1
|
Ranjan R, Devireddy VSR. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39648822 DOI: 10.1089/jamp.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Background: Drug resistant tuberculosis is a major public health concern, since the causative agent Mycobacterium tuberculosis is resistant to the most effective drugs against tuberculosis treatment ie., rifampicin and isoniazid. Globally, it accounts 4.6 percent of the patients with tuberculosis, but in some low socioeconomic areas this proportion exceeds to 25 percent. The treatment of drug resistant tuberculosis is prolonged (9-12 months) and often have less favorable outcome with novel as well as recently repurposed drugs administered by conventional routes. Materials and Methods: Clinically, these repurposed drugs have shown several major concerns including low penetration of the drugs to the pulmonary region, emergence of resistant forms, first pass effects, drug-drug interactions, food effects, and serious side effects upon administration by conventional route of administration. Although, several antimicrobial agents have been either approved or are under investigation at different stages of clinical trials and in pre-clinical studies via inhalation route for the treatment of respiratory infections, inhalable formulation for the treatment of drug resistant tuberculosis is most untouched aspect of drug delivery to validate clinically. Only a single dry powder inhalation formulation of capreomycin is able to reach the milestone, ie., phase I for the treatment of drug resistant tuberculosis. Results: Administering inhalable formulations of repurposed drugs as adjuvant in the treatment of drug resistant tuberculosis could mitigate several concerns by targeting drugs directly in the vicinity of bacilli. Conclusion: This review focuses on the limitations and major concerns observed during clinical trials of repurposed drugs (host directed or bactericidal drugs) administered conventionally for the treatment of drug resistant tuberculosis. The outcomes and the concerns of these clinical trials rationalized the need of repurposing formulation which could be administered by inhalation route as adjunctive treatment of drug resistant tuberculosis. [Figure: see text].
Collapse
Affiliation(s)
- Rajeev Ranjan
- Faculty of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | | |
Collapse
|
2
|
Magi MS, de Lafuente Y, Quarta E, Palena MC, Ardiles PDR, Páez PL, Sonvico F, Buttini F, Jimenez-Kairuz AF. Novel Dry Hyaluronic Acid-Vancomycin Complex Powder for Inhalation, Useful in Pulmonary Infections Associated with Cystic Fibrosis. Pharmaceutics 2024; 16:436. [PMID: 38675098 PMCID: PMC11054002 DOI: 10.3390/pharmaceutics16040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Polyelectrolyte-drug complexes are interesting alternatives to improve unfavorable drug properties. Vancomycin (VAN) is an antimicrobial used in the treatment of methicillin-resistant Staphylococcus aureus pulmonary infections in patients with cystic fibrosis. It is generally administered intravenously with a high incidence of adverse side effects, which could be reduced by intrapulmonary administration. Currently, there are no commercially available inhalable formulations containing VAN. Thus, the present work focuses on the preparation and characterization of an ionic complex between hyaluronic acid (HA) and VAN with potential use in inhalable formulations. A particulate-solid HA-VAN25 complex was obtained by spray drying from an aqueous dispersion. FTIR spectroscopy and thermal analysis confirmed the ionic interaction between HA and VAN, while an amorphous diffraction pattern was observed by X-ray. The powder density, geometric size and morphology showed the suitable aerosolization and aerodynamic performance of the powder, indicating its capability of reaching the deep lung. An in vitro extended-release profile of VAN from the complex was obtained, exceeding 24 h. Microbiological assays against methicillin-resistant and -sensitive reference strains of Staphylococcus aureus showed that VAN preserves its antibacterial efficacy. In conclusion, HA-VAN25 exhibited interesting properties for the development of inhalable formulations with potential efficacy and safety advantages over conventional treatment.
Collapse
Affiliation(s)
- María S. Magi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Yanina de Lafuente
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (F.B.)
| | - María C. Palena
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Perla del R. Ardiles
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Paulina L. Páez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (F.B.)
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (F.B.)
| | - Alvaro F. Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
3
|
Khadka P, Dummer J, Hill PC, Das SC. The quest to deliver high-dose rifampicin: can the inhaled approach help? Expert Opin Drug Deliv 2024; 21:31-44. [PMID: 38180078 DOI: 10.1080/17425247.2024.2301931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Tuberculosis (TB) is a global health problem that poses a challenge to global treatment programs. Rifampicin is a potent and highly effective drug for TB treatment; however, higher oral doses than the standard dose (10 mg/kg/day) rifampicin may offer better efficacy in TB treatment. AREAS COVERED High oral dose rifampicin is not implemented in anti-TB regimens yet and requires about a 3-fold increase in dose for increased efficacy. We discuss inhaled delivery of rifampicin as an alternative or adjunct to oral high-dose rifampicin. Clinical results of safety, tolerability, and patient compliance with antibiotic dry powder inhalers are reviewed. EXPERT OPINION Clinical trials suggest that an approximately 3-fold increase in the standard oral dose of rifampicin may be required for better clinical outcomes. On the other hand, animal studies suggest that inhaled rifampicin can deliver a high concentration of the drug to the lungs and achieve approximately double the plasma concentration than that from oral rifampicin. Clinical trials on inhaled antibiotics suggest that dry powder inhalation is a patient-friendly and well-tolerated approach in treating respiratory infections compared to conventional treatments. Rifampicin, a well-known anti-TB drug given orally, is a good candidate for clinical development as a dry powder inhaler.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
6
|
Wang G, Ren H, Chen Q, Zhou M, Xie F, Yan M, Wang Q, Bi H. Eco‐friendly
PCL
@
CDs
biomaterials via phytic acid,
CDs
‐cocatalyzed polymerization for rifapentin delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.51984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoyu Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Huifang Ren
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiuyang Chen
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Mingchen Zhou
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Fei Xie
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Hong Bi
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
7
|
Tse JY, Koike A, Kadota K, Uchiyama H, Fujimori K, Tozuka Y. Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs. Eur J Pharm Biopharm 2021; 167:116-126. [PMID: 34363979 DOI: 10.1016/j.ejpb.2021.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 μm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.
Collapse
Affiliation(s)
- Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
8
|
Singh AK, Verma RK, Mukker JK, Yadav AB, Muttil P, Sharma R, Mohan M, Agrawal AK, Gupta A, Dwivedi AK, Gupta P, Gupta UD, Mani U, Chaudhari BP, Murthy RC, Sharma S, Bhadauria S, Singh S, Rath SK, Misra A. Inhalable particles containing isoniazid and rifabutin as adjunct therapy for safe, efficacious and relapse-free cure of experimental animal tuberculosis in one month. Tuberculosis (Edinb) 2021; 128:102081. [PMID: 33915379 DOI: 10.1016/j.tube.2021.102081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
We investigated the preclinical efficacy and safety/tolerability of biodegradable polymeric particles containing isoniazid (INH) and rifabutin (RFB) dry powder for inhalation (DPI) as an adjunct to oral first-line therapy. Mice and guinea pigs infected with Mycobacterium tuberculosis H37Rv (Mtb) were treated with ∼80 and ∼300 μg of the DPI, respectively, for 3-4 weeks starting 3, 10, and 30 days post-infection. Adjunct combination therapy eliminated culturable Mtb from the lungs and spleens of all but one of 52 animals that received the DPI. Relapse-free cure was not achieved in one mouse that received DPI + oral, human-equivalent doses (HED) of four drugs used in the Directly Observed Treatment, Short Course (DOTS), starting 30 days post-infection. Oral doses (20 mg/Kg/day, each) of INH + RFB reduced Mtb burden from ∼106 to ∼103 colony-forming units. Combining half the oral dose with DPI prevented relapse of infection four weeks after stopping the treatment. The DPI was safe in rodents, guinea pigs, and monkeys at 1, 10, and 100 μg/day doses over 90 days. In conclusion, we show the efficacy and safety/tolerability of the DPI as an adjunct to oral chemotherapy in three different animal models of TB.
Collapse
Affiliation(s)
- Amit K Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rahul K Verma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Awadh B Yadav
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pavan Muttil
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rolee Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mradul Mohan
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Atul K Agrawal
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anuradha Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anil K Dwivedi
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pushpa Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, 282001, India
| | - Umesh D Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, 282001, India
| | - Uthirappan Mani
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | | | - Ramesh C Murthy
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Sharad Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Sarika Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Amit Misra
- CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
9
|
Khadka P, Sinha S, Tucker IG, Dummer J, Hill PC, Katare R, Das SC. Studies on the safety and the tissue distribution of inhaled high-dose amorphous and crystalline rifampicin in a rat model. Int J Pharm 2021; 597:120345. [PMID: 33545287 DOI: 10.1016/j.ijpharm.2021.120345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Inhaled delivery of rifampicin has the potential to achieve high drug concentrations in the lung and the blood for efficient treatment of tuberculosis (TB). Due to its existence as polymorphs, in vivo evaluation of the respiratory tract safety of inhalable amorphous and crystalline rifampicin particles, at clinically relevant high-dose, is necessary. This study investigates the lung and liver safety and the tissue distribution of rifampicin after intra-tracheal administration of high (≥25 mg/kg) doses of amorphous and crystalline powder formulations to Sprague Dawley rats. Powder formulations were administered by intra-tracheal insufflation to rats. Lung and liver safety were evaluated by histopathology. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) assays were performed to study the hepatic effects. Rifampicin was quantified in the tissues using LC-MS/MS. Intra-tracheal administration of rifampicin decreased the drug burden on the liver compared to oral administration based on its lower serum ALT activity. Repeated-dose intra-tracheal rifampicin was well tolerated by rats, confirmed by the absence of drug or delivery induced complexities. The histopathological evaluation of rat lungs, after both single and repeated drug administration for seven days, suggested the absence of drug-induced toxicity. Following single intra-tracheal delivery of 50 mg/kg doses, comparable rifampicin concentrations to that from same oral dose were observed in lung, liver, heart and brain. Inhaled delivery of high-dose rifampicin was safe to rat lungs and liver suggesting its potential for localized as well as systemic drug delivery without toxicity concerns.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Shubhra Sinha
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Ian G Tucker
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
10
|
Wang F, Wang R, Liu H. The acute pulmonary toxicity in mice induced by Staphylococcus aureus, particulate matter, and their combination. Exp Anim 2018; 68:159-168. [PMID: 30531117 PMCID: PMC6511515 DOI: 10.1538/expanim.18-0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inhalation of pathogenic bacteria transported by particulate matter (PM) presents an
important potential threat to human health. Therefore, the pulmonary toxicity in mice
caused by Staphylococcus aureus (S. aureus) and PM as
individual matter and mixtures was studied. PM and S. aureus were
instilled intratracheally into Kunming mice at doses of 0.2 mg/mouse and 5.08 ×
106 CFU /mouse, respectively, as individual matter and in combination two
times at 5-day intervals. After the exposure period, oxidative stress markers and nitric
oxide (NO) in the lung, cellular infiltration, neurotrophins, chemokines, and cytokines in
bronchoalveolar lavage fluid (BALF), and immunoglobulin (Ig) in sera were examined.
Exposure to the combination of PM and S. aureus caused significant
increases in malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and NO and
significant decreases in total antioxidant capacity (T-AOC) and the ratio of reduced
glutathione (GSH) to oxidized glutathione (GSSG) in the lung. Meanwhile, the ratio of
interleukin (IL)-4 to interferon (INF)-γ, the IL-4 level in BALF, and the IgE
concentration in sera were significantly increased in the groups exposed to
S. aureus or the combination of PM and
S. aureus. Substance P and IL-8 in BALF were
significantly increased in mice exposed to PM, S. aureus or their
combination. In addition, PM, S. aureus, and their combination caused
infiltration of leukocytes into the alveolar tissue spaces. The results suggested that
exposure to the combination of PM and S. aureus induced a lung
inflammatory response that was at least partly caused by oxidative stress and mediators
from the activated eosinophils, neutrophils, alveolar macrophages, and epithelial
cells.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China.,Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Ruiling Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Haifang Liu
- School of Energy and Environment Engineering, Zhongyuan University of Technology, No. 41 Zhongyuanzhong Road, Zhongyuan District, Zhengzhou 450007, P.R. China
| |
Collapse
|
11
|
Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S791-S806. [DOI: 10.1080/21691401.2018.1513938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance Technique, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - C. Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| |
Collapse
|
12
|
Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm 2018; 547:489-498. [PMID: 29778822 DOI: 10.1016/j.ijpharm.2018.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
Delivery of drugs to the lungs via dry powder inhaler (DPI) is a promising approach for the treatment of both local pulmonary conditions and systemic diseases. Though DPIs are widely used for the pulmonary deposition of potent bronchodilators, anticholinergics, and corticosteroids, there is growing interest in the utilization of this delivery system for the administration of high drug doses to the lungs, as made evident by recent regulatory approvals for anti-microbial, anti-viral and osmotic agents. However, the formulation of high dose DPIs carries several challenges from both a physiological and physicochemical standpoint. This review describes the various formulation techniques utilized to overcome the barriers associated with the pulmonary delivery of high dose powders.
Collapse
Affiliation(s)
- Ashlee D Brunaugh
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States
| | - Hugh D C Smyth
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States; LaMontagne Center for Infectious Disease, The University of Texas at Austin, United States.
| |
Collapse
|
13
|
Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B 2018; 8:440-448. [PMID: 29881683 PMCID: PMC5989825 DOI: 10.1016/j.apsb.2018.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Traditional chemotherapy causes serious toxicity due to the wide bodily distribution of these drugs. Curcumin is a potential anticancer agent but its low water solubility, poor bioavailability and rapid metabolism significantly limits clinical applications. Here we developed a liposomal curcumin dry powder inhaler (LCD) for inhalation treatment of primary lung cancer. LCDs were obtained from curcumin liposomes after freeze-drying. The LCDs had a mass mean aerodynamic diameter of 5.81 μm and a fine particle fraction of 46.71%, suitable for pulmonary delivery. The uptake of curcumin liposomes by human lung cancer A549 cells was markedly greater and faster than that of free curcumin. The high cytotoxicity on A549 cells and the low cytotoxicity of curcumin liposomes on normal human bronchial BEAS-2B epithelial cells yielded a high selection index partly due to increased cell apoptosis. Curcumin powders, LCDs and gemcitabine were directly sprayed into the lungs of rats with lung cancer through the trachea. LCDs showed higher anticancer effects than the other two medications with regard to pathology and the expression of many cancer-related markers including VEGF, malondialdehyde, TNF-α, caspase-3 and BCL-2. LCDs are a promising medication for inhalation treatment of lung cancer with high therapeutic efficiency.
Collapse
Key Words
- BALF, lung bronchoalveolar lavage fluids
- CP, curcumin powder
- Curcumin
- DMSO, dimethyl sulphoxide
- DPI, dry powder inhaler
- Dry powder inhaler
- FPF, fine particle fraction
- H&E, hematoxylin and eosin
- HPLC, high performance liquid chromatography
- LCD, liposomal curcumin dry powder inhaler
- Liposome
- MDA, malondialdehyde
- MMAD, mass mean aerodynamic diameter
- NSCLC, non-small cell lung cancer
- Primary lung cancer
- Pulmonary delivery
- SEM, scanning electron microscopy
- TEM, scanning electron microscopy
- TNF-α, tumor necrosis factor-α
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230001, China
| | - Yanming Chen
- Anhui Medical University, Hefei 230001, China
- China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230001, China
| | - Yuzhen Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230001, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230001, China
- Corresponding author at: Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China. Tel.: +86 10 88215159.
| |
Collapse
|
14
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Tavares M, Cabral RP, Costa C, Martins P, Fernandes AR, Casimiro T, Aguiar-Ricardo A. Development of PLGA dry powder microparticles by supercritical CO 2 -assisted spray-drying for potential vaccine delivery to the lungs. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|