1
|
Degerstedt O, O'Callaghan P, Clavero AL, Gråsjö J, Eriksson O, Sjögren E, Hansson P, Heindryckx F, Kreuger J, Lennernäs H. Quantitative imaging of doxorubicin diffusion and cellular uptake in biomimetic gels with human liver tumor cells. Drug Deliv Transl Res 2024; 14:970-983. [PMID: 37824040 DOI: 10.1007/s13346-023-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Novel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in depth understanding of drug diffusion, penetration through the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging. Diffusion of doxorubicin was reduced in a biomimetic hydrogel mimicking tissue properties of cirrhotic liver and early stage hepatocellular carcinoma (373 ± 108 µm2/s) as compared to an agarose gel (501 ± 77 µm2/s, p = 0.019). The diffusion was further lowered to 256 ± 30 µm2/s (p = 0.028) by preparing the biomimetic gel in cell media instead of phosphate buffered saline. The addition of liver tumor cells (Huh7 or HepG2) to the gel, at two different densities, did not significantly influence drug diffusion. Clinically relevant and quantifiable doxorubicin concentration gradients (1-20 µM) were established in the chip within one hour. Intracellular increases in doxorubicin fluorescence correlated with decreasing fluorescence of the DNA-binding stain Hoechst 33342 and based on the quantified intracellular uptake of doxorubicin an apparent cell permeability (9.00 ± 0.74 × 10-4 µm/s for HepG2) was determined. Finally, the data derived from the in vitro model were applied to a spatio-temporal tissue concentration model to evaluate the potential clinical impact of a cirrhotic extracellular matrix on doxorubicin diffusion and tumor cell uptake.
Collapse
Affiliation(s)
- Oliver Degerstedt
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ada Lerma Clavero
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Gråsjö
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per Hansson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Tao S, Lin B, Zhou H, Sha S, Hao X, Wang X, Chen J, Zhang Y, Pan J, Xu J, Zeng J, Wang Y, He X, Huang J, Zhao W, Fan JB. Janus particle-engineered structural lipiodol droplets for arterial embolization. Nat Commun 2023; 14:5575. [PMID: 37696820 PMCID: PMC10495453 DOI: 10.1038/s41467-023-41322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 μm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.
Collapse
Affiliation(s)
- Sijian Tao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Houwang Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Suinan Sha
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xuejiao Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jianping Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiabin Xu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Junling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China.
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, P. R. China.
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China.
| | - Jun-Bing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Yuan G, Xu Y, Bai X, Wang W, Wu X, Chen J, Li J, Jia X, Gu Z, Zhang X, Hu W, Wang J, Liu Y, Zhu XM. Autophagy-Targeted Calcium Phosphate Nanoparticles Enable Transarterial Chemoembolization for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11431-11443. [PMID: 36848495 DOI: 10.1021/acsami.2c18267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transarterial chemoembolization (TACE) is commonly used for treating advanced hepatocellular carcinoma (HCC). However, the instability of lipiodol-drug emulsion and the altered tumor microenvironment (TME, such as hypoxia-induced autophagy) postembolization are responsible for the unsatisfactory therapeutic outcomes. Herein, pH-responsive poly(acrylic acid)/calcium phosphate nanoparticles (PAA/CaP NPs) were synthesized and used as the carrier of epirubicin (EPI) to enhance the efficacy of TACE therapy through autophagy inhibition. PAA/CaP NPs have a high loading capacity of EPI and a sensitive drug release behavior under acidic conditions. Moreover, PAA/CaP NPs block autophagy through the dramatic increase of intracellular Ca2+ content, which synergistically enhances the toxicity of EPI. TACE with EPI-loaded PAA/CaP NPs dispersed in lipiodol shows an obvious enhanced therapeutic outcome compared to the treatment with EPI-lipiodol emulsion in an orthotopic rabbit liver cancer model. This study not only develops a new delivery system for TACE but also provides a promising strategy targeting autophagy inhibition to improve the therapeutic effect of TACE for the HCC treatment.
Collapse
Affiliation(s)
- Gang Yuan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Yanneng Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Weiming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jianli Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Xiaohui Jia
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Zeyun Gu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Xun Zhang
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Wei Hu
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
5
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Nyman SS, Ahlström H, Creusen AD, Dahlgren D, Hedeland M, Heindryckx F, Johnson U, Khaled J, Kullenberg F, Nyman R, Rorsman F, Sheikhi R, Simonsson USH, Sjögren E, Wanders A, Lennernäs H, Ebeling Barbier C. Study protocol for locoregional precision treatment of hepatocellular carcinoma with transarterial chemoembolisation (TACTida), a clinical study: idarubicin dose selection, tissue response and survival. BMJ Open 2022; 12:e065839. [PMID: 36343995 PMCID: PMC9644353 DOI: 10.1136/bmjopen-2022-065839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common cause of cancer-related death, often detected in the intermediate stage. The standard of care for intermediate-stage HCC is transarterial chemoembolisation (TACE), where idarubicin (IDA) is a promising drug. Despite the fact that TACE has been used for several decades, treatment success is unpredictable. This clinical trial has been designed believing that further improvement might be achieved by increasing the understanding of interactions between local pharmacology, tumour targeting, HCC pathophysiology, metabolomics and molecular mechanisms of drug resistance. METHODS AND ANALYSIS The study population of this single-centre clinical trial consists of adults with intermediate-stage HCC. Each tumour site will receive TACE with two different IDA doses, 10 and 15 mg, on separate occasions. Before and after each patient's first TACE blood samples, tissue and liquid biopsies, and positron emission tomography (PET)/MRI will be performed. Blood samples will be used for pharmacokinetics (PK) and liver function evaluation. Tissue biopsies will be used for histopathology analyses, and culturing of primary organoids of tumour and non-tumour tissue to measure cell viability, drug response, multiomics and gene expression. Multiomics analyses will also be performed on liquid biopsies. PET/MRI will be used to evaluate tumour viability and liver metabolism. The two doses of IDA will be compared regarding PK, antitumour effects and safety. Imaging, molecular biology and multiomics data will be used to identify HCC phenotypes and their relation to drug uptake and metabolism, treatment response and survival. ETHICS AND DISSEMINATION Participants give informed consent. Personal data are deidentified. A patient will be withdrawn from the study if considered medically necessary, or if it is the wish of the patient. The study has been approved by the Swedish Ethical Review Authority (Dnr. 2021-01928) and by the Medical Product Agency, Uppsala, Sweden. TRIAL REGISTRATION NUMBER EudraCT number: 2021-001257-31.
Collapse
Affiliation(s)
- Sofi Sennefelt Nyman
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | | | - David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ulf Johnson
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Jaafar Khaled
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Kullenberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Rickard Nyman
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Rorsman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Reza Sheikhi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alkwin Wanders
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
7
|
Liu J, Zhang L, Zhao D, Yue S, Sun H, Ni C, Zhong Z. Polymersome-stabilized doxorubicin-lipiodol emulsions for high-efficacy chemoembolization therapy. J Control Release 2022; 350:122-131. [PMID: 35973474 DOI: 10.1016/j.jconrel.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Transarterial chemoembolization (TACE) with free doxorubicin-lipiodol emulsions (free DOX/L) is a favored clinical treatment for advanced hepatocellular carcinoma (HCC) patients ineligible for radical therapies; however, its inferior colloidal stability not only greatly reduces its tumor retention but also hastens drug release into blood circulation, leading to suboptimal clinical outcomes. Here, we find that disulfide-crosslinked polymersomes carrying doxorubicin (Ps-DOX) form super-stable and homogenous water-in-oil microemulsions with lipiodol (Ps-DOX/L). Ps-DOX/L microemulsions had tunable sizes ranging from 14 to 44 μm depending on the amount of Ps-DOX, were stable over 2 months storage as well as centrifugation, and exhibited nearly zero-order DOX release within 15 days. Of note, Ps-DOX induced 2.3-13.4 fold better inhibitory activity in all tested rat, murine and human liver tumor cells than free DOX likely due to its efficient redox-triggered intracellular drug release. Interestingly, transarterial administration of Ps-DOX/L microemulsions in orthotopic rat N1S1 syngeneic HCC model showed minimal systemic DOX exposure, high and long hepatic DOX retention, complete tumor elimination, effective inhibition of angiogenesis, and depleted adverse effects, significantly outperforming clinically used free DOX/L emulsions. This smart polymersome stabilization of doxorubicin-lipiodol microemulsions provides a novel TACE strategy for advanced tumors.
Collapse
Affiliation(s)
- Jingyi Liu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215123, PR China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215123, PR China
| | - Shujing Yue
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
8
|
Wen S, Ovais M, Li X, Ren J, Liu T, Wang Z, Cai R, Chen C. Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy. NANOSCALE 2022; 14:8245-8254. [PMID: 35647806 DOI: 10.1039/d2nr01500e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving a complete response to cancer treatment is a severe challenge, and has puzzled humans for a long time. Fortunately, radiotherapy (RT) gives rise to a common clinical treatment method, during which the usage of radiosensitizers is essential. Among preclinical radiosensitizers, bismuth-based nanoparticles (Bi-based NPs) are widely explored in cancer diagnosis and treatment, because they share favourable properties, such as low toxicity, strong X-ray absorption and facile preparation. However, pure Bi alone cannot achieve both efficient and safe RT outcomes, mainly due to poor targeting of tumor sites, long retention-induced systemic toxicity and immune resistance. This work provides an overview of recent advances and developments in Bi-based NPs that are tailored to enhance radiosensitivity. For the fabrication process, surface modification of Bi-based NPs is essential to achieve tumor-targeted delivery and penetration. Moreover, the incorporation of other elements, such as Fe ions, can increase diagnostic accuracy with optimal theranostic efficacy. Meanwhile, the structure-activity relationship can also be manipulated to maximize the chemotherapeutic drug loading capability of Bi-based NPs, to enhance X-ray attenuation by means of a large surface area or to achieve safer metabolic routes with rapid clearance from the human body. In addition, Bi-based NPs exhibit synergistic antitumor potential when combined with diverse therapies, such as photothermal therapy (PTT) and high-intensity focused ultrasound (HIFU). To summarize, the latest research on Bi-based NPs as radiosensitizers is described in the review, including both their advantages and disadvantages for improving treatment, thus providing a useful guide for future clinical application.
Collapse
Affiliation(s)
- Shumin Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
9
|
Systematic Review and Pharmacokinetic Meta-analysis of Doxorubicin Exposure in Transcatheter Arterial Chemoembolization and Doxorubicin-Eluted Beads Chemoembolization for Treatment of Unresectable Hepatocellular Carcinoma. Eur J Drug Metab Pharmacokinet 2022; 47:449-466. [PMID: 35543895 DOI: 10.1007/s13318-022-00762-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Almost 15 years after the introduction of transarterial chemoembolization (TACE) with drug-eluting beads (DEB-TACE) for hepatocellular carcinoma (HCC) therapy, the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) for doxorubicin have still not been systematically reviewed or meta-analyzed. OBJECTIVE To conduct a systematic review and meta-analysis of available data and establish a reference range for Cmax and AUC of doxorubicin DEB-TACE and TACE, as well as explore the potential influence of microspheres' size and type on these parameters. METHODS PubMed, EMBASE, and Web of Science were searched from August 1992 through December 2021. Studies measuring exposure parameters among HCC patients treated with doxorubicin DEB-TACE without restriction on language were included. Two independent reviewers extracted and unified data sets for pooled estimate analysis. The quality of the evidence was assessed via the Grading of Recommendations Assessment, Development and Evaluation framework. The ClinPK Statement checklist and Newcastle-Ottawa Scale (NOS) were used to determine the quality of studies. RESULTS Out of 666 studies, 246 full-text were reviewed, and 8 studies entered the meta-analysis (120 patients). Cmax and AUC of doxorubicin were 7.52-fold (95% CI 7.65 to 7.42-fold; P < 0.0001) and 1.91-fold (95% CI 1.95 to 1.88-fold; P = 0.0001) lower with DEB-TACE compared to TACE. Significant reduction in pooled standardized mean difference (SMD) of Cmax and AUC was observed with DEB-TACE versus TACE in direct comparison analysis (- 2.93; 95% CI - 3.60 to - 2.26, P < 0.00001, and - 1.73 95% CI - 2.55 to - 0.91, P < 0.0001, respectively). Moreover, in DEB-TACE stratification analysis, small microspheres revealed higher Cmax, AUC and tumor response rate as well as lower complication rate. LIMITATION The heterogeneity could not be completely addressed through sensitivity and stratification analysis. CONCLUSION This meta-analysis provides exposure parameters of doxorubicin and justifies the advantage of DEB-TACE over TACE in terms of safety for patients with unresectable HCC. This study showed a marked association between the size of microsphere and exposure parameters of doxorubicin supporting the preference for small microspheres in DEB-TACE. The moderate and low quality of evidence is assigned to the Cmax and AUC, respectively.
Collapse
|
10
|
Fan P, Ma Z, Partow AJ, Kim M, Shoemaker GM, Tan R, Tong Z, Nelson CD, Jang Y, Jeong KC. A novel combination therapy for multidrug resistant pathogens using chitosan nanoparticles loaded with β-lactam antibiotics and β-lactamase inhibitors. Int J Biol Macromol 2022; 195:506-514. [PMID: 34920071 DOI: 10.1016/j.ijbiomac.2021.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance is one of the greatest global threats. Particularly, multidrug resistant extended-spectrum β-lactamase (ESBL)-producing pathogens confer resistance to many commonly used medically important antibiotics, especially beta-lactam antibiotics. Here, we developed an innovative combination approach to therapy for multidrug resistant pathogens by encapsulating cephalosporin antibiotics and β-lactamase inhibitors with chitosan nanoparticles (CNAIs). The four combinations of CNAIs including two cephalosporin antibiotics (cefotaxime and ceftiofur) with two β-lactamase inhibitors (tazobactam and clavulanate) were engineered as water-oil-water emulsions. Four combinations of CNAIs showed efficient antimicrobial activity against multidrug resistant ESBL-producing Enterobacteriaceae. The CNAIs showed enhanced antimicrobial activity compared to naïve chitosan nanoparticles and to the combination of cephalosporin antibiotics and β-lactamase inhibitors. Furthermore, CNAIs attached on the bacterial surface changed the permeability to the outer membrane, resulting in cell damage that leads to cell death. Taken together, CNAIs have provided promising potential for treatment of diseases caused by critically important ESBL-producing multidrug resistant pathogens.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhengxin Ma
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Arianna J Partow
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Grace M Shoemaker
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ruwen Tan
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Ebeling Barbier C, Heindryckx F, Lennernäs H. Limitations and Possibilities of Transarterial Chemotherapeutic Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms222313051. [PMID: 34884853 PMCID: PMC8658005 DOI: 10.3390/ijms222313051] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Because diagnostic tools for discriminating between hepatocellular carcinoma (HCC) and advanced cirrhosis are poor, HCC is often detected in a stage where transarterial chemoembolization (TACE) is the best treatment option, even though it provides a poor survival gain. Despite having been used worldwide for several decades, TACE still has many limitations. First, there is a vast heterogeneity in the cellular composition and metabolism of HCCs as well as in the patient population, which renders it difficult to identify patients who would benefit from TACE. Often the delivered drug does not penetrate sufficiently selectively and deeply into the tumour and the drug delivery system is not releasing the drug at an optimal clinical rate. In addition, therapeutic effectiveness is limited by the crosstalk between the tumour cells and components of the cirrhotic tumour microenvironment. To improve this widely used treatment of one of our most common and deadly cancers, we need to better understand the complex interactions between drug delivery, local pharmacology, tumour targeting mechanisms, liver pathophysiology, patient and tumour heterogeneity, and resistance mechanisms. This review provides a novel and important overview of clinical data and discusses the role of the tumour microenvironment and lymphatic system in the cirrhotic liver, its potential response to TACE, and current and possible novel DDSs for locoregional treatment.
Collapse
Affiliation(s)
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden;
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-471-4317; Fax: +46-18-471-4223
| |
Collapse
|
12
|
Kullenberg F, Degerstedt O, Calitz C, Pavlović N, Balgoma D, Gråsjö J, Sjögren E, Hedeland M, Heindryckx F, Lennernäs H. In Vitro Cell Toxicity and Intracellular Uptake of Doxorubicin Exposed as a Solution or Liposomes: Implications for Treatment of Hepatocellular Carcinoma. Cells 2021; 10:cells10071717. [PMID: 34359887 PMCID: PMC8306283 DOI: 10.3390/cells10071717] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cytostatic effects of doxorubicin in clinically applied doses are often inadequate and limited by systemic toxicity. The main objective of this in vitro study was to determine the anti-tumoral effect (IC50) and intracellular accumulation of free and liposomal doxorubicin (DOX) in four human cancer cell lines (HepG2, Huh7, SNU449 and MCF7). The results of this study showed a correlation between longer DOX exposure time and lower IC50 values, which can be attributed to an increased cellular uptake and intracellular exposure of DOX, ultimately leading to cell death. We found that the total intracellular concentrations of DOX were a median value of 230 times higher than the exposure concentrations after exposure to free DOX. The intracellular uptake of DOX from solution was at least 10 times higher than from liposomal formulation. A physiologically based pharmacokinetic model was developed to translate these novel quantitative findings to a clinical context and to simulate clinically relevant drug concentration-time curves. This showed that a liver tumor resembling the liver cancer cell line SNU449, the most resistant cell line in this study, would not reach therapeutic exposure at a standard clinical parenteral dose of doxorubicin (50 mg/m2), which is serious limitation for this drug. This study emphasizes the importance of in-vitro to in-vivo translations in the assessment of clinical consequence of experimental findings.
Collapse
Affiliation(s)
- Fredrik Kullenberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75 123 Uppsala, Sweden; (F.K.); (O.D.); (J.G.); (E.S.)
| | - Oliver Degerstedt
- Department of Pharmaceutical Biosciences, Uppsala University, 75 123 Uppsala, Sweden; (F.K.); (O.D.); (J.G.); (E.S.)
| | - Carlemi Calitz
- Department of Medical Cell Biology, Uppsala University, 75 123 Uppsala, Sweden; (C.C.); (N.P.); (F.H.)
| | - Nataša Pavlović
- Department of Medical Cell Biology, Uppsala University, 75 123 Uppsala, Sweden; (C.C.); (N.P.); (F.H.)
| | - David Balgoma
- Department of Medicinal Chemistry, Uppsala University, 75 123 Uppsala, Sweden; (D.B.); (M.H.)
| | - Johan Gråsjö
- Department of Pharmaceutical Biosciences, Uppsala University, 75 123 Uppsala, Sweden; (F.K.); (O.D.); (J.G.); (E.S.)
- Department of Medicinal Chemistry, Uppsala University, 75 123 Uppsala, Sweden; (D.B.); (M.H.)
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Uppsala University, 75 123 Uppsala, Sweden; (F.K.); (O.D.); (J.G.); (E.S.)
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, 75 123 Uppsala, Sweden; (D.B.); (M.H.)
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, 75 123 Uppsala, Sweden; (C.C.); (N.P.); (F.H.)
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, 75 123 Uppsala, Sweden; (F.K.); (O.D.); (J.G.); (E.S.)
- Correspondence:
| |
Collapse
|
13
|
He P, Zhong F, Luo B, Luo G, Wang X, Xia X, Li B. Super-stable homogeneous iodinated formulation technology for improving the therapeutic effect of patients with advanced hepatocellular carcinoma. Quant Imaging Med Surg 2020; 10:2223-2226. [PMID: 33140003 DOI: 10.21037/qims-20-741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pan He
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Furui Zhong
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Luo
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guosong Luo
- Department of Hepatobiliary surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xuewen Wang
- Department of Hepatobiliary surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xianming Xia
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
14
|
Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation technology: revolutionizing transcatheter arterial chemoembolization. Sci Bull (Beijing) 2020; 65:1685-1687. [PMID: 36659234 DOI: 10.1016/j.scib.2020.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, University of Washington, Seattle 98109, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Kwak K, Yu B, Mouli SK, Larson AC, Kim DH. Sodium Cholate Bile Acid-Stabilized Ferumoxytol-Doxorubicin-Lipiodol Emulsion for Transcatheter Arterial Chemoembolization of Hepatocellular Carcinoma. J Vasc Interv Radiol 2020; 31:1697-1705.e3. [PMID: 32773247 DOI: 10.1016/j.jvir.2020.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To develop bile acid-stabilized multimodal magnetic resonance (MR) imaging and computed tomography (CT)-visible doxorubicin eluting lipiodol emulsion for transarterial chemoembolization of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Ferumoxytol, a US Food and Drug Administration-approved iron oxide nanoparticle visible under MR imaging was electrostatically complexed with doxorubicin (DOX). An amphiphilic bile acid, sodium cholate (SC), was used to form a stable dispersion of ferumoxytol-DOX complex in lipiodol emulsion. Properties of the fabricated emulsion were characterized in various component ratios. Release kinetics of DOX were evaluated for the chemoembolization applications. Finally, in vivo multimodal MR imaging/CT imaging properties and potential therapeutic effects upon intra-arterial (IA) infusion bile acid-stabilized ferumoxytol-DOX-lipiodol emulsion were evaluated in orthotopic McA-Rh7777 HCC rat models. RESULTS DOX complexed with ferumoxytol through electrostatic interaction. Amphiphilic SC bile acid at the interface between the aqueous ferumoxytol-DOX complexes and lipiodol enabled a sustained DOX release (17.2 ± 1.6% at 24 hours) at an optimized component ratio. In McA Rh7777 rat HCC model, IA-infused emulsion showed a significant contrast around tumor in both T2-weighted MR imaging and CT images (P = .044). Hematoxylin and eosin and Prussian blue staining confirmed the local deposition of IA-infused SC bile acid-stabilized emulsion in the tumor. The deposited emulsion induced significant increases in TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) stain-positive cancer cell apoptosis compared to those in a group treated with the nonstabilized emulsion. CONCLUSIONS SC bile acid-stabilized ferumoxytol-DOX-lipiodol emulsion demonstrated sustained drug release and multimodal MR imaging/CT imaging capabilities. The new lipiodol-based formulation may enhance the therapeutic efficacy of chemoembolization in HCC.
Collapse
Affiliation(s)
- Kijung Kwak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Bo Yu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Samdeep K Mouli
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Andrew C Larson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.
| |
Collapse
|
16
|
Chen H, Cheng H, Dai Q, Cheng Y, Zhang Y, Li D, Sun Y, Mao J, Ren K, Chu C, Liu G. A superstable homogeneous lipiodol-ICG formulation for locoregional hepatocellular carcinoma treatment. J Control Release 2020; 323:635-643. [PMID: 32302761 DOI: 10.1016/j.jconrel.2020.04.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Accurate identification of surgical margins for malignancy remains a challenge in the surgical therapy of cancer, and this encountered interoperative difficulties which directly contribute to the prognosis of patients. In recent years, indocyanine green (ICG) has been approved and applied in clinical settings for lesions detection, especially for the precise surgical resection. However, rapid clearance and poor stability greatly limit its clinical practicality. Herein, a super-stable homogeneous iodinated formulation technology (SHIFT) is designed to realize sufficient dispersion of ICG into lipiodol (SHIFTs) for transcatheter embolization (TAE) synergistic fluorescence-guided resection. Particularly, SHIFTs is prepared in a green physical mixture via a carrier-free manner, which possesses controlled morphology, long-term stability, and improved optical characteristics of ICG (fluorescence/photoacoustic/photothermal activities). Furthermore, the viscosity of the synthetic solvent is comparable to lipiodol, and further assessment demonstrated the same efficacy in computed tomography. The performance of SHIFTs in the fluorescence navigation was further evaluated in vivo by TAE therapy to the rabbit VX2 tumor model for a two-week monitor. The integration of near-infrared fluorescence surgery navigation and TAE could effectively guarantee the precise resection for hepatocellular carcinoma. This SHIFT system provides good potentials for ameliorating the dilemma of precise fluorescent navigation for surgical resection after arterial embolization in clinical practice.
Collapse
Affiliation(s)
- Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361102, China
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361102, China.
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Amoy Hopeful Biotechnology Co., Ltd., Xiamen 361027, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Ahnfelt E, Degerstedt O, Lilienberg E, Sjögren E, Hansson P, Lennernäs H. Lipiodol-based emulsions used for transarterial chemoembolization and drug delivery: Effects of composition on stability and product quality. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Karalli A, Teiler J, Haji M, Seth E, Brismar TB, Wahlin S, Axelsson R, Stål P. Comparison of lipiodol infusion and drug-eluting beads transarterial chemoembolization of hepatocellular carcinoma in a real-life setting. Scand J Gastroenterol 2019; 54:905-912. [PMID: 31287338 DOI: 10.1080/00365521.2019.1632925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim: Doxorubicin-eluting beads transarterial chemoembolization (DEB-TACE) is reported to improve survival and tolerability when compared with conventional lipiodol-TACE (cTACE) for the treatment of hepatocellular carcinoma (HCC). The aim of this study was to evaluate tolerability and long-term survival in patients treated with cTACE or DEB-TACE in a real-life setting. Methods: Incidence of adverse events and overall survival in HCC patients treated with either cTACE or DEB-TACE at Karolinska University Hospital 2004-2012 were analyzed retrospectively. Median follow-up was 7.1 years. Patients were censored when transplanted or at the end of follow-up. Patients receiving both cTACE and DEB-TACE, or treated with resection or ablation post-TACE were excluded from the survival analysis. Results: A total of 202 patients (76 cTACE and 126 DEB-TACE) were eligible for analysis of adverse events, and 179 patients (69 cTACE and 110 DEB-TACE) were included in the survival analysis. cTACE patients were younger and had fewer tumors but higher BCLC stage than DEB-TACE. Child-Pugh and ECOG performance status were similar between groups. Adverse events (abdominal pain, nausea and vomiting, fever, fatigue) were significantly less common in the DEB-TACE group. Median survival was 17.1 months in the cTACE group and 19.1 months in the DEB-TACE (NS). In multivariate Cox regression analysis, portal vein thrombosis and tumor size were associated with increased, and sorafenib treatment post-TACE with decreased mortality. Conclusion: In this retrospective real-life analysis, DEB-TACE had better tolerability compared to cTACE, but overall survival did not differ between the two treatments. Portal vein thrombosis, tumor size and sorafenib treatment after TACE influence survival.
Collapse
Affiliation(s)
- Amar Karalli
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm , Sweden
| | - Johan Teiler
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm , Sweden
| | - Mojgan Haji
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm , Sweden
| | - Elin Seth
- Department of Clinical Science and Education, Karolinska Institutet South Hospital , Stockholm , Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm , Sweden
| | - Staffan Wahlin
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet , Stockholm , Sweden.,Unit of Liver Diseases, Department of Upper Gastrointestinal Diseases, Karolinska University Hospital , Stockholm , Sweden
| | - Rimma Axelsson
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm , Sweden.,Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital , Huddinge , Sweden
| | - Per Stål
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet , Stockholm , Sweden.,Unit of Liver Diseases, Department of Upper Gastrointestinal Diseases, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
19
|
Deschamps F, Isoardo T, Denis S, Tsapis N, Tselikas L, Nicolas V, Paci A, Fattal E, de Baere T, Huang N, Moine L. Biodegradable Pickering emulsions of Lipiodol for liver trans-arterial chemo-embolization. Acta Biomater 2019; 87:177-186. [PMID: 30708065 DOI: 10.1016/j.actbio.2019.01.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Water-in-oil (W/O) Lipiodol emulsions remain the preferable choice for local delivery of chemotherapy in the treatment of hepatocellular carcinoma. However, their low stability severely hampers their efficiency. Here, remarkably stable W/O Lipiodol emulsion stabilized by biodegradable particles was developed thanks to Pickering technology. The addition of poly(lactide-co-glycolide) nanoparticles (NPs) into the aqueous-phase of the formulation led to W/O Pickering emulsion by a simple emulsification process through two connected syringes. Influence of nanoparticles concentration and water/oil ratio on emulsion stability and droplet size were studied. All formulated Pickering emulsions were W/O type, stable for at least one month and water droplets size could be tuned by controlling nanoparticle concentration from 24 µm at 25 mg/mL to 69 µm at 5 mg/mL. The potential of these emulsions to efficiently encapsulate chemotherapy was studied through the internalization of doxorubicin (DOX) into the aqueous phase with a water/oil ratio of 1/3 as recommended by the medical community. Loaded-doxorubicin was released from conventional emulsion within a few hours whereas doxorubicin from stable Pickering emulsion took up to 10 days to be completely released. In addition, in vitro cell viability evaluations performed on the components of the emulsion and the Pickering emulsion have shown no significant toxicity up to relatively high concentrations of NPs (3 mg/mL) on two different cell lines: HUVEC and HepG2. STATEMENT OF SIGNIFICANCE: We present an original experimental research in the field of nanotechnology for biomedical applications. In particular, we have formulated, thanks to Pickering technology, a new therapeutic emulsion stabilized with biodegradable PLGA nanoparticles. As far as we know, this is the first therapeutic Pickering emulsion reported in the literature for hepatocellular carcinoma. Such a new emulsion allows to easily prepare a predictable and stable lipiodolized emulsion having all the required characteristics for optimum tumor uptake. As demonstrated throughout our manuscript, emulsions stabilized with these nanoparticles have the advantage of being biodegradable, biocompatible and less toxic compared to usual emulsions stabilized with synthetic surfactants. These findings demonstrate the plausibility of the use of Pickering emulsions for chemoembolization as a therapeutic agent in extended release formulations.
Collapse
|
20
|
Single bead investigation of a clinical drug delivery system - A novel release mechanism. J Control Release 2018; 292:235-247. [PMID: 30419268 DOI: 10.1016/j.jconrel.2018.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022]
Abstract
Microgels, such as polymeric hydrogels, are currently used as drug delivery devices (DDSs) for chemotherapeutics and/or unstable drugs. The clinical DDS DC bead® was studied with respect to loading and release, measured as relative bead-volume, of six amphiphilic molecules in a micropipette-assisted microscopy method. Theoretical models for loading and release was used to increase the mechanistic understanding of the DDS. It was shown that equilibrium loading was independent of amphiphile concentration. The loading model showed that the rate-determining step was diffusion of the molecule from the bulk to the bead surface ('film control'). Calculations with the developed and applied release model on the release kinetics were consistent with the observations, as the amphiphiles distribute unevenly in the bead. The rate determining step of the release was the diffusion of the amphiphile molecule through the developed amphiphile-free depletion layer. The release rate is determined by the diffusivity and the tendency for aggregation of the amphiphile where a weak tendency for aggregation (i.e. a large cacb) lead to faster release. Salt was necessary for the release to happen, but at physiological concentrations the entry of salt was not rate-determining. This study provides valuable insights into the loading to and release from the DDS. Also, a novel release mechanism of the clinically used DDS is suggested.
Collapse
|
21
|
Wang Y, Chen X, He D, Zhou Y, Qin L. Surface-Modified Nanoerythrocyte Loading DOX for Targeted Liver Cancer Chemotherapy. Mol Pharm 2018; 15:5728-5740. [DOI: 10.1021/acs.molpharmaceut.8b00881] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuemin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Xiaomei Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Dahua He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yi Zhou
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong 510436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
22
|
Li Q, Wang Q, Wang S, Zhu S, Yuan T, Guo Z, Cao J, Tian H, Zhu W. Near‐Infrared Fluorescent Theranostic Cisplatin Prodrug with Transcatheter Intra‐Arterial Therapy: Application to Rabbit Hepatocellular Carcinoma. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Qiang Li
- Shanghai Key Laboratory of Functional Materials ChemistryKey Laboratory for Advanced Materials and Institute of Fine ChemicalsJoint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials ChemistryKey Laboratory for Advanced Materials and Institute of Fine ChemicalsJoint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Saibo Wang
- Department of Interventional OncologyDahua Hospital Xuhui District Shanghai 200237 China
| | - Shiqin Zhu
- Shanghai Key Laboratory of Functional Materials ChemistryKey Laboratory for Advanced Materials and Institute of Fine ChemicalsJoint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Tianwen Yuan
- Department of Interventional OncologyDahua Hospital Xuhui District Shanghai 200237 China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials ChemistryKey Laboratory for Advanced Materials and Institute of Fine ChemicalsJoint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jun Cao
- Department of Interventional OncologyDahua Hospital Xuhui District Shanghai 200237 China
| | - He Tian
- Shanghai Key Laboratory of Functional Materials ChemistryKey Laboratory for Advanced Materials and Institute of Fine ChemicalsJoint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Shanghai Key Laboratory of Functional Materials ChemistryKey Laboratory for Advanced Materials and Institute of Fine ChemicalsJoint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
23
|
Dubbelboer IR, Sjögren E, Lennernäs H. Porcine and Human In Vivo Simulations for Doxorubicin-Containing Formulations Used in Locoregional Hepatocellular Carcinoma Treatment. AAPS JOURNAL 2018; 20:96. [PMID: 30167825 DOI: 10.1208/s12248-018-0251-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
It is important to be able to simulate and predict formulation effects on the pharmacokinetics of a drug in order to optimize effectivity in clinical practice and drug development. Two formulations containing doxorubicin are used in the treatment of hepatocellular carcinoma (HCC): a Lipiodol-based emulsion (LIPDOX) and a loadable microbead system (DEBDOX). Although equally effective, the formulations are vastly different, and little is known about the parameters affecting doxorubicin release in vivo. However, mathematical modeling can be used to predict doxorubicin release properties from these formulations and its in vivo pharmacokinetic (PK) profiles. A porcine semi-physiologically based pharmacokinetic (PBPK) model was scaled to a human physiologically based biopharmaceutical (PBBP) model that was altered to include HCC. DOX in vitro and in vivo release data from LIPDOX or DEBDOX were collected from the literature and combined with these in silico models. The simulated pharmacokinetic profiles were then compared with observed porcine and human HCC patient data. DOX pharmacokinetic profiles of LIPDOX-treated HCC patients were best predicted from release data sets acquired by in vitro methods that did not use a diffusion barrier. For the DEBDOX group, the best predictions were from the in vitro release method with a low ion concentration and a reduced loading dose. The in silico modeling combined with historical release data was effective in predicting in vivo plasma exposure. This can give useful insights into the release method properties necessary for correct in vivo predictions of pharmacokinetic profiles of HCC patients dosed with LIPDOX or DEBDOX.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
| |
Collapse
|
24
|
Grudén S, Hassan M, Axén N. Cold isostatic pressing of hydrating calcium sulfate as a means to produce parenteral slow-release drug formulations. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Lewis AL, Willis SL, Dreher MR, Tang Y, Ashrafi K, Wood BJ, Levy EB, Sharma KV, Negussie AH, Mikhail AS. Bench-to-clinic development of imageable drug-eluting embolization beads: finding the balance. Future Oncol 2018; 14:2741-2760. [PMID: 29944007 DOI: 10.2217/fon-2018-0196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review describes the historical development of an imageable spherical embolic agent and focuses on work performed in collaboration between Biocompatibles UK Ltd (a BTG International group company) and the NIH to demonstrate radiopaque bead utility and bring a commercial offering to market that meets a clinical need. Various chemistries have been investigated and multiple prototypes evaluated in search of an optimized product with the right balance of handling and imaging properties. Herein, we describe the steps taken in the development of DC Bead LUMI™, the first commercially available radiopaque drug-eluting bead, ultimately leading to the first human experience of this novel embolic agent in the treatment of liver tumors.
Collapse
Affiliation(s)
- Andrew L Lewis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Sean L Willis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Matthew R Dreher
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Yiqing Tang
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Koorosh Ashrafi
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Karun V Sharma
- Department of Radiology & Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010, USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
González W, Idée JM, Ballet S. Comment on "In Vivo Drug Delivery Performance of Lipiodol-Based Emulsion or Drug-Eluting Beads in Patients with Hepatocellular Carcinoma". Mol Pharm 2018; 15:332-335. [PMID: 29193977 DOI: 10.1021/acs.molpharmaceut.7b00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Dubbelboer IR, Lilienberg E, Karalli A, Axelsson R, Brismar TB, Ebeling Barbier C, Norén A, Duraj F, Hedeland M, Bondesson U, Sjögren E, Stål P, Nyman R, Lennernäs H. Reply to "Comment on 'In Vivo Drug Delivery Performance of Lipiodol-Based Emulsion or Drug-Eluting Beads in Patients with Hepatocellular Carcinoma'". Mol Pharm 2018; 15:336-340. [PMID: 29185767 DOI: 10.1021/acs.molpharmaceut.7b00840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Amar Karalli
- Department of Radiology, Karolinska University Hospital in Huddinge , Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm, Sweden
| | - Rimma Axelsson
- Department of Radiology, Karolinska University Hospital in Huddinge , Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm, Sweden
| | - Torkel B Brismar
- Department of Radiology, Karolinska University Hospital in Huddinge , Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet , Stockholm, Sweden
| | | | - Agneta Norén
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala University , 751 85 Uppsala, Sweden
| | - Frans Duraj
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala University , 751 85 Uppsala, Sweden
| | - Mikael Hedeland
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA) , 751 89 Uppsala, Sweden
| | - Ulf Bondesson
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA) , 751 89 Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Per Stål
- Unit of Gastroenterology, Department of Internal Medicine Huddinge, Karolinska Institutet , Stockholm, Sweden.,Department of Digestive Diseases, Karolinska University Hospital in Huddinge , Stockholm, Sweden
| | - Rickard Nyman
- Department of Radiology, Uppsala University Hospital, Uppsala University , 751 85 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| |
Collapse
|
28
|
Dubbelboer IR, Lilienberg E, Sjögren E, Lennernäs H. A Model-Based Approach To Assessing the Importance of Intracellular Binding Sites in Doxorubicin Disposition. Mol Pharm 2017; 14:686-698. [PMID: 28182434 DOI: 10.1021/acs.molpharmaceut.6b00974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Doxorubicin is an anticancer agent, which binds reversibly to topoisomerase I and II, intercalates to DNA base pairs, and generates free radicals. Doxorubicin has a high tissue:plasma partition coefficient and high intracellular binding to the nucleus and other subcellular compartments. The metabolite doxorubicinol has an extensive tissue distribution. This porcine study investigated whether the traditional implementation of tissue binding, described by the tissue:plasma partition coefficient (Kp,t), could be used to appropriately analyze and/or simulate tissue doxorubicin and doxorubicinol concentrations in healthy pigs, when applying a physiologically based pharmacokinetic (PBPK) model approach, or whether intracellular binding is required in the semi-PBPK model. Two semi-PBPK models were developed and evaluated using doxorubicin and doxorubicinol concentrations in healthy pig blood, bile, and urine and kidney and liver tissues. In the generic semi-PBPK model, tissue binding was described using the conventional Kp,t approach. In the binding-specific semi-PBPK model, tissue binding was described using intracellular binding sites. The best semi-PBPK model was validated against a second data set of healthy pig blood and bile concentrations. Both models could be used for analysis and simulations of biliary and urinary excretion of doxorubicin and doxorubicinol and plasma doxorubicinol concentrations in pigs, but the binding-specific model was better at describing plasma doxorubicin concentrations. Porcine tissue concentrations were 400- to 1250-fold better captured by the binding-specific model. This model adequately predicted plasma doxorubicin concentration-time and biliary doxorubicin excretion profiles against the validation data set. The semi-PBPK models applied were similarly effective for analysis of plasma concentrations and biliary and urinary excretion of doxorubicin and doxorubicinol in healthy pigs. Inclusion of intracellular binding in the doxorubicin semi-PBPK models was important to accurately describe tissue concentrations during in vivo conditions.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| |
Collapse
|