1
|
Han Y, Zhang L, Yang W. Synthesis of Mesoporous Silica Using the Sol-Gel Approach: Adjusting Architecture and Composition for Novel Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:903. [PMID: 38869528 PMCID: PMC11173812 DOI: 10.3390/nano14110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The sol-gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol-gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol-gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol-gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Lin Zhang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
3
|
Heidari R, Assadollahi V, Khosravian P, Mirzaei SA, Elahian F. Engineered mesoporous silica nanoparticles, new insight nanoplatforms into effective cancer gene therapy. Int J Biol Macromol 2023; 253:127060. [PMID: 37774811 DOI: 10.1016/j.ijbiomac.2023.127060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Human Stem Cells and Neuronal Differentiation Core, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
4
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
5
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
6
|
Li H, Song J, He Y, Liu Y, Liu Z, Sun W, Hu W, Lei Q, Hu X, Chen Z, He X. CRISPR/Cas9 Screens Reveal that Hexokinase 2 Enhances Cancer Stemness and Tumorigenicity by Activating the ACSL4-Fatty Acid β-Oxidation Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105126. [PMID: 35603967 PMCID: PMC9313492 DOI: 10.1002/advs.202105126] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Indexed: 05/04/2023]
Abstract
Metabolic reprogramming is often observed in carcinogenesis, but little is known about the aberrant metabolic genes involved in the tumorigenicity and maintenance of stemness in cancer cells. Sixty-seven oncogenic metabolism-related genes in liver cancer by in vivo CRISPR/Cas9 screening are identified. Among them, acetyl-CoA carboxylase 1 (ACC1), aldolase fructose-bisphosphate A (ALDOA), fatty acid binding protein 5 (FABP5), and hexokinase 2 (HK2) are strongly associated with stem cell properties. HK2 further facilitates the maintenance and self-renewal of liver cancer stem cells. Moreover, HK2 enhances the accumulation of acetyl-CoA and epigenetically activates the transcription of acyl-CoA synthetase long-chain family member 4 (ACSL4), leading to an increase in fatty acid β-oxidation activity. Blocking HK2 or ACSL4 effectively inhibits liver cancer growth, and GalNac-siHK2 administration specifically targets the growth of orthotopic tumor xenografts. These results suggest a promising therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Junjiao Song
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yifei He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhen Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weili Sun
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Qun‐Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xin Hu
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| |
Collapse
|
7
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Gisbert-Garzarán M, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles. Int J Mol Sci 2020; 21:ijms21249696. [PMID: 33353212 PMCID: PMC7766291 DOI: 10.3390/ijms21249696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Current chemotherapy treatments lack great selectivity towards tumoral cells, which leads to nonspecific drug distribution and subsequent side effects. In this regard, the use of nanoparticles able to encapsulate and release therapeutic agents has attracted growing attention. In this sense, mesoporous silica nanoparticles (MSNs) have been widely employed as drug carriers owing to their exquisite physico-chemical properties. Because MSNs present a surface full of silanol groups, they can be easily functionalized to endow the nanoparticles with many different functionalities, including the introduction of moieties with affinity for the cell membrane or relevant compartments within the cell, thus increasing the efficacy of the treatments. This review manuscript will provide the state-of-the-art on MSNs functionalized for targeting subcellular compartments, focusing on the cytoplasm, the mitochondria, and the nucleus.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-1843
| |
Collapse
|
9
|
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020; 8:598722. [PMID: 33330389 PMCID: PMC7732422 DOI: 10.3389/fchem.2020.598722] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important anti-tumor treatment in clinic to date, however, the effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles (MSNs) have become exciting drug delivery systems (DDS) due to their unique advantages, such as easy large-scale production, adjustable uniform pore size, large surface area and pore volumes. While mesoporous silica-based DDS can improve chemotherapy to a certain extent, when used in combination with other cancer therapies MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic outcomes. In this review, we discuss the applications of MSN DDS for a diverse range of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene therapy, immunotherapy and other less common modalities. Furthermore, we focus on the characteristics of each nanomaterial and the synergistic advantages of the combination therapies. Lastly, we examine the challenges and future prospects of MSN based chemotherapeutic combination therapies.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Pan Y, Zhou S, Li Y, Parshad B, Li W, Haag R. Novel dendritic polyglycerol-conjugated, mesoporous silica-based targeting nanocarriers for co-delivery of doxorubicin and tariquidar to overcome multidrug resistance in breast cancer stem cells. J Control Release 2020; 330:1106-1117. [PMID: 33189788 DOI: 10.1016/j.jconrel.2020.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Multidrug resistance (MDR) of cancer stem cells (CSCs) is a major hurdle to chemotherapy, and it is very important to develop CSCs-specific targeted nanocarriers for the treatment of drug resistant CSCs. In this work, we developed CSCs-specific targeted mSiO2-dPG nanocarriers simultaneous delivery chemotherapy drug DOX along with the P-glycoprotein (P-gp) inhibitor tariquidar (Tar) for enhanced chemotherapy to overcome MDR in breast CSCs. The mSiO2-dPG nanocarriers possess a high loading capability, excellent pH stimuli-responsive performance, and good biocompatibility. With the help of CSCs-specific targeting and P-gp inhibitor Tar, the accumulation of DOX delivered by the mSiO2-dPG nanocarriers could be greatly increased in drug resistant three-dimensional mammosphere of breast CSCs, and the chemotherapeutic efficacy against breast CSCs was enhanced. Moreover, the expression of stemness-associated gene and tumorspheres' formation ability was also significantly suppressed, which indicates the excellent capability for overcoming MDR of breast CSCs. Taken together, we developed a CSCs-specific targeted mSiO2-dPG nanocarriers for co-delivery DOX and Tar, which provide a promising approach to effectively eliminate the CSCs and overcome the MDR of breast CSCs.
Collapse
Affiliation(s)
- Yuanwei Pan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Suqiong Zhou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Yan Li
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Badri Parshad
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany.
| |
Collapse
|
11
|
Wu Y, Xu X, You X, Xiao Q. Synthesis of mesoporous core-shell structured GdPO4:Eu@SiO2@mSiO2 nanorods for drug delivery and cell imaging applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Li C, Yang J, Liu C, Wang X, Zhang L. Long non-coding RNAs in hepatocellular carcinoma: Ordering of the complicated lncRNA regulatory network and novel strategies for HCC clinical diagnosis and treatment. Pharmacol Res 2020; 158:104848. [DOI: 10.1016/j.phrs.2020.104848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
13
|
Han J, Won M, Kim JH, Jung E, Min K, Jangili P, Kim JS. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev 2020; 49:7856-7878. [PMID: 32633291 DOI: 10.1039/d0cs00379d] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells (TICs), have been studied intensively due to their rapid proliferation, migration, and role in the recurrence of cancer. In general, CSC marker-positive cells [CD133, CD44, CD166, aldehyde dehydrogenase (ALDH), and epithelial cell adhesion molecule (EpCAM)] exhibit a 100-fold increased capacity to initiate cancer. Within a heterogeneous tumor mass, only approximately 0.05-3% of cells are suspected to be CSCs and able to proliferate under hypoxia. Interestingly, CSCs, cancer cells, and normal stem cells share many cytochemical properties, such as inhibition of the redox system for reactive oxygen species (ROS) production and high expression of drug resistance transporters. However, compared to normal stem cells, CSCs develop unique metabolic flexibility, which involves switching between oxidative phosphorylation (OXPHOS) and glycolysis as their main source of energy. Due to the similarities between CSCs and other cancer cells and normal stem cells, limited chemotherapeutic and bio-imaging reagents specific for CSCs have been developed. In this short review, we address the current knowledge regarding CSCs with a focus on designing chemotherapeutic and bio-imaging reagents that target CSCs.
Collapse
Affiliation(s)
- Jiyou Han
- Department of Biological Sciences, Hyupsung University, Hwasung-si, 18330, Korea.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
15
|
Zhan W, Liao X, Wang Y, Li L, Li J, Chen Z, Tian T, He J. circCTIC1 promotes the self-renewal of colon TICs through BPTF-dependent c-Myc expression. Carcinogenesis 2020; 40:560-568. [PMID: 30403769 DOI: 10.1093/carcin/bgy144] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Indexed: 12/27/2022] Open
Abstract
Colon tumor is a conman tumor in the world. There are various kinds of cells in colon tumor bulk, and only a small population can initiate tumor efficiently and termed as tumor-initiating cells (TICs). With self-renewal and differentiation capacities, colon TICs drive colon tumorigenesis, metastasis and relapse. However, the molecular mechanisms of colon TICs self-renewal are elusive. Here, we found that circular RNA (circCTIC1) was highly expressed in colon tumor and colon TICs. circCTIC1 knockdown impaired the self-renewal of colon TICs, and its overexpression played an opposite role. circCTIC1 promoted the expression of c-Myc and drove the self-renewal of colon TIC through c-Myc-dependent manner. circCTIC1 interacted with nuclear remodeling factor (NURF) complex, recruited NURF complex onto c-Myc promoter and finally drove the transcriptional initiation of c-Myc. Altogether, circCTIC1 drove the self-renewal of colon TICs through bromodomain PHD finger transcription factor (BPTF)-mediated c-Myc expression.
Collapse
Affiliation(s)
- Wei Zhan
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China.,Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Xin Liao
- Guizhou Medical University, Gui Zhou Province, Guiyang, China.,Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Yuan Wang
- Oncology Department in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huaian, China
| | - Lianghe Li
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Jin Li
- Oncology Department in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huaian, China
| | - Zhongsheng Chen
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Tian Tian
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Jingdong He
- Guizhou Medical University, Gui Zhou Province, Guiyang, China.,Oncology Department in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huaian, China
| |
Collapse
|
16
|
García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902242. [PMID: 31846230 DOI: 10.1002/smll.201902242] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
One appealing concept in the field of hybrid materials is related to the design of gated materials. These materials are prepared in such a way that the release of chemical or biochemical species from voids of porous supports to a solution is triggered upon the application of external stimuli. Such gated materials are mainly composed of two subunits: i) a porous inorganic scaffold in which a cargo is stored, and ii) certain molecular or supramolecular entities, grafted onto the external surface, that can control mass transport from the interior of the pores. On the basis of this concept, a large number of examples are developed in the past ten years. A comprehensive overview of gated materials used in drug delivery applications in in vivo models from 2016 to date is thus given here.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| |
Collapse
|
17
|
Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, Wang Y, Yang J, Tian F. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N 6-methyladenosine of Notch1. Mol Cancer 2019; 18:168. [PMID: 31760940 PMCID: PMC6876123 DOI: 10.1186/s12943-019-1084-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) emerges as one of the most important modification of RNA. Bladder cancer is a common cancer type in developed countries, and hundreds of thousands of bladder cancer patients die every year. MATERIALS AND METHODS There are various cells in bladder tumor bulk, and a small population cells defined as tumor initiating cells (TIC) have self-renewal and differentiation capacities. Bladder TICs drive bladder tumorigenesis and metastasis, and their activities are fine regulated. However, the role of N6-methyladenosine in bladder TIC self-renewal is unknown. RESULTS Here, we found a decrease of N6-methyladenosine in bladder tumors and bladder TICs. N6-methyladenosine levels are related to clinical severity and outcome. Mettl14 is lowly expressed in bladder cancer and bladder TICs. Mettl14 knockout promotes the proliferation, self-renewal, metastasis and tumor initiating capacity of bladder TICs, and Mettl14 overexpression exerts an opposite role. Mettl14 and m6A modification participate in the RNA stability of Notch1 mRNA. Notch1 m6A modification inhibits its RNA stability. Notch1 plays an essential role in bladder tumorigenesis and bladder TIC self-renewal. CONCLUSION This work reveals a novel role of Mettl14 and N6-methyladenosine in bladder tumorigenesis and bladder TICs, adding new layers for bladder TIC regulation and N6-methyladenosine function.
Collapse
Affiliation(s)
- Chaohui Gu
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Zhiyu Wang
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Naichun Zhou
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Guanru Li
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yiping Kou
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yang Luo
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yidi Wang
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Jinjian Yang
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Fengyan Tian
- grid.412633.1Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| |
Collapse
|
18
|
The interaction between SBA-15 derivative loaded with Ph 3Sn(CH 2) 6OH and human melanoma A375 cell line: uptake and stem phenotype loss. J Biol Inorg Chem 2019; 24:223-234. [PMID: 30759278 DOI: 10.1007/s00775-019-01640-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Extraordinary progress in medicinal inorganic chemistry in the past few years led to the rational design of novel platinum compounds, as well as nonplatinum metal-based antitumor agents, including organotin compounds, whose activity is not based on unrepairable interaction with DNA. To overcome poor solubility and toxicity problems that limited the application of these compounds numerous delivering systems were used (Lila et al. in Biol Pharm Bull 37:206-211, 2014; Yue and Cao in Curr Cancer Drug Targets 16:480-488, 2016; Duan et al. in WIREs Nanomed Nanobiotechnol 8:776-791, 2016). Regarding high drug loading capacity, mesoporous silica nanoparticles like SBA-15 became more important for targeted drug delivery. In this study, cellular uptake and biological activities responsible for organotin(IV) compound Ph3Sn(CH2)6OH (Sn6) grafted into (3-chloropropyl)triethoxysilane functionalized SBA-15 (SBA-15p → SBA-15p|Sn6) were evaluated in human melanoma A375 cell line. Moreover, the influence of SBA-15p grafted with organotin(IV) compound on the stemness of A375 cell was tested. Given the fact that SBA-15p|Sn6 nanoparticles are nonspherical and relatively large, their internalization efficiently started even after 15 min with stable adhesion to the cell membrane. After only 2 h of incubation of A375 cells with SBA-15p|Sn6 passive fluid-phase uptake and macropinocytosis were observed. Inside of the cell, treatment with SBA-15p loaded with Sn6 promoted caspase-dependent apoptosis in parallel with senescence development. The subpopulation of cells expressing Schwann-like phenotype arose upon the treatment, while the signaling pathway responsible for maintenance of pluripotency and invasiveness, Wnt, Notch1, and Oct3/4 were modulated towards less aggressive signature. In summary, SBA-15p enhances the efficacy of free Sn6 compound through efficient uptake and well profiled intracellular response followed with decreased stem characteristics of highly invasive A375 melanoma cells.
Collapse
|
19
|
Ramakrishnan S, Granger V, Rak M, Hu Q, Attwood K, Aquila L, Krishnan N, Osiecki R, Azabdaftari G, Guru K, Chatta G, Gueron G, McNally L, Ohm J, Wang J, Woloszynska A. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ 2019; 26:2100-2114. [PMID: 30692641 PMCID: PMC6748105 DOI: 10.1038/s41418-019-0278-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
Lysine-specific demethylase 6A (KDM6A) and members of the Switch/Sucrose Non-Fermentable (SWI/SNF) family are known to counteract the activity of Enhancer of Zeste Homolog 2 (EZH2), which is often overexpressed and is associated with poor prognosis in muscle-invasive bladder cancer. Here we provide evidence that alterations in chromatin modifying enzymes, including KDM6A and members of the SWI/SNF complex, are frequent in muscle-invasive bladder cancer. We exploit the loss of function mutations in KDM6A and SWI/SNF complex to make bladder cancer cells susceptible to EZH2-based epigenetic therapy that activates an immune response to drive tumor cell differentiation and death. We reveal a novel mechanism of action of EZH2 inhibition, alone and in combination with cisplatin, which induces immune signaling with the largest changes observed in interferon gamma (IFN-γ). This upregulation is a result of activated natural killer (NK) signaling as demonstrated by the increase in NK cell-associated genes MIP-1α, ICAM1, ICAM2, and CD86 in xenografts treated with EZH2 inhibitors. Conversely, EZH2 inhibition results in decreased expression of pluripotency markers, ALDH2 and CK5, and increased cell death. Our results reveal a novel sensitivity of muscle-invasive bladder cancer cells with KMD6A and SWI/SNF mutations to EZH2 inhibition alone and in combination with cisplatin. This sensitivity is mediated through increased NK cell-related signaling resulting in tumor cell differentiation and cell death.
Collapse
Affiliation(s)
- Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Victoria Granger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Monika Rak
- Department of Cell Biology, Jagiellonian University, 31-007, Krakow, Poland
| | - Qiang Hu
- Department of Bioinformatics and BioStatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kristopher Attwood
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lanni Aquila
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nithya Krishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | | | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Khurshid Guru
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Gurkamal Chatta
- Department of Medicine-GU Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Geraldine Gueron
- Department of Biological Chemistry, University of Buenos Aires, IQUIBICEN-CONICET, Intendente Guiraldes 2160, CABA, 1428, Buenos Aires, Argentina
| | - Lacey McNally
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics and BioStatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
20
|
Zhang J, Zhao X, Yang C, Huang Z, Shi M, Pan S, Hu H, Qiao M, Chen D, Zhao X. A versatile polyion complex can intelligently respond to a tumor microenvironment to eliminate tumor stem cells for enhanced lung cancer targeted therapy. Biomater Sci 2019; 7:3751-3763. [DOI: 10.1039/c9bm00812h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A versatile polyion complex was fabricated which could response to tumor microenvironment and possess remarkable tumor penetrating capability with elevated antitumor activity for LCSCs elimination in vivo.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Xiufeng Zhao
- Oncology Department
- Affiliated Hongqi Hospital of Mudanjiang Medical University
- Mudanjiang
- China
| | - Chunrong Yang
- College Pharmacy of Jiamusi University
- Jiamusi
- PR China
| | - Ziyuan Huang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Menghao Shi
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Shuang Pan
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Haiyang Hu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Mingxi Qiao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Dawei Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Xiuli Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| |
Collapse
|
21
|
Shao M, Yang Q, Zhu W, Jin H, Wang J, Song J, Kong Y, Lv X. LncHOXA10 drives liver TICs self-renewal and tumorigenesis via HOXA10 transcription activation. Mol Cancer 2018; 17:173. [PMID: 30545354 PMCID: PMC6293550 DOI: 10.1186/s12943-018-0921-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background Liver cancer is one of the most deadly cancers in the world. There are various cells in liver tumor bulk, including liver tumor initiating cells (TICs), which account for liver tumorigenesis, drug resistance, relapse and metastasis. The homeobox (HOX) transcription factors play critical roles in many physiological and pathological processes, while, their roles in liver TICs and liver tumorigenesis remain unknown. Methods An unbiased screening was performed using online-available datasets. Liver TICs were sorted by FACS using surface markers CD133, CD13 and EPCAM, or enriched by oncosphere formation assay. TIC self-renewal was examined by oncosphere formation and tumor initiation assay. Loss of function and gain of function assays were performed to examine the role of lncRNA. RNA pulldown, RNA immunoprecipitation, ChIP, Western blot and double FISH were used to explore the molecular mechanism of lncRNA. Results Here, we examined the expression pattern of HOX transcription factors, and found HOXA10 was overexpressed in liver cancer samples. Moreover, a divergent lncRNA of HOXA10 (termed lncHOXA10 hereafter) was also highly expressed in liver cancer and liver TICs. LncHOXA10 drove liver TIC self-renewal and liver tumorigenesis through HOXA10-dependent manner. LncHOXA10 interacted with SNF2L and recruited NURF chromatin remodeling complex to HOXA10 promoter, and thus initiated the transcription of HOXA10. Through HOXA10 transcriptional regulation, lncHOXA10 activated HOXA10 in liver TICs. LncHOXA10-HOXA10 signaling can be targeted to eliminate liver TICs. Altogether, lncHOXA10 drove HOXA10 expression and thus promoted liver TIC self-renewal. Conclusion HOXA10 was the most highly expressed HOX transcription factor in liver cancer and liver TICs. LncHOXA10 drove the transcriptional activation of HOXA10. This work revealed the important role of HOX transcription factor in liver TIC self-renewal and added a new layer for liver TIC regulation. Electronic supplementary material The online version of this article (10.1186/s12943-018-0921-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Shao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Weitao Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Huifang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jing Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jie Song
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yongkui Kong
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Xianping Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
22
|
circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:633-641. [PMID: 30497053 PMCID: PMC6258829 DOI: 10.1016/j.omtn.2018.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/07/2018] [Indexed: 01/22/2023]
Abstract
Bladder cancer is a serious cancer in the world, especially in advanced countries. Bladder cancer stem cells (CSCs) drive bladder tumorigenesis and metastasis. Circular RNAs (circRNAs) are involved in many biological processes, but their roles in bladder oncogenesis and bladder CSCs are unclear. Here, we identified that circGprc5a is upregulated in bladder tumors and CSCs. circGpr5a knockdown impairs the self-renewal and metastasis of bladder CSCs, and its overexpression exerts an opposite role. circGpr5a has peptide-coding potential and functions through a peptide-dependent manner. circGprc5a-peptide binds to Gprc5a, a surface protein highly expressed in bladder CSCs. Gprc5a knockout inhibits the bladder CSC self-renewal and metastasis. circGprc5a-peptide-Gprc5a can be utilized to target bladder cancer and bladder CSCs.
Collapse
|
23
|
Chen Z, Yao L, Liu Y, Zhu P. LncTIC1 interacts with β-catenin to drive liver TIC self-renewal and liver tumorigenesis. Cancer Lett 2018; 430:88-96. [DOI: 10.1016/j.canlet.2018.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 01/15/2023]
|
24
|
Chen Z, Liu Y, Yao L, Guo S, Gao Y, Zhu P. Withdrawal:The long noncoding RNA lncZic2 drives the self-renewal of liver tumor-initiating cells via the protein kinase C substrates MARCKS and MARCKSL1. J Biol Chem 2018; 293:7982-7992. [PMID: 29588366 PMCID: PMC5971456 DOI: 10.1074/jbc.ra117.001321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
Liver tumor–initiating cells (TICs) form small subsets of cells in hepatocellular tumors and account for tumorigenesis, metastasis, recurrence, and drug resistance. Recently, we found that the transcription factor Zic family member 2 (ZIC2) is highly expressed in liver TICs and required for their self-renewal. However, the molecular mechanisms underlying self-renewal of liver TICs remain unclear. Here, using expression profiling and CRISPR-interference assays with clinical samples of human liver cancers, we identified a long noncoding RNA (lncRNA), lncZic2, that is located near the ZIC2 locus and was highly expressed in liver cancer and liver TICs. We found that lncZic2 is required for the self-renewal of liver TICs in a ZIC2-independent manner. lncZic2 drove the expression of myristoylated alanine-rich protein kinase C substrate (MARCKS) and MARCKS-like 1 (MARCKSL1), whose expression levels were increased during liver tumorigenesis and liver TIC self-renewal. Mechanistically, lncZic2 interacted with BRM/SWI2-related gene 1 (BRG1) and recruited this transcriptional regulator to the promoters of the MARCKS and MARCKSL1 gene, which activated expression of these genes. Moreover, we noted that depletion of lncZic2 and BRG1 decreases MARCKS and MARCKSL1 expression and diminishes liver TIC levels. In conclusion, lncZic2 is required for the self-renewal of liver TICs by up-regulating MARCKS and MARCKSL1 gene expression via the transcription factor BRG1. Our findings suggest that the lncZic2–BRG1–MARCKS/MARCKSL1 signaling cascade might be a potential target for eliminating liver TICs in the management of liver cancer.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yating Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lintong Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shiying Guo
- Department of Pharmaceutical Engineering, School of Chemistry, Wuhan University of Technology, Wuhan 430070, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018; 23:E826. [PMID: 29617302 PMCID: PMC6017446 DOI: 10.3390/molecules23040826] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover, to achieve the accurate pre-diagnosis and real-time monitoring for tumor, the research of nano-theranostics, which integrates diagnosis with treatment process, is a promising field in cancer treatment. In this review, the recent studies on combinational therapy based on chemotherapy will be systematically discussed. Furthermore, as a current trend in cancer treatment, advance in theranostic nanoparticles based on chemotherapy will be exemplified briefly. Finally, the present challenges and improvement tips will be presented in combination therapy and nano-theranostics.
Collapse
Affiliation(s)
| | | | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhong-Min Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
26
|
Chen L, Qian M, Zhang L, Xia J, Bao Y, Wang J, Guo L, Li Y. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Adv 2018; 8:17710-17722. [PMID: 35542072 PMCID: PMC9080481 DOI: 10.1039/c8ra01679h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (DOX) is a widely-used effective antitumor agent. However, its clinical application is limited due to its side effects including anti-apoptotic defense of cancer cells caused by DOX-induced autophagy and deleterious effects in normal tissues. Therefore, in this study, a new folate (FA)-decorated amphiphilic bifunctional pullulan-based copolymer (named as FPDP) was developed as an efficient nano-carrier for the co-delivery of DOX and short hairpin RNA of Beclin1, a pivotal autophage-related gene, to enhance the anticancer effect of DOX by the blockade of the Beclin1 protein mediated autophagy process. In FPDP molecules, pullulan was modified with lipophilic desoxycholic acid for the formation of micelles, the introduced low molecular weight (1 kDa) branched polyethylenimine (PEI) was for shBeclin1 delivery, and folate (FA) was employed as the tumor-targeting group. FPDP micelles demonstrated an average diameter of 161.9 nm, good biocompatibility, applicable storage stability, excellent loading capacities for both DOX and shBeclin1 and a sustained drug release profile. In vitro cell culture experiments demonstrated that the uptake amount of FPDP/DOX micelles in folate receptor positive (FR+) HeLa cells was more than that in folate receptor negative (FR−) HepG2 cells, leading to significantly higher cytotoxicity against FR+ HeLa cells. The simultaneous co-delivery of shBeclin1 and DOX to HeLa cells with FPDP micelles led to efficient reduction in the expression level of Beclin1 as well as synergistic cell apoptotic induction. Furthermore, in vivo studies revealed superior antitumor efficacy of tumor-targeted FPDP/DOX/shBeclin1 in comparison with non-FR-targeted PDP micelles and free DOX. These results highlighted that co-delivery of DOX and shRNA of Beclin1 with FPDP micelles has the potential to overcome the limitations of DOX in clinical cancer therapy. New folate receptor targeted nano-micelles enhanced the anticancer effect of doxorubicin by shBeclin1 with the blockade of the autophagy process.![]()
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Ming Qian
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Liuwei Zhang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jing Xia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Yongming Bao
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Lianying Guo
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian
- P. R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian
- P. R. China
| |
Collapse
|
27
|
LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 2016; 7:13608. [PMID: 27905400 PMCID: PMC5146280 DOI: 10.1038/ncomms13608] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence and heterogeneity of hepatocellular carcinoma (HCC). However, the biology of hepatic CSCs remains largely undefined. Through analysis of transcriptome microarray data, we identify a long noncoding RNA (lncRNA) called lncBRM, which is highly expressed in liver CSCs and HCC tumours. LncBRM is required for the self-renewal maintenance of liver CSCs and tumour initiation. In liver CSCs, lncBRM associates with BRM to initiate the BRG1/BRM switch and the BRG1-embedded BAF complex triggers activation of YAP1 signalling. Moreover, expression levels of lncBRM together with YAP1 signalling targets are positively correlated with tumour severity of HCC patients. Therefore, lncBRM and YAP1 signalling may serve as biomarkers for diagnosis and potential drug targets for HCC. Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence of hepatocellular carcinoma. Here, the authors show that the long coding RNA, LcnBRM, regulates the self-renewal of liver CSCs and tumour initiation through binding to BAF complex thereby activating YAP1.
Collapse
|