1
|
You P, Lu F, Ouyang C, Yu J, González-García J, Song J, Ni W, Wang J, Yin C, Zhou CQ. Acidic Lysosome-Anchoring Croconium-Based Nanoplatform for Enhanced Triple-Mode Bioimaging and Fe 3+-Triggered Tumor Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46066-46078. [PMID: 39172044 DOI: 10.1021/acsami.4c09587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-modulated croconium dyes with multimodal-imaging and synergistic therapy in the tumor microenvironment have exhibited great potential in tumor theranostics. However, their unideal structure optimization always weakened the efficacy of near-infrared fluorescence-photoacoustic (NIRF/PA) imaging and photothermal therapy (PTT). Here, we screened croconium dye containing two indole groups with better NIRF/PA imaging and PTT in their family, linked to two morpholine rings, and obtained CR-736, as a lysosome-targeting and Fe3+-modulated agent. The established CR-736-Fe3+ nanoplatform was accurately delivered to the breast tumor site, released CR-736 and Fe3+ in the lower acidic lysosome microenvironment, and activated pH-responsive NIRF/PA/magnetic resonance imaging and PTT. Furthermore, ferroptosis generated hydroxyl free radicals and lipid peroxide by consuming GSH and H2O2 by dint of the accumulation of Fe3+ in tumor cells, which resulted in the inhibition of the expression of heat shock proteins and the concomitant recovery of PTT. The synergistic therapy of PTT, ferroptosis, and chemodynamics was further optimized to the maximal extent in tumor lysosome acidic microenvironment and proved both in vitro and a mouse tumor model. This study opens a new avenue in designing excellent and unique croconium-based nanoplatforms, synergizing multiple tumor theranostic methods, and further optimizing the theranostic effects in tumor microenvironment.
Collapse
Affiliation(s)
- Peidan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Lu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengren Ouyang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jielin Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jorge González-García
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, Paterna 46980, Spain
| | - Jinxin Song
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weitong Ni
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Chun-Qiong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
3
|
Barcelos JM, Hayasaki TG, de Santana RC, Lima EM, Mendanha SA, Bakuzis AF. Photothermal Properties of IR-780-Based Nanoparticles Depend on Nanocarrier Design: A Comparative Study on Synthetic Liposomes and Cell Membrane and Hybrid Biomimetic Vesicles. Pharmaceutics 2023; 15:pharmaceutics15020444. [PMID: 36839765 PMCID: PMC9961772 DOI: 10.3390/pharmaceutics15020444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Biomimetic nanoparticles hold great promise for photonic-mediated nanomedicine due to the association of the biological functionality of the membrane with the physical/chemical goals of organic/inorganic structures, but studies involving fluorescent biomimetic vesicles are still scarce. The purpose of this article is to determine how photothermal therapy (PTT) with theranostic IR-780-based nanoparticles depends on the dye content, cholesterol content, lipid bilayer phase and cell membrane type. The photophysical responses of synthetic liposomes, cell membrane vesicles and hybrid nanoparticles are compared. The samples were characterized by nanoparticle tracking analysis, photoluminescence, electron spin resonance, and photothermal- and heat-mediated drug release experiments, among other techniques. The photothermal conversion efficiency (PCE) was determined using Roper's method. All samples excited at 804 nm showed three fluorescence bands, two of them independent of the IR-780 content. Samples with a fluorescence band at around 850 nm showed photobleaching (PBL). Quenching was higher in cell membrane vesicles, while cholesterol inhibited quenching in synthetic liposomes with low dye content. PTT depended on the cell membrane and was more efficient for melanoma than erythrocyte vesicles. Synthetic liposomes containing cholesterol and a high amount of IR-780 presented superior performance in PTT experiments, with a 2.4-fold PCE increase in comparison with free IR-780, no PBL and the ability to heat-trigger doxorubicin release.
Collapse
Affiliation(s)
- Júlia Muniz Barcelos
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | | | | | - Eliana Martins Lima
- Farmatec, School of Pharmacy, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
- CNanomed, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
| | - Sebastião Antonio Mendanha
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
- Farmatec, School of Pharmacy, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
- CNanomed, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
| | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
- CNanomed, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
- Correspondence:
| |
Collapse
|
4
|
Liu M, Sun C, Wu S, Zhu M, Zhang Y. Nanoarchitectonics of Indocyanine Green/Doxorubicin-Loaded Hydroxyl Boron Nitride Nanosheets for Chemophotothermal Therapy. Chempluschem 2022; 87:e202200277. [PMID: 36284257 DOI: 10.1002/cplu.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Indexed: 02/18/2024]
Abstract
Biocompatible hydroxylated boron nitride nanosheets were effectively loaded with indocyanine green and doxorubicin using successive assembly. The indocyanine green/doxorubicin-loaded hydroxyl boron nitride nanosheets (ICG/DOX@OH-BNNS) integrated photothermal therapy and chemotherapy into a single nano vehicle. It had been confirmed that ICG/DOX@OH-BNNS could produce reactive oxygen species and exhibit excellent photothermal effects and light-triggered faster DOX release with NIR laser irradiation. On the other hand, the fluorescence of DOX in ICG/DOX@OH-BNNS was also used for visualizing subcellular location. Compared with individual chemotherapy and photothermal therapy, the combined treatment of ICG/DOX@OH-BNNS could synergistically induce the apoptosis and death of A549 cells and suppress S180 tumor growth in vivo.
Collapse
Affiliation(s)
- Ming Liu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Chiyu Sun
- Department of Pharmacology, Shenyang medical colleges, Shenyang, 110034, P. R. China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| |
Collapse
|
5
|
Appidi T, P S R, Chinchulkar SA, Pradhan A, Begum H, Shetty V, Srivastava R, Ganesan P, Rengan AK. A plasmon-enhanced fluorescent gold coated novel lipo-polymeric hybrid nanosystem: synthesis, characterization and application for imaging and photothermal therapy of breast cancer. NANOSCALE 2022; 14:9112-9123. [PMID: 35722896 DOI: 10.1039/d2nr01378a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports a hybrid lipo-polymeric nanosystem (PDPC NPs) synthesized by a modified hydrogel-isolation technique. The ability of the nanosystem to encapsulate hydrophilic and hydrophobic molecules has been demonstrated, and their enhanced cellular uptake has been observed in vitro. The PDPC NPs, surface coated with gold by in situ reduction of chloroauric acid (PDPC-Au NPs), showed a photothermal transduction efficacy of ∼65%. The PDPC-Au NPs demonstrated an increase in intracellular ROS, triggered DNA damage and resulted in apoptotic cell death when tested against breast cancer cells (MCF-7). The disintegration of PDPC-Au NPs into smaller nanoparticles with near-infrared (NIR) laser irradiation was understood using transmission electron microscopy imaging. The lipo-polymeric hybrid nanosystem exhibited plasmon-enhanced fluorescence when loaded with IR780 (a NIR dye), followed by surface coating with gold (PDPC-IR-Au NPs). This paper is one of the first reports on the plasmon-enhanced fluorescence within a nanosystem by simple surface coating of Au, to the best of our knowledge. This plasmon-enhanced fluorescence was unique to the lipo-polymeric hybrid system, as the same was not observed with a liposomal nanosystem. The plasmon-enhanced fluorescence of PDPC-IR-Au NPs, when applied for imaging cancer cells and zebrafish embryos, showed a strong fluorescence signal at minimal concentrations of the dye. The PDPC-IR-Au NPs were also applied for photothermal therapy of breast cancer in vitro and in vivo, and the results depicted significant therapeutic benefits.
Collapse
Affiliation(s)
- Tejaswini Appidi
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | - Rajalakshmi P S
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | | | - Arpan Pradhan
- Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Hajira Begum
- Dept. of Chemistry, Indian Institute of Technology Hyderabad, India
| | - Veeresh Shetty
- Dept. of Chemistry, Indian Institute of Technology Hyderabad, India
| | - Rohit Srivastava
- Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | | | - Aravind Kumar Rengan
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| |
Collapse
|
6
|
Zhou Z, Jiang N, Chen J, Zheng C, Guo Y, Ye R, Qi R, Shen J. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J Nanobiotechnology 2021; 19:375. [PMID: 34794446 PMCID: PMC8600872 DOI: 10.1186/s12951-021-01124-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. Results In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-β and vimentin) after combining treatment. Conclusion Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01124-8. Over-expression of PD-L1 after mild-photothermal therapy significantly limited its efficacy. Phenformin could effectively downregulate PD-L1 expression and inhibit tumor metastasis through AMPK activation. Hydrogen peroxide responsive manganese dioxide mineralized albumin nanocomplex co-loading with phenformin and ICG named ICG@PM@NP was constructed by modified two-step biomineralization method. ICG@PM@NP could enhance T cell infiltration and antitumor metastasis in vivo. ICG@PM@NP mediated mild-photothermal therapy could make up the defects of conventional mild-photothermal therapy in lacking the anti-metastasis ability and inducing enhanced PD-L1 expression.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiashe Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunjuan Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanyuan Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ruogu Qi
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
7
|
Liu Q, Tian J, Tian Y, Sun Q, Sun D, Liu D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomater 2021; 127:287-297. [PMID: 33831570 DOI: 10.1016/j.actbio.2021.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Organic fluorophores/photosensitizers have been widely used in biological imaging and photodynamic and photothermal combination therapy in the first near-infrared (NIR-I) window. However, their applications in the second near-infrared (NIR-II) window are still limited primarily due to low fluorescence quantum yields (QYs). Here, a boron dipyrromethene (BDP) is created as a molecularly engineered thiophene donor unit with high QYs to the redshift. Thiophene insertion initiates substantial redshifts of the absorbance as compared to its counterparts in which iodine is introduced. The fluorescent molecule can be triggered by an NIR laser with a single wavelength, thereby producing emission in the NIR-II windows. Single NIR laser-triggered phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and the chemotherapeutic drug docetaxel (DTX) by using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show superior solubility and high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics. After intravenous administration of the NPs into 4T1 tumor-bearing mice, the accumulation of the NPs in the tumor showed a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the combination of photodynamic therapy (PDT) and photothermic therapy (PTT). STATEMENT OF SIGNIFICANCE: The application of organic photosensitizers is still limited primarily due to low fluorescence quantum yields (QYs) in the second near-infrared (NIR-II) window. Here, a boron dipyrromethene (BDP) as a molecularly engineered thiophene donor unit with high QYs to the redshift is created. Phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and docetaxel (DTX) using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics and a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the PDT/PTT combination therapy.
Collapse
Affiliation(s)
- Qiang Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Chemistry, Stanford University, CA 94305, United States
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Dewen Liu
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Feifei Wang
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139 MA, United States.
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Urology, Shenzhen People's Hospital (The First Affilated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
8
|
NIR light-responsive nanocarriers for controlled release. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Shi Q, Wu K, Huang X, Xu R, Zhang W, Bai J, Du S, Han N. Tannic acid/Fe3+ complex coated mesoporous silica nanoparticles for controlled drug release and combined chemo-photothermal therapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
11
|
Alvi SB, Rajalakshmi PS, Jogdand A, Sanjay AY, B. V, John R, Rengan AK. Iontophoresis mediated localized delivery of liposomal gold nanoparticles for photothermal and photodynamic therapy of acne. Biomater Sci 2021; 9:1421-1430. [DOI: 10.1039/d0bm01712d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iontophoresis mediated localized delivery of drug entrapping liposomal gold nanoparticles for photothermal and photodynamic therapy of acne.
Collapse
Affiliation(s)
| | - P. S. Rajalakshmi
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad
- India
| | - Anil Jogdand
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad
- India
| | | | - Veeresh B.
- Department of Pharmacology
- G. Pulla Reddy college of Pharmacy
- Hyderabad
- India
| | - Renu John
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad
- India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad
- India
| |
Collapse
|
12
|
Kono Y, Yokoyama K, Suzuki M, Takakura H, Ogawa M. Surface Modification of Liposomes Using IR700 Enables Efficient Controlled Contents Release Triggered by Near-IR Light. Biol Pharm Bull 2020; 43:736-741. [PMID: 32238716 DOI: 10.1248/bpb.b19-00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive liposomes are promising drug carriers for cancer treatment because they enable controlled drug release and the maintenance of desired drug concentrations in tumor tissue. In particular, near-IR (NIR) light is a useful stimulus for triggering drug release from liposomes based on its advantages such as deep tissue penetration and safety. Previously, we found that a silicon phthalocyanine derivative, IR700, conjugated to antibodies, can induce the rupture of the cell membrane following irradiation by NIR light. Based on this finding, we constructed IR700-modified liposomes (IR700 liposomes) and evaluated their drug release properties triggered by NIR light. IR700 liposomes released substantial amounts of encapsulated calcein following irradiation by NIR light. Drug release was substantially suppressed by the addition of sodium azide, suggesting that liposomal membrane permeabilization was mediated by singlet oxygen generated from IR700. Moreover, calcein release from IR700 liposomes triggered by NIR light was promoted under conditions of deoxygenation and the presence of electron donors. Thus, membrane disruption should be induced by the physical change of IR700 from highly hydrophilic to hydrophobic as we previously described, although singlet oxygen can cause a certain level of membrane disruption under normoxia. We also observed that doxorubicin-encapsulated IR700 liposomes exhibited significant cytotoxic effects against CT-26 murine colon carcinoma cells following NIR light exposure. These results indicate that IR700 liposomes can efficiently release anti-cancer drugs following NIR light irradiation even under hypoxic conditions and, therefore, they would be useful for cancer treatment.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Kazuha Yokoyama
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Motofumi Suzuki
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Hideo Takakura
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Mikako Ogawa
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
13
|
Mó I, Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. Assessing the Combinatorial Chemo-Photothermal Therapy Mediated by Sulfobetaine Methacrylate-Functionalized Nanoparticles in 2D and 3D In Vitro Cancer Models. Biotechnol J 2020; 15:e2000219. [PMID: 33063471 DOI: 10.1002/biot.202000219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinatorial cancer therapies mediated by nanomaterials can potentially overcome the limitations of conventional treatments. These therapies are generally investigated using 2D in vitro cancer models, leading to an inaccurate screening. Recently, 3D in vitro spheroids have emerged in the preclinical testing stage of nanomedicines due to their ability to mimic key features of the in vivo solid tumors. Investigate the chemo-photothermal therapy mediated by Doxorubicin and IR780 loaded sulfobetaine methacrylate functionalized nanoparticles, for the first time, using monolayers of cancer cells and spheroids. In the 2D cancer models, the nanomaterials' mediated photothermal therapy, chemotherapy, and chemo-photothermal therapy reduced cancer cells' viability to about 58%, 29%, and 1%, respectively. Interestingly, when the nanomaterials' mediated photothermal therapy is tested on 3D spheroids, no cytotoxic effect is noticed. In contrast, the nanostructures' induced chemotherapy decreased spheroids' viability to 42%. On the other hand, nanomaterials' mediated chemo-photothermal therapy diminished spheroids' viability to 16%, being the most promising therapeutic modality. These results demonstrate the importance of using 3D spheroids during the in vitro screening of single/combinatorial therapies mediated by nanomaterials.
Collapse
Affiliation(s)
- Inês Mó
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Rua Sílvio Lima, Universidade de Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
14
|
|
15
|
Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115778] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
17
|
Yang Z, Wang L, Liu Y, Liu S, Tang D, Meng L, Cui B. ZnO capped flower-like porous carbon-Fe 3O 4 composite as carrier for bi-triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110256. [PMID: 31761234 DOI: 10.1016/j.msec.2019.110256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 01/21/2023]
Abstract
In this work, ZnO capped flower-like porous carbon-Fe3O4 composite (FPCS-Fe3O4-ZnO) was constructed as a carrier for pH and microwave bi-triggered drug delivery. In the composite, the FPCS achieves high-efficiency drug loading, the Fe3O4 acts as magnetic targeting agent and microwave absorption enhancer, and the ZnO nanoparticle as a sealing agent in response to pH stimulation. The carrier exhibited a flower-mesoporous sphere of 270 nm, a specific surface area of 101 m2/g, a saturation magnetization of 14.08 emu/g, as well as good microwave thermal conversion properties (The temperature was raised from 25 °C to 60 °C only 24 s). Simultaneously, the carrier achieved an efficient drug loading with a drug loading rate of 99.1%. During the drug release experiments, obvious pH-dependent release behavior was observed, the drug release rate at 12 h was 8.2%, 19.0%, and 56.3% at pH 7.4, 5.0 and 3.0 respectively. Moreover the drug release rate increased from 8.2% to 39.9% after microwave stimulation at pH 7.4. In addition, cytotoxicity tests indicate that the carrier has good biocompatibility. Thus, this multifunctional pH and microwave bi-triggered carrier was expected to be further applied to drug delivery system(DDS).
Collapse
Affiliation(s)
- Zhenfeng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Lianhua Wang
- Shaanxi Provincial Institute of Modern Agricultural Sciences, Xi'an, Shaanxi, 710068, China
| | - Ye Liu
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Shimin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Dejian Tang
- Key Laboratory of Se-enriched Products Development and Quality Control(Ministry of Agriculture), National and Local Joint Engineering Laboratory for Selenium-enriched Food Development, China Selenium Industry Research Institute, An'kang, Shaanxi, 725000, China
| | - Li Meng
- Key Laboratory of Se-enriched Products Development and Quality Control(Ministry of Agriculture), National and Local Joint Engineering Laboratory for Selenium-enriched Food Development, China Selenium Industry Research Institute, An'kang, Shaanxi, 725000, China
| | - Bin Cui
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
| |
Collapse
|
18
|
Dai Y, Wang B, Sun Z, Cheng J, Zhao H, Wu K, Sun P, Shen Q, Li M, Fan Q. Multifunctional Theranostic Liposomes Loaded with a Hypoxia-Activated Prodrug for Cascade-Activated Tumor Selective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39410-39423. [PMID: 31578854 DOI: 10.1021/acsami.9b11080] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) is becoming a promising therapeutic regimen but is limited by the hypoxic microenvironment in solid tumors and the undesirable post-treatment phototoxicity side effects on normal tissues. To overcome these restrictions and enhance the antitumor therapeutic effect, near-infrared (NIR) light-activated, cancer cell-specific, hypoxia prodrug-loaded chlorin e6 liposomes were developed for tumor selective combination therapy guided by multimodal imaging. The photothermal agent indocyanine green (ICG) and hypoxia-activated prodrug tirapazamine (TPZ) were coencapsulated into the liposomes, followed by modification with cRGD and conjugation with GdIII to form ICG/TPZ@Ce6-GdIII theranostic liposomes (ITC-GdIII TLs). In the ITC-GdIII TLs, both the fluorescence and photodynamic effect of Ce6 were quenched by ICG via fluorescence resonance energy transfer. The ITC-GdIII TLs can effectively reach the tumor site through the enhanced permeability and retention effect as well as the cRGD-mediated active targeting ability. The fluorescence and photodynamic effect of Ce6 can be activated by the photothermal effect of ICG under NIR light. Upon subsequent irradiation with a 660 nm laser, the released Ce6 could kill cancer cells by generating cytotoxic singlet oxygen. Furthermore, the PDT process would induce hypoxia, which in turn activated the antitumor activity of the codelivered hypoxia-activated prodrug TPZ for a combination antitumor effect. The TLs could be utilized for multimodal imaging (fluorescence/photoacoustic/magnetic resonance imaging)-guided cascade-activated tumor inhibition with optimized therapeutic efficiency and minimized side effects, holding great potential for constructing intelligent nanotheranostics.
Collapse
Affiliation(s)
- Yeneng Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Bing Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Zhiquan Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Juan Cheng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Honghai Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Kun Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Meixing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| |
Collapse
|
19
|
Xu L, Zhang Z, Ding Y, Wang L, Cheng Y, Meng L, Wu J, Yuan A, Hu Y, Zhu Y. Bifunctional liposomes reduce the chemotherapy resistance of doxorubicin induced by reactive oxygen species. Biomater Sci 2019; 7:4782-4789. [PMID: 31524211 DOI: 10.1039/c9bm00590k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Doxorubicin (DOX) liposome is a widely used nano-medicine for colorectal cancer treatment. However, doxorubicin therapy increases the level of reactive oxygen species (ROS) in tumor cells, such as hydrogen peroxide (H2O2), which can stabilize hypoxia-inducible-factor-1α (HIF-1α). In a tumor hypoxic microenvironment, HIF-1 can up-regulate tumor-resistance related proteins, including P-glycoprotein (P-gp), glucose transporter 1 (GLUT-1), and matrix metalloproteinase 9 (MMP-9), leading to tumor tolerance to chemotherapy. The functional inhibition of HIF-1 can overcome this resistance and enhance the efficacy of tumor therapy. Here, we encapsulated one of the most effective HIF-1 inhibitors, acriflavine (ACF), and DOX in liposomes (DOX-ACF@Lipo) to construct bifunctional liposomes. ACF and DOX, released from DOX-ACF@Lipo, could effectively suppress the function of HIF-1 and the process of DNA replication, respectively. Consequently, the bifunctional liposome has great potential to be applied in clinics to overcome chemotherapy resistance induced by hypoxia.
Collapse
Affiliation(s)
- Lei Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China. and State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Zhicheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yawen Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Li Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yali Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Lingtong Meng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Shen J, Wang Q, Lv Y, Dong J, Xuan G, Yang J, Wu D, Zhou J, Yu G, Tang G, Li X, Huang F, Chen X. Nanomedicine Fabricated from A Boron-dipyrromethene (BODIPY)-Embedded Amphiphilic Copolymer for Photothermal-Enhanced Chemotherapy. ACS Biomater Sci Eng 2019; 5:4463-4473. [DOI: 10.1021/acsbiomaterials.9b01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Shen
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Qiwen Wang
- Heart and Vascular Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, P. R. China
| | - Yuanyuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jingyin Dong
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Guida Xuan
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Wu
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guping Tang
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao Li
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
- The Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
21
|
Hsiao CY, Yang SC, Alalaiwe A, Fang JY. Laser ablation and topical drug delivery: a review of recent advances. Expert Opin Drug Deliv 2019; 16:937-952. [DOI: 10.1080/17425247.2019.1649655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
22
|
DiGuiseppi J, Zuo J. The awesome power of optogenetics in hearing research. Neurosci Lett 2019; 701:175-179. [PMID: 30822439 PMCID: PMC8658741 DOI: 10.1016/j.neulet.2019.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
Abstract
The use of light as a tool to manipulate cellular processes or optogenetics has developed rapidly in various biological fields over the past decade. Through the addition of photosensitive proteins, light can be used to control intracellular mechanisms, map neuronal pathways, and alter variables that would be difficult to control using other mechanisms. Photons of a specific wavelength affect these light sensitive targets for in vitro or in vivo experiments. Optogenetics is beneficial because it gives the investigator spatial and temporal control over experimental variables. Precise control is achieved by sequential activation of different ion channels and the ability to non-invasively control membrane potential. In this review, we will discuss the recent use of optogenetics in biological fields to understand the role of different cell types in hearing and creating a new cochlear implant, as well as future uses such as light controlled drug delivery and gene expression.
Collapse
Affiliation(s)
- Joseph DiGuiseppi
- Dept. of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jian Zuo
- Dept. of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
23
|
Sadreev II, Burwood GWS, Flaherty SM, Kim J, Russell IJ, Abdullin TI, Lukashkin AN. Drug Diffusion Along an Intact Mammalian Cochlea. Front Cell Neurosci 2019; 13:161. [PMID: 31080407 PMCID: PMC6497751 DOI: 10.3389/fncel.2019.00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
Intratympanic drug administration depends on the ability of drugs to pass through the round window membrane (RW) at the base of the cochlea and diffuse from this location to the apex. While the RW permeability for many different drugs can be promoted, passive diffusion along the narrowing spiral of the cochlea is limited. Earlier measurements of the distribution of marker ions, corticosteroids, and antibiotics demonstrated that the concentration of substances applied to the RW was two to three orders of magnitude higher in the base compared to the apex. The measurements, however, involved perforating the cochlear bony wall and, in some cases, sampling perilymph. These manipulations can change the flow rate of perilymph and lead to intake of perilymph through the cochlear aqueduct, thereby disguising concentration gradients of the delivered substances. In this study, the suppressive effect of salicylate on cochlear amplification via block of the outer hair cell (OHC) somatic motility was utilized to assess salicylate diffusion along an intact guinea pig cochlea in vivo. Salicylate solution was applied to the RW and threshold elevation of auditory nerve responses was measured at different times and frequencies after application. Resultant concentrations of salicylate along the cochlea were calculated by fitting the experimental data using a mathematical model of the diffusion and clearing of salicylate in a tube of variable diameter combined with a model describing salicylate action on cochlear amplification. Concentrations reach a steady-state at different times for different cochlear locations and it takes longer to reach the steady-state at more apical locations. Even at the steady-state, the predicted concentration at the apex is negligible. Model predictions for the geometry of the longer human cochlea show even higher differences in the steady-state concentrations of the drugs between cochlear base and apex. Our findings confirm conclusions that achieving therapeutic drug concentrations throughout the entire cochlear duct is hardly possible when the drugs are applied to the RW and are distributed via passive diffusion. Assisted methods of drug delivery are needed to reach a more uniform distribution of drugs along the cochlea.
Collapse
Affiliation(s)
- Ildar I Sadreev
- Department of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - George W S Burwood
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Samuel M Flaherty
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Jongrae Kim
- School of Mechanical Engineering, Institute of Design, Robotics and Optimisation, Aerospace Systems Engineering, University of Leeds, Leeds, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Timur I Abdullin
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
24
|
Rejinold NS, Cherukula K, Ha JH, Park I, Kim Y. Olive Oil‐Based Ultrafine Theranostic Photo Nanoemulsions: A Versatile Tumor Maneuvering Nanoplatform for Precise Controlled Drug Release in Tumor and Complete Tumor Eradication Mediated by Photo‐Chemotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- N. Sanoj Rejinold
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical ScientistsChonnam National University Medical School 160 Baekseo‐ro Gwangju 61469 Republic of Korea
| | - Jong Hoon Ha
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| | - In‐Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical ScientistsChonnam National University Medical School 160 Baekseo‐ro Gwangju 61469 Republic of Korea
| | - Yeu‐Chun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| |
Collapse
|
25
|
Zhu K, Liu G, Zhang G, Hu J, Liu S. Engineering Cross-Linkable Plasmonic Vesicles for Synergistic Chemo-Photothermal Therapy Using Orthogonal Light Irradiation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kangning Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Martinez MV, Molina M, Barbero CA. Poly(N-isopropylacrylamide) Cross-Linked Gels as Intrinsic Amphiphilic Materials: Swelling Properties Used to Build Novel Interphases. J Phys Chem B 2018; 122:9038-9048. [DOI: 10.1021/acs.jpcb.8b07625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- María V. Martinez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 8 y 36 km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Maria Molina
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 8 y 36 km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Cesar A. Barbero
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 8 y 36 km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
27
|
Moon KS, Park YB, Bae JM, Oh S. Near-infrared laser-mediated drug release and antibacterial activity of gold nanorod-sputtered titania nanotubes. J Tissue Eng 2018; 9:2041731418790315. [PMID: 30083309 PMCID: PMC6071157 DOI: 10.1177/2041731418790315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023] Open
Abstract
The infection control of implants is one of the hot issues in the field of
medicine and dentistry. In this study, we prepared gold nanorod–sputtered
titania nanotubes on titanium surface, which is the main component of implant
material, and aimed to estimate the remote-controlled tetracycline release and
resulting antibacterial effects of gold nanorod–sputtered titania nanotubes
using near-infrared laser irradiation. Gold nanorods prepared by ion plasma
sputtering (aspect ratio = 1:3) showed optical properties like those of
chemically synthesized gold nanorods, exhibiting photothermal effects in the
near-infrared region, as demonstrated using field-emission scanning electron
microscopy, transmission electron microscopy, and diffuse
ultraviolet–visible–near-infrared spectrophotometry. In addition, a 2 wt%
tetracycline/polycaprolactone mixture was found to be the most suitable
experimental group to demonstrate the biological compatibilities and
antibacterial activities. The results of antibacterial agar diffusion tests and
near-infrared-mediated tetracycline release tests in vivo confirmed that
remote-controlled tetracycline elution using near-infrared laser irradiation was
highly effective. Therefore, gold nanorod–sputtered titania nanotubes would be
expected to enable the continued use of the photothermal therapy of gold
nanorods and extend the limited use of titania showing photocatalytic activity
only within the ultraviolet-to-near-infrared region.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials and Institute of Biomaterial and Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Young-Bum Park
- Department of Prosthodontology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Ji-Myung Bae
- Department of Dental Biomaterials and Institute of Biomaterial and Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and Institute of Biomaterial and Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
28
|
Knights-Mitchell SS, Romanowski M. Near-Infrared Activated Release of Doxorubicin from Plasmon Resonant Liposomes. Nanotheranostics 2018; 2:295-305. [PMID: 29977741 PMCID: PMC6030767 DOI: 10.7150/ntno.22544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/25/2018] [Indexed: 01/29/2023] Open
Abstract
Precise control of drug release from nanoparticles can improve efficacy and reduce systemic toxicity associated with administration of certain medications. Here, we combined two phenomena, photothermal conversion in plasmon resonant gold coating and thermal sensitivity of liposome compositions, to achieve a drug delivery system that rapidly releases doxorubicin in response to external stimulus. Methods: Thermosensitive liposomes were loaded with doxorubicin and gold-coated to produce plasmon resonant drug delivery system. Plasmon resonance facilitates release of contents upon near-infrared laser illumination, thus providing spatial and temporal control of the process. This controlled delivery system was compared to thermosensitive liposomes without gold coating and to the FDA-approved Doxil that was gold-coated to create a plasmon resonant coating. Release of doxorubicin from the gold-coated thermosensitive liposomes was further confirmed by tests of cell viability. Results: Upon laser illumination at 760 nm and 88 mW/cm2 power density, permeability of plasmon resonant liposomes increased by three orders of magnitude, from 70×10-12 to 60,000x10-12 cm/s. In control experiments, mild hyperthermia (42°C) increased permeability of these thermosensitive liposomes to just 3,700×10-12 cm/s. Neither hyperthermia nor laser illumination elicit content release from Doxil or plasmon resonant Doxil obtained by gold coating. Laser-induced release of doxorubicin from plasmon resonant thermosensitive liposomes resulted in the loss of cell viability significantly greater than in any of the control groups. Conclusion: Combination of thermosensitive liposomes with plasmon resonant coating enables rapid, controlled release, not currently available in pharmaceutical formulations of anticancer drugs.
Collapse
Affiliation(s)
| | - Marek Romanowski
- Department of Biomedical Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85721, USA
| |
Collapse
|
29
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
30
|
Pemmaraju D, Appidi T, Minhas G, Singh SP, Khan N, Pal M, Srivastava R, Rengan AK. Chlorophyll rich biomolecular fraction of A. cadamba loaded into polymeric nanosystem coupled with Photothermal Therapy: A synergistic approach for cancer theranostics. Int J Biol Macromol 2018; 110:383-391. [DOI: 10.1016/j.ijbiomac.2017.09.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
|
31
|
Kawamura S, Matsubara K, Sakai S, Sasaki K, Saito M, Saito K, Yagi M, Norimatsu W, Sasai R, Kusunoki M, Eguchi M, Yin S, Asakura Y, Yui T. Preparation of Stable Silver Nanoparticles Having Wide Red-To-Near-Infrared Extinction. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700105. [PMID: 31565325 PMCID: PMC6607257 DOI: 10.1002/gch2.201700105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/12/2018] [Indexed: 05/11/2023]
Abstract
The synthesis of silver nanoparticles (AgNPs) within the interlayer space of transparent layered titania nanosheet (TNS) films is investigated. A considerable number of silver ions (≈70% against the cation exchange capacity of the TNS) are intercalated in the TNS films using methyl-viologen-containing TNSs as a precursor. The silver ion (Ag+)-containing TNS films are treated with aqueous sodium tetrahydroborate (NaBH4), resulting in a gradual color change to bright blue. Various structural analyses clearly show that crystalline AgNPs are generated within the interlayer space of the TNSs. The NaBH4-treated films show intense and characteristic near-infrared (NIR) extinction spectra up to 1800 nm. The stability of the AgNPs within the TNS against oxygen and moisture is also investigated, and 96% and 82% of the AgNPs remain after standing in air for 1 month and 1 year, respectively. The NIR extinctions of the AgNP-containing TNS films are further extended by employing different preparation procedures, for example, using sintered TNS films as starting materials and irradiating the Ag+-containing TNSs with ultraviolet (UV) light. The obtained AgNP-containing TNS films exhibit photochemical activities in the production of hydrogen from ammonia borane under visible-light irradiation and the decomposition of nitrogen monoxide under UV-light irradiation.
Collapse
Affiliation(s)
- Shiori Kawamura
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Kazuki Matsubara
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Sotaro Sakai
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Kazuhisa Sasaki
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Masataro Saito
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Kenji Saito
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Masayuki Yagi
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| | - Wataru Norimatsu
- Department of Materials ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya‐shiAichi‐ken464‐8603Japan
| | - Ryo Sasai
- Department of Physics and Materials ScienceInterdisciplinary Graduate School of Science and EngineeringShimane University1060, Nishi‐kawatsu‐choMatsue690‐8504Japan
| | - Michiko Kusunoki
- Institute of Materials and Systems for SustainabilityNagoya UniversityFuro‐cho, Chikusa‐kuNagoya‐shiAichi‐ken464‐8603Japan
| | - Miharu Eguchi
- Electronic Functional Materials GroupPolymer Materials UnitNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1, KatahiraAoba‐kuSendai980‐8577Japan
| | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1, KatahiraAoba‐kuSendai980‐8577Japan
| | - Tatsuto Yui
- Department of Materials Science and TechnologyFaculty of EngineeringNiigata University8050 Ikarashi‐2Niigata950‐2181Japan
| |
Collapse
|
32
|
Jang B, Moorthy MS, Manivasagan P, Xu L, Song K, Lee KD, Kwak M, Oh J, Jin JO. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget 2018; 9:12649-12661. [PMID: 29560098 PMCID: PMC5849162 DOI: 10.18632/oncotarget.23898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
In advanced cancer therapy, the combinational therapeutic effect of photothermal therapy (PTT) using near-infrared (NIR) light-responsive nanoparticles (NPs) and anti-cancer drug delivery-mediated chemotherapy has been widely applied. In the present study, using a facile, low-cost, and solution-based method, we developed and synthesized fucoidan, a natural polymer isolated from seaweed that has demonstrated anti-cancer effect, and coated NPs with it as an ideal candidate in chemo-photothermal therapy against cancer cells. Fucoidan-coated copper sulfide nanoparticles (F-CuS) act not only as a nanocarrier to enhance the intracellular delivery of fucoidan but also as a photothermal agent to effectively ablate different cancer cells (e.g., HeLa, A549, and K562), both in vitro and in vivo, with the induction of apoptosis under 808 nm diode laser irradiation. These results point to the potential usage of F-CuS in treating human cancer.
Collapse
Affiliation(s)
- Bian Jang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Busan, South Korea.,Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Busan, South Korea
| | | | | | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China
| | - Kyeongeun Song
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Korea
| | - Minseok Kwak
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea.,Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Busan, South Korea.,Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Busan, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China
| |
Collapse
|
33
|
Yang J, Yao MH, Jin RM, Zhao DH, Zhao YD, Liu B. Polypeptide-Engineered Hydrogel Coated Gold Nanorods for Targeted Drug Delivery and Chemo-photothermal Therapy. ACS Biomater Sci Eng 2017; 3:2391-2398. [DOI: 10.1021/acsbiomaterials.7b00359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Key
Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Ming-Hao Yao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Key
Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Rui-Mei Jin
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Dong-Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Key
Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Key
Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|