1
|
Lee SSY, Pagacz J, Averbek S, Scholten D, Liu Y, Kron SJ. Timing Anti-PD-L1 Checkpoint Blockade Immunotherapy to Enhance Tumor Irradiation. Cancers (Basel) 2025; 17:391. [PMID: 39941761 PMCID: PMC11815760 DOI: 10.3390/cancers17030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Background: The ability of radiotherapy (RT) to drive anti-tumor immunity is limited by adaptive resistance. While RT induces inflammation and recruits activated tumor-infiltrating lymphocytes (TILs), including cytotoxic T lymphocytes (CTLs), the resulting radiation- and IFNγ-dependent PD-L1 expression restores an immunosuppressed tumor microenvironment. Unleashing an effective anti-tumor response may require the precise sequencing of RT and checkpoint blockade immunotherapy (CBI) to block PD-L1 signaling before it can mediate its suppressive effects. Methods: Flank tumors formed in BALB/c mice with syngeneic CT26 colon or 4T1 mammary carcinoma cells were treated with otherwise ineffective doses of ionizing radiation (10 Gy) followed by CBI (0.2 mg anti-PD-L1, i.v.) after 0, 1, 3, 5, or 7 days, comparing tumor response. Anti-PD-L1 delivery was measured by fluorescence, TILs by flow cytometry and immunofluorescence, PD-L1 expression by immunohistochemistry, and tumor size by calipers. Results: In both CT26 and 4T1 tumors, 10 Gy alone resulted in a transient growth delay associated with infiltrating CTLs peaking at 3 days and PD-L1 at 5 days. CTLs returned to baseline after 7 days, consistent with adaptive resistance. Anti-PD-L1 failed to potentiate radiation except when injected 5 days after 10 Gy, which prevented CTL depletion and led to tumor elimination. Potentially contributing to compound effects, anti-PD-L1 penetrated tumors and bound PD-L1 more efficiently after irradiation. Conclusions: Optimal timing to exploit radiation-induced permeability to enhance CBI delivery and interrupt adaptive resistance by blocking PD-L1 as it peaks may offer a general strategy to enhance external beam radiotherapy by protecting activated TILs and potentiating anti-tumor immune response.
Collapse
Affiliation(s)
- Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Joanna Pagacz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; (J.P.); (S.A.); (D.S.); (Y.L.)
| | - Sera Averbek
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; (J.P.); (S.A.); (D.S.); (Y.L.)
| | - David Scholten
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; (J.P.); (S.A.); (D.S.); (Y.L.)
| | - Yue Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; (J.P.); (S.A.); (D.S.); (Y.L.)
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; (J.P.); (S.A.); (D.S.); (Y.L.)
| |
Collapse
|
2
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. Biomaterials 2025; 312:122750. [PMID: 39126779 PMCID: PMC11401478 DOI: 10.1016/j.biomaterials.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Duke Eye Center, Duke University, Durham, NC, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander V Kabanov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Malatesta M. Histochemistry for Molecular Imaging in Nanomedicine. Int J Mol Sci 2024; 25:8041. [PMID: 39125610 PMCID: PMC11311594 DOI: 10.3390/ijms25158041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on cells, tissues, and organs, to ensure both effectiveness and safety. To this aim, imaging techniques proved to be extremely valuable not only to visualize the nanoparticles in the biological environment but also to detect the morphological and molecular modifications they have induced. In particular, histochemistry is a long-established science able to provide molecular information on cell and tissue components in situ, bringing together the potential of biomolecular analysis and imaging. The present review article aims at offering an overview of the various histochemical techniques used to explore the impact of novel nanoproducts as therapeutic, reconstructive and diagnostic tools on biological systems. It is evident that histochemistry has been playing a leading role in nanomedical research, being largely applied to single cells, tissue slices and even living animals.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
4
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584084. [PMID: 38559220 PMCID: PMC10979841 DOI: 10.1101/2024.03.09.584084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.
Collapse
|
5
|
Cooley MB, Wegierak D, Exner AA. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1957. [PMID: 38558290 PMCID: PMC11006412 DOI: 10.1002/wnan.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Nanomedicine in oncology has not had the success in clinical impact that was anticipated in the early stages of the field's development. Ideally, nanomedicines selectively accumulate in tumor tissue and reduce systemic side effects compared to traditional chemotherapeutics. However, this has been more successful in preclinical animal models than in humans. The causes of this failure to translate may be related to the intra- and inter-patient heterogeneity of the tumor microenvironment. Predicting whether a patient will respond positively to treatment prior to its initiation, through evaluation of characteristics like nanoparticle extravasation and retention potential in the tumor, may be a way to improve nanomedicine success rate. While there are many potential strategies to accomplish this, prediction and patient stratification via noninvasive medical imaging may be the most efficient and specific strategy. There have been some preclinical and clinical advances in this area using MRI, CT, PET, and other modalities. An alternative approach that has not been studied as extensively is biomedical ultrasound, including techniques such as multiparametric contrast-enhanced ultrasound (mpCEUS), doppler, elastography, and super-resolution processing. Ultrasound is safe, inexpensive, noninvasive, and capable of imaging the entire tumor with high temporal and spatial resolution. In this work, we summarize the in vivo imaging tools that have been used to predict nanoparticle distribution and treatment efficacy in oncology. We emphasize ultrasound imaging and the recent developments in the field concerning CEUS. The successful implementation of an imaging strategy for prediction of nanoparticle accumulation in tumors could lead to increased clinical translation of nanomedicines, and subsequently, improved patient outcomes. This article is categorized under: Diagnostic Tools In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery Emerging Technologies.
Collapse
Affiliation(s)
- Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Flor A, Pagacz J, Thompson D, Kron S. Far-red Fluorescent Senescence-associated β-Galactosidase Probe for Identification and Enrichment of Senescent Tumor Cells by Flow Cytometry. J Vis Exp 2022:10.3791/64176. [PMID: 36190263 PMCID: PMC10657218 DOI: 10.3791/64176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Cellular senescence is a state of proliferative arrest induced by biological damage that normally accrues over years in aging cells but may also emerge rapidly in tumor cells as a response to damage induced by various cancer treatments. Tumor cell senescence is generally considered undesirable, as senescent cells become resistant to death and block tumor remission while exacerbating tumor malignancy and treatment resistance. Therefore, the identification of senescent tumor cells is of ongoing interest to the cancer research community. Various senescence assays exist, many based on the activity of the well-known senescence marker, senescence-associated beta-galactosidase (SA-β-Gal). Typically, the SA-β-Gal assay is performed using a chromogenic substrate (X-Gal) on fixed cells, with the slow and subjective enumeration of "blue" senescent cells by light microscopy. Improved assays using cell-permeant, fluorescent SA-β-Gal substrates, including C12-FDG (green) and DDAO-Galactoside (DDAOG; far-red), have enabled the analysis of living cells and allowed the use of high-throughput fluorescent analysis platforms, including flow cytometers. C12-FDG is a well-documented probe for SA-β-Gal, but its green fluorescent emission overlaps with intrinsic cellular autofluorescence (AF) that arises during senescence due to the accumulation of lipofuscin aggregates. By utilizing the far-red SA-β-Gal probe DDAOG, green cellular autofluorescence can be used as a secondary parameter to confirm senescence, adding reliability to the assay. The remaining fluorescence channels can be used for cell viability staining or optional fluorescent immunolabeling. Using flow cytometry, we demonstrate the use of DDAOG and lipofuscin autofluorescence as a dual-parameter assay for the identification of senescent tumor cells. Quantitation of the percentage of viable senescent cells is performed. If desired, an optional immunolabeling step may be included to evaluate cell surface antigens of interest. Identified senescent cells can also be flow cytometrically sorted and collected for downstream analysis. Collected senescent cells can be immediately lysed (e.g., for immunoassays or 'omics analysis) or further cultured.
Collapse
Affiliation(s)
- Amy Flor
- Department of Molecular Genetics and Cell Biology, University of Chicago;
| | - Joanna Pagacz
- Department of Molecular Genetics and Cell Biology, University of Chicago
| | - DeShawn Thompson
- Department of Molecular Genetics and Cell Biology, University of Chicago
| | - Stephen Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago
| |
Collapse
|
7
|
Yamazaki T, Young KH. Effects of radiation on tumor vasculature. Mol Carcinog 2021; 61:165-172. [PMID: 34644811 DOI: 10.1002/mc.23360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Radiation has been utilized as a direct cytotoxic tumorcidal modality, however, the effect of radiation on tumor vasculature influences response to anticancer therapies. Although numerous reports have demonstrated vascular changes in irradiated tumors, the findings and implications are extensive and at times contradictory depending on the radiation dose, timing, and models used. In this review, we focus on the radiation-mediated effects on tumor vasculature with respect to doses used, timing postradiation, vasculogenesis, adhesion molecule expression, permeability, and pericyte coverage, including the latest findings.
Collapse
Affiliation(s)
- Tomoko Yamazaki
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA.,Radiation Oncology Division, The Oregon Clinic, Portland, Oregon, USA
| |
Collapse
|
8
|
Tucker C, Collins R, Denvir MA, McDougald WA. PET/CT Technology in Adult Zebrafish: A Pilot Study Toward Live Longitudinal Imaging. Front Med (Lausanne) 2021; 8:725548. [PMID: 34708053 PMCID: PMC8542982 DOI: 10.3389/fmed.2021.725548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Decades of research have confirmed the beneficial and advantageous use of zebrafish (Danio rerio) as a model of human disease in biomedical studies. Not only are 71% of human genes shared with the zebrafish many of these genes are linked to human diseases. Currently, numerous transgenic and mutant genetic zebrafish lines are now widely available for use in research. Furthermore, zebrafish are relatively inexpensive to maintain compared to rodents. However, a limiting factor to fully utilising adult zebrafish in research is not the fish but the technological imaging tools available. In order to increase the utilisation of adult zebrafish, which are not naturally transparent, requires new imaging approaches. Therefore, this feasibility study: (1) presents an innovative designed PET/CT adult zebrafish imaging platform, capable of maintaining normal aquatic physiology during scanning; (2) assesses the practical aspects of adult zebrafish imaging; and (3) set basic procedural guidelines for zebrafish imaging during a PET/CT acquisition. Methods: With computer aided design (CAD) software an imaging platform was developed for 3D printing. A 3D printed zebrafish model was created from a CT acquisition of a zebrafish using the CAD software. This model and subsequently euthanised zebrafish were imaged post-injection using different concentrations of the radiotracer [18F]FDG with CT contrast. Results: PET/CT imaging was successful, revealing levels as low as 0.01 MBq could be detected in the fish. In the zebrafish imaging post-injection distribution of the radiotracer was observed away from the injection site as well as tissue uptake. Potential preliminary husbandry and welfare guidelines for the fish during and after PET/CT imaging were determined. Conclusion: Using PET/CT for adult zebrafish imaging as a viable non-invasive technological tool is feasible. Adult zebrafish PET/CT imaging has the potential to be a key imaging technique offering the possibilities of enhanced biomedical understanding and new translational data sets.
Collapse
Affiliation(s)
- Carl Tucker
- Bioresearch & Veterinary Services (BVS) Aquatics Facility, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Collins
- Edinburgh College of Arts, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Denvir
- British Heart Foundation (BHF)-Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A. McDougald
- British Heart Foundation (BHF)-Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Preclinical Imaging, Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Lewis CD, Singh AK, Hsu FF, Thotala D, Hallahan DE, Kapoor V. Targeting a Radiosensitizing Antibody-Drug Conjugate to a Radiation-Inducible Antigen. Clin Cancer Res 2021; 27:3224-3233. [PMID: 34074654 DOI: 10.1158/1078-0432.ccr-20-1725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE We recently discovered that anti-TIP1 antibody activates endocytosis in cancer cells, which facilitates retention of antibody and dissociation of a conjugated drug. To improve the pharmacokinetics and cancer specificity of radiosensitizing drugs, we utilized antibody-drug conjugates (ADCs) that bind specifically to radiation-inducible antigen, TIP1, on non-small cell lung cancer (NSCLC). This approach exploits the long circulation time of antibodies to deliver a radiosensitizing drug to cancer each day during radiotherapy. EXPERIMENTAL DESIGN Antibodies to TIP1 were prioritized based on affinity, cancer-specific binding, and internalization. The lead antibody, 7H5, was conjugated with a cytotoxic drug MMAE because of its ability to radiosensitize cancer. Cytotoxicity, colony formation, and tumor growth studies were performed with 7H5-VcMMAE in combination with radiation. RESULTS 7H5 showed a high affinity to recombinant TIP1 protein and radiation-inducible TIP1 on the cancer cell surface. 7H5 undergoes endocytosis in NSCLC cells in vitro. We obtained an average drug-to-antibody ratio (DAR) of 4.25 for 7H5-VcMMAE. A 70% reduction in viable cells was observed following 7H5-VcMMAE treatment compared with 7H5 alone in both A549 and H1299 cells. 7H5-VcMMAE sensitized NSCLC cells to radiation, thereby significantly decreasing the surviving fraction. The ADC combined with radiation showed a prolonged delay in tumor growth and improved survival in A549 and H1299 tumor models. CONCLUSIONS Targeting radiation-inducible TIP1 with a radiosensitizing ADC is a promising strategy to enhance the therapeutic efficacy of NSCLC. This novel approach of targeting with ADCs to radiation-inducible antigens will lead to clinical trials in lung cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Calvin D Lewis
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Abhay K Singh
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Dinesh Thotala
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Dennis E Hallahan
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Vaishali Kapoor
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
10
|
Ridwan SM, El-Tayyeb F, Hainfeld JF, Smilowitz HM. Distributions of intravenous injected iodine nanoparticles in orthotopic u87 human glioma xenografts over time and tumor therapy. Nanomedicine (Lond) 2020; 15:2369-2383. [PMID: 32975163 PMCID: PMC7610150 DOI: 10.2217/nnm-2020-0178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/13/2020] [Indexed: 01/15/2023] Open
Abstract
Aim: To analyze the localization, distribution and effect of iodine nanoparticles (INPs) on radiation therapy (RT) in advanced intracerebral gliomas over time after intravenous injection. Materials & methods: Luciferase/td-tomato expressing U87 human glioma cells were implanted into mice which were injected intravenously with INPs. Mice with gliomas were followed for tumor progression and survival. Immune-stained mouse brain sections were examined and quantified by confocal fluorescence microscopy. Results: INPs injected intravenously 3 days prior to RT, compared with 1 day, showed greater association with CD31-staining structures, accumulated inside tumor cells more, covered more of the tumor cell surface and trended toward increased median survival. Conclusion: INP persistence and redistribution in tumors over time may enable greater RT enhancement and clinically relevant hypo-fractionated-RT and may enhance INP efficacy.
Collapse
Affiliation(s)
- Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Ferris El-Tayyeb
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Road, Unit 1, Yaphank, NY 11980, USA
| | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
11
|
Redirecting extracellular proteases to molecularly guide radiosensitizing drugs to tumors. Biomaterials 2020; 248:120032. [PMID: 32304937 DOI: 10.1016/j.biomaterials.2020.120032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Patients with advanced cancers are treated with combined radiotherapy and chemotherapy, however curability is poor and treatment side effects severe. Drugs sensitizing tumors to radiotherapy have been developed to improve cell kill, but tumor specificity remains challenging. To achieve tumor selectivity of small molecule radiosensitizers, we tested as a strategy active tumor targeting using peptide-based drug conjugates. We attached an inhibitor of the DNA damage response to antibody or cell penetrating peptides. Antibody drug conjugates honed in on tumor overexpressed cell surface receptors with high specificity but lacked efficacy when conjugated to the DNA damage checkpoint kinase inhibitor AZD7762. As an alternative approach, we synthesized activatable cell penetrating peptide scaffolds that accumulated within tumors based on matrix metalloproteinase cleavage. While matrix metalloproteinases are integral to tumor progression, they have proven therapeutically elusive. We harnessed these pro-tumorigenic extracellular proteases to spatially guide radiosensitizer drug delivery using cleavable activatable cell penetrating peptides. Here, we tested the potential of these two drug delivery platforms targeting distinct tumor compartments in combination with radiotherapy and demonstrate the advantages of protease triggered cell penetrating peptide scaffolds over antibody drug conjugates to deliver small molecule amine radiosensitizers.
Collapse
|
12
|
McDougald W, Vanhove C, Lehnert A, Lewellen B, Wright J, Mingarelli M, Corral CA, Schneider JE, Plein S, Newby DE, Welch A, Miyaoka R, Vandenberghe S, Tavares AAS. Standardization of Preclinical PET/CT Imaging to Improve Quantitative Accuracy, Precision, and Reproducibility: A Multicenter Study. J Nucl Med 2019; 61:461-468. [PMID: 31562220 PMCID: PMC7067528 DOI: 10.2967/jnumed.119.231308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Preclinical PET/CT is a well-established noninvasive imaging tool for studying disease development/progression and the development of novel radiotracers and pharmaceuticals for clinical applications. Despite this pivotal role, standardization of preclinical PET/CT protocols, including CT absorbed dose guidelines, is essentially nonexistent. This study (1) quantitatively assesses the variability of current preclinical PET/CT acquisition and reconstruction protocols routinely used across multiple centers and scanners; and (2) proposes acquisition and reconstruction PET/CT protocols for standardization of multicenter data, optimized for routine scanning in the preclinical PET/CT laboratory. Methods: Five different commercial preclinical PET/CT scanners in Europe and the United States were enrolled. Seven different PET/CT phantoms were used for evaluating biases on default/general scanner protocols, followed by developing standardized protocols. PET, CT, and absorbed dose biases were assessed. Results: Site default CT protocols were the following: greatest extracted Hounsfield units (HU) were 133 HU for water and −967 HU for air; significant differences in all tissue equivalent material (TEM) groups were measured. The average CT absorbed doses for mouse and rat were 72 mGy and 40 mGy, respectively. Standardized CT protocol were the following: greatest extracted HU were −77 HU for water and −990 HU for air; TEM precision improved with a reduction in variability for each tissue group. The average CT absorbed dose for mouse and rat decreased to 37 mGy and 24 mGy, respectively. Site default PET protocols were the following: uniformity was substandard in one scanner, recovery coefficients (RCs) were either over- or underestimated (maximum of 43%), standard uptake values (SUVs) were biased by a maximum of 44%. Standardized PET protocols were the following: scanner with substandard uniformity improved by 36%, RC variability decreased by 13% points, and SUV accuracy improved to 10%. Conclusion: Data revealed important quantitative biases in preclinical PET/CT and absorbed doses with default protocols. Standardized protocols showed improvements in measured PET/CT accuracy and precision with reduced CT absorbed dose across sites. Adhering to standardized protocols generates reproducible and consistent preclinical imaging datasets, thus augmenting translation of research findings to the clinic.
Collapse
Affiliation(s)
- Wendy McDougald
- BHF-Centre for Cardiovascular Science, College of Medicine & Veterinary Medicine, Queen's Medical Research Institute, University of Edinburgh, United Kingdom .,Edinburgh Preclinical Imaging (EPI), Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Christian Vanhove
- Department of Electronics and Information Systems, MEDISIP, Ghent University, Ghent, Belgium
| | - Adrienne Lehnert
- Department of Radiology, Imaging Research Laboratory, University of Washington, Seattle, Washington
| | - Barbara Lewellen
- Department of Radiology, Imaging Research Laboratory, University of Washington, Seattle, Washington
| | - John Wright
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Science, LIGHT Laboratories, University of Leeds, Leeds, United Kingdom; and
| | - Marco Mingarelli
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Carlos Alcaide Corral
- BHF-Centre for Cardiovascular Science, College of Medicine & Veterinary Medicine, Queen's Medical Research Institute, University of Edinburgh, United Kingdom.,Edinburgh Preclinical Imaging (EPI), Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Science, LIGHT Laboratories, University of Leeds, Leeds, United Kingdom; and
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Science, LIGHT Laboratories, University of Leeds, Leeds, United Kingdom; and
| | - David E Newby
- BHF-Centre for Cardiovascular Science, College of Medicine & Veterinary Medicine, Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Andy Welch
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Robert Miyaoka
- Department of Radiology, Imaging Research Laboratory, University of Washington, Seattle, Washington
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University, Ghent, Belgium
| | - Adriana Alexandre S Tavares
- BHF-Centre for Cardiovascular Science, College of Medicine & Veterinary Medicine, Queen's Medical Research Institute, University of Edinburgh, United Kingdom.,Edinburgh Preclinical Imaging (EPI), Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-facilitated toxicity in neuroblastoma cells. Toxicology 2019; 419:40-54. [DOI: 10.1016/j.tox.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
|
14
|
Park J, Park J, Castanares MA, Collins DS, Yeo Y. Magnetophoretic Delivery of a Tumor-Priming Agent for Chemotherapy of Metastatic Murine Breast Cancer. Mol Pharm 2019; 16:1864-1873. [PMID: 30916974 DOI: 10.1021/acs.molpharmaceut.8b01148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment is a significant physical barrier to the effective delivery of chemotherapy into solid tumors. To overcome this challenge, tumors are pretreated with an agent that reduces cellular and extracellular matrix densities prior to chemotherapy. However, it also comes with a concern that metastasis may increase due to the loss of protective containment. We hypothesize that timely priming at the early stage of primary tumors will help control metastasis. To test this, we primed orthotopic 4T1 breast tumors with a paclitaxel (PTX)-loaded iron-oxide-decorated poly(lactic- co-glycolic acid) nanoparticle (NP) composite (PTX@PINC), which can be quickly concentrated in target tissues with the aid of an external magnet, and monitored its effect on the delivery of subsequently administered NPs. Magnetic resonance imaging and optical whole-body imaging confirmed that PTX@PINC was efficiently delivered to tumors by the external magnet and help loosen the tumors to accommodate subsequently delivered NPs. Consistently, the primed tumors responded to Doxil better than nonprimed tumors. In addition, lung metastasis was significantly reduced in the animals PINC-primed prior to Doxil administration. These results support that PINC combined with magnetophoresis can facilitate the timely management of primary tumors with a favorable secondary effect on metastasis.
Collapse
Affiliation(s)
- Jinho Park
- Department of Industrial and Physical Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States.,Lilly Research Laboratories, Lilly Corporate Center , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - Joonyoung Park
- Department of Industrial and Physical Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - Mark A Castanares
- Lilly Research Laboratories, Lilly Corporate Center , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - David S Collins
- Lilly Research Laboratories, Lilly Corporate Center , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States.,Weldon School of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
15
|
Abstract
Molecular imaging is a vital tool to non-invasively measure nanoparticle delivery to solid tumors. Despite the myriad of nanoparticles studied for cancer, successful applications of nanoparticles in humans is limited by inconsistent and ineffective delivery. Successful nanoparticle delivery in preclinical models is often attributed to enhanced permeability and retention (EPR)-a set of conditions that is heterogeneous and transient in patients. Thus, researchers are evaluating therapeutic strategies to modify nanoparticle delivery, particularly treatments which have demonstrated effects on EPR conditions. Imaging nanoparticle distribution provides a means to measure the effects of therapeutic intervention on nanoparticle delivery to solid tumors. This review focuses on the utility of imaging to measure treatment-induced changes in nanoparticle delivery to tumors and provides preclinical examples studying a broad range of therapeutic interventions.
Collapse
|
16
|
Stapleton S, Dunne M, Milosevic M, Tran CW, Gold MJ, Vedadi A, Mckee TD, Ohashi PS, Allen C, Jaffray DA. Radiation and Heat Improve the Delivery and Efficacy of Nanotherapeutics by Modulating Intratumoral Fluid Dynamics. ACS NANO 2018; 12:7583-7600. [PMID: 30004666 DOI: 10.1021/acsnano.7b06301] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanomedicine drug delivery systems are capable of transporting significant payloads to solid tumors. However, only a modest increase in antitumor efficacy relative to the standard of care has been observed. In this study, we demonstrate that a single dose of radiation or mild hyperthermia can substantially improve tumor uptake and distribution of nanotherapeutics, resulting in improved treatment efficacy. The delivery of nanomedicine was driven by a reduction in interstitial fluid pressure (IFP) and small perturbation of steady-state fluid flow. The transient effects on fluid dynamics in tumors with high IFP was also shown to dominate over immune cell endocytic capacity, another mechanism suspected of improving drug delivery. Furthermore, we demonstrate the specificity of this mechanism by showing that delivery of nanotherapeutics to low IFP tumors with high leukocyte infiltration does not benefit from pretreatment with radiation or heat. These results demonstrate that focusing on small perturbations to steady-state fluid dynamics, rather than large sustained effects or uncertain immune cell recruitment strategies, can impart a vulnerability to tumors with high IFP and enhance nanotherapeutic drug delivery and treatment efficacy.
Collapse
Affiliation(s)
- Shawn Stapleton
- Department of Medical Biophysics , University of Toronto , Toronto , ON M5G 1L7 , Canada
| | - Michael Dunne
- Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , ON M5S 3M2 , Canada
| | - Michael Milosevic
- Department of Radiation Oncology , University of Toronto , Toronto , ON M5S 3E2 , Canada
| | - Charles W Tran
- Department of Immunology , University of Toronto , Toronto , ON M5S 1A1 , Canada
| | | | | | | | - Pamela S Ohashi
- Department of Immunology , University of Toronto , Toronto , ON M5S 1A1 , Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , ON M5S 3M2 , Canada
| | - David A Jaffray
- Department of Medical Biophysics , University of Toronto , Toronto , ON M5G 1L7 , Canada
- Department of Radiation Oncology , University of Toronto , Toronto , ON M5S 3E2 , Canada
- Techna Institute , University Health Network , Toronto , ON M5G 1L5 , Canada
| |
Collapse
|
17
|
Martinez-Zubiaurre I, Chalmers AJ, Hellevik T. Radiation-Induced Transformation of Immunoregulatory Networks in the Tumor Stroma. Front Immunol 2018; 9:1679. [PMID: 30105016 PMCID: PMC6077256 DOI: 10.3389/fimmu.2018.01679] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The implementation of novel cancer immunotherapies in the form of immune checkpoint blockers represents a major advancement in the treatment of cancer, and has renewed enthusiasm for identifying new ways to induce antitumor immune responses in patients. Despite the proven efficacy of neutralizing antibodies that target immune checkpoints in some refractory cancers, many patients do not experience therapeutic benefit, possibly owing to a lack of antitumor immune recognition, or to the presence of dominant immunosuppressive mechanisms in the tumor microenvironment (TME). Recent developments in this field have revealed that local radiotherapy (RT) can transform tumors into in situ vaccines, and may help to overcome some of the barriers to tumor-specific immune rejection. RT has the potential to ignite tumor immune recognition by generating immunogenic signals and releasing neoantigens, but the multiple immunosuppressive forces in the TME continue to represent important barriers to successful tumor rejection. In this article, we review the radiation-induced changes in the stromal compartments of tumors that could have an impact on tumor immune attack. Since different RT regimens are known to mediate strikingly different effects on the multifarious elements of the tumor stroma, special emphasis is given to different RT schedules, and the time after treatment at which the effects are measured. A better understanding of TME remodeling following specific RT regimens and the window of opportunity offered by RT will enable optimization of the design of novel treatment combinations.
Collapse
Affiliation(s)
- Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Anthony J Chalmers
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, United Kingdom
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| |
Collapse
|
18
|
Zhu S, Gu Z, Zhao Y. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
19
|
Abstract
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Collapse
Affiliation(s)
- Aaron Dolor
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| |
Collapse
|
20
|
Ashton JR, Castle KD, Qi Y, Kirsch DG, West JL, Badea CT. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy. Theranostics 2018; 8:1782-1797. [PMID: 29556356 PMCID: PMC5858500 DOI: 10.7150/thno.22621] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability. This work focuses on understanding how tumor vascular permeability is influenced by AuNP-augmented RT, and how this effect can be used to improve the delivery of nanoparticle chemotherapeutics. Methods: Dual-energy CT was used to quantify the accumulation of both liposomal iodine and AuNPs in tumors following AuNP-augmented RT in a mouse model of primary soft tissue sarcoma. Mice were injected with non-targeted AuNPs, RGD-functionalized AuNPs (vascular targeting), or no AuNPs, after which they were treated with varying doses of RT. The mice were injected with either liposomal iodine (for the imaging study) or liposomal doxorubicin (for the treatment study) 24 hours after RT. Increased tumor liposome accumulation was assessed by dual-energy CT (iodine) or by tracking tumor treatment response (doxorubicin). Results: A significant increase in vascular permeability was observed for all groups after 20 Gy RT, for the targeted and non-targeted AuNP groups after 10 Gy RT, and for the vascular-targeted AuNP group after 5 Gy RT. Combining targeted AuNPs with 5 Gy RT and liposomal doxorubicin led to a significant tumor growth delay (tumor doubling time ~ 8 days) compared to AuNP-augmented RT or chemotherapy alone (tumor doubling time ~3-4 days). Conclusions: The addition of vascular-targeted AuNPs significantly improved the treatment effect of liposomal doxorubicin after RT, consistent with the increased liposome accumulation observed in tumors in the imaging study. Using this approach with a liposomal drug delivery system can increase specific tumor delivery of chemotherapeutics, which has the potential to significantly improve tumor response and reduce the side effects of both RT and chemotherapy.
Collapse
Affiliation(s)
- Jeffrey R. Ashton
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| | - Katherine D. Castle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27705, United States
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27705, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| |
Collapse
|
21
|
Appelbe OK, Kim BK, Rymut N, Wang J, Kron SJ, Yeo Y. Radiation-enhanced delivery of plasmid DNA to tumors utilizing a novel PEI polyplex. Cancer Gene Ther 2017; 25:196-206. [PMID: 29255216 PMCID: PMC6008165 DOI: 10.1038/s41417-017-0004-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Abstract
The excitement surrounding the potential of gene therapy has been tempered due to the challenges that have thus far limited its successful implementation in the clinic such as issues regarding stability, transfection efficiency, and toxicity. In this study, low molecular weight linear polyethyleneimine (2.5 kDa) was modified by conjugation to a lipid, lithocholic acid, and complexed with a natural polysaccharide, dermatan sulfate (DS), to mask extra cationic charges of the modified polymer. In vitro examination revealed that these modifications improved complex stability with plasmid DNA (pDNA) and transfection efficiency. This novel ternary polyplex (pDNA/3E/DS) was used to investigate if tumor-targeted radiotherapy led to enhanced accumulation and retention of gene therapy vectors in vivo in tumor-bearing mice. Imaging of biodistribution revealed that tumor irradiation led to increased accumulation and retention as well as decreased off-target tissue buildup of pDNA in not only pDNA/3E/DS, but also in associated PEI-based polyplexes and commercial DNA delivery vehicles. The DS-containing complexes developed in this study displayed the greatest increase in tumor-specific pDNA delivery. These findings demonstrate a step forward in nucleic acid vehicle design as well as a promising approach to overall cancer gene therapy through utilization of radiotherapy as a tool for enhanced delivery.
Collapse
Affiliation(s)
- Oliver K Appelbe
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA.,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA
| | - Bieong-Kil Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Nick Rymut
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA.,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA.,Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA. .,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA.
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
22
|
Radiation-enhanced delivery of systemically administered amphiphilic-CpG oligodeoxynucleotide. J Control Release 2017; 266:248-255. [PMID: 28987882 DOI: 10.1016/j.jconrel.2017.09.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
Abstract
Along with vaccines and checkpoint blockade, immune adjuvants may have an important role in tumor immunotherapy. Oligodeoxynucleotides containing unmethylated cytidyl guanosyl dinucleotide motifs (CpG ODN) are TLR9 ligands with attractive immunostimulatory properties, but intratumoral administration has been required to induce an effective anti-tumor immune response. Following on recent studies with radiation-targeted delivery of nanoparticles, we examined enhanced tumor-specific delivery of amphiphile-CpG, an albumin-binding analog of CpG ODN, following systemic administration 3days after tumor irradiation. The combination of radiation and CpG displayed superior tumor control over either treatment alone. Intravital imaging of fluorescently labeled amphiphilic-CpG revealed increased accumulation in irradiated tumors along with decreased off-target accumulation in visceral organs. Within 48h after amphiphile-CpG administration, immune activation could be detected by increased Granzyme B and Interferon gamma activity in the tumor as well as in circulating monocytes and activated CD8+ T cells. Using radiotherapy to enhance the targeting of CpG to tumors may help advance this once promising therapy to clinical relevance.
Collapse
|
23
|
Dostalova S, Vasickova K, Hynek D, Krizkova S, Richtera L, Vaculovicova M, Eckschlager T, Stiborova M, Heger Z, Adam V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomedicine 2017; 12:2265-2278. [PMID: 28392686 PMCID: PMC5373844 DOI: 10.2147/ijn.s130267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Due to many adverse effects of conventional chemotherapy, novel methods of targeting drugs to cancer cells are being investigated. Nanosize carriers are a suitable platform for this specific delivery. Herein, we evaluated the long-term stability of the naturally found protein nanocarrier apoferritin (Apo) with encapsulated doxorubicin (Dox). The encapsulation was performed using Apo’s ability to disassemble reversibly into its subunits at low pH (2.7) and reassemble in neutral pH (7.2), physically entrapping drug molecules in its cavity (creating ApoDox). In this study, ApoDox was prepared in water and phosphate-buffered saline and stored for 12 weeks in various conditions (−20°C, 4°C, 20°C, and 37°C in dark, and 4°C and 20°C under ambient light). During storage, a very low amount of prematurely released drug molecules were detected (maximum of 7.5% for ApoDox prepared in PBS and 4.4% for ApoDox prepared in water). Fourier-transform infrared spectra revealed no significant differences in any of the samples after storage. Most of the ApoDox prepared in phosphate-buffered saline and ApoDox prepared in water and stored at −20°C formed very large aggregates (up to 487% of original size). Only ApoDox prepared in water and stored at 4°C showed no significant increase in size or shape. Although this storage caused slower internalization to LNCaP prostate cancer cells, ApoDox (2.5 μM of Dox) still retained its ability to inhibit completely the growth of 1.5×104 LNCaP cells after 72 hours. ApoDox stored at 20°C and 37°C in water was not able to deliver Dox inside the nucleus, and thus did not inhibit the growth of the LNCaP cells. Overall, our study demonstrates that ApoDox has very good stability over the course of 12 weeks when stored properly (at 4°C), and is thus suitable for use as a nanocarrier in the specific delivery of anticancer drugs to patients.
Collapse
Affiliation(s)
- Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | | | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, University Hospital Motol, Charles University
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology, Brno
| |
Collapse
|