2b5 relative to those from WT mice based on QTAP analysis. While the liver from APP/PS1 mice exhibited no changes in drug transporter expression, there was a 1.3-fold elevation in cytochrome P450 (Cyp) 51a1 and a 1.2-fold reduction in Cyp2c29 protein expression, and this was associated with morphological alterations including accumulation of hepatocyte lipids. These studies are the first to demonstrate that the protein expression of transporters and metabolizing enzymes important in oral drug absorption are modified in a mouse model of familial AD, which may lead to altered disposition of some orally administered drugs in AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Kotaro Omori
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Izna Ali
- UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , 301 Pharmacy Lane , Chapel Hill , North Carolina 27599 , United States
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , 301 Pharmacy Lane , Chapel Hill , North Carolina 27599 , United States
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
13
|
Gynther M, Proietti Silvestri I, Hansen JC, Hansen KB, Malm T, Ishchenko Y, Larsen Y, Han L, Kayser S, Auriola S, Petsalo A, Nielsen B, Pickering DS, Bunch L. Augmentation of Anticancer Drug Efficacy in Murine Hepatocellular Carcinoma Cells by a Peripherally Acting Competitive N-Methyl-d-aspartate (NMDA) Receptor Antagonist. J Med Chem 2017; 60:9885-9904. [PMID: 29205034 DOI: 10.1021/acs.jmedchem.7b01624] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The most common solid tumors show intrinsic multidrug resistance (MDR) or inevitably acquire such when treated with anticancer drugs. In this work, we describe the discovery of a peripherally restricted, potent, competitive NMDA receptor antagonist 1l by a structure-activity study of the broad-acting ionotropic glutamate receptor antagonist 1a. Subsequently, we demonstrate that 1l augments the cytotoxic action of sorafenib in murine hepatocellular carcinoma cells. The underlying biological mechanism was shown to be interference with the lipid signaling pathway, leading to reduced expression of MDR transporters and thereby an increased accumulation of sorafenib in the cancer cells. Interference with lipid signaling pathways by NMDA receptor inhibition is a novel and promising strategy for reversing transporter-mediated chemoresistance in cancer cells.
Collapse
Affiliation(s)
- Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland , 70211 Kuopio, Finland
| | - Ilaria Proietti Silvestri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Jacob C Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , 70211 Kuopio, Finland
| | - Yevheniia Ishchenko
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , 70211 Kuopio, Finland
| | - Younes Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Liwei Han
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Silke Kayser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland , 70211 Kuopio, Finland
| | - Aleksanteri Petsalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland , 70211 Kuopio, Finland
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2100, Denmark
| |
Collapse
|
14
|
Akazawa T, Uchida Y, Miyauchi E, Tachikawa M, Ohtsuki S, Terasaki T. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human. Mol Pharm 2017; 15:127-140. [DOI: 10.1021/acs.molpharmaceut.7b00772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Takanori Akazawa
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Eisuke Miyauchi
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
15
|
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya KI, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J Pharm Sci 2017; 106:2234-2244. [DOI: 10.1016/j.xphs.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
16
|
Nielsen CU, Abdulhussein AA, Colak D, Holm R. Polysorbate 20 increases oral absorption of digoxin in wild-type Sprague Dawley rats, but not in mdr1a(-/-) Sprague Dawley rats. Int J Pharm 2016; 513:78-87. [DOI: 10.1016/j.ijpharm.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022]
|