1
|
Yu Q, Dehghani-Ghahnaviyeh S, Rasouli A, Sadurni A, Kowal J, Bang-Soerensen R, Wen PC, Tinzl-Zechner M, Irobalieva RN, Ni D, Stahlberg H, Altmann KH, Tajkhorshid E, Locher KP. Modulation of ABCG2 Transporter Activity by Ko143 Derivatives. ACS Chem Biol 2024; 19:2304-2313. [PMID: 39445888 PMCID: PMC11574751 DOI: 10.1021/acschembio.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
ABCG2 is a multidrug transporter that protects tissues from xenobiotics, affects drug pharmacokinetics, and contributes to multidrug resistance of cancer cells. Here, we present tetracyclic fumitremorgin C analog Ko143 derivatives, evaluate their in vitro modulation of purified ABCG2, and report four high-resolution cryo-EM structures and computational analyses to elucidate their interactions with ABCG2. We found that Ko143 derivatives that are based on a ring-opened scaffold no longer inhibit ABCG2-mediated transport activity. In contrast, closed-ring, tetracyclic analogs were highly potent inhibitors. Strikingly, the least potent of these compounds, MZ82, bound deeper into the central ABCG2 cavity than the other inhibitors and it led to partial closure of the transmembrane domains and increased flexibility of the nucleotide-binding domains. Minor structural modifications can thus convert a potent inhibitor into a compound that induces conformational changes in ABCG2 similar to those observed during binding of a substrate. Molecular dynamics simulations and free energy binding calculations further supported the correlation between reduced potency and distinct binding pose of the compounds. We introduce the highly potent inhibitor AZ99 that may exhibit improved in vivo stability.
Collapse
Affiliation(s)
- Qin Yu
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ali Rasouli
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Anna Sadurni
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Julia Kowal
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Rose Bang-Soerensen
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Po-Chao Wen
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Melanie Tinzl-Zechner
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Rossitza N. Irobalieva
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Dongchun Ni
- Laboratory
of Biological Electron Microscopy, Institute of Physics, SB, EPFL, Lausanne 1015, Switzerland
| | - Henning Stahlberg
- Laboratory
of Biological Electron Microscopy, Institute of Physics, SB, EPFL, Lausanne 1015, Switzerland
| | - Karl-Heinz Altmann
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Emad Tajkhorshid
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kaspar P. Locher
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
2
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
4
|
Singh K, Patil RB, Patel V, Remenyik J, Hegedűs T, Goda K. Synergistic Inhibitory Effect of Quercetin and Cyanidin-3O-Sophoroside on ABCB1. Int J Mol Sci 2023; 24:11341. [PMID: 37511101 PMCID: PMC10379049 DOI: 10.3390/ijms241411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The human ABCB1 (P-glycoprotein, Pgp) protein is an active exporter expressed in the plasma membrane of cells forming biological barriers. In accordance with its broad substrate spectrum and tissue expression pattern, it affects the pharmacokinetics of numerous chemotherapeutic drugs and it is involved in unwanted drug-drug interactions leading to side effects or toxicities. When expressed in tumor tissues, it contributes to the development of chemotherapy resistance in malignancies. Therefore, the understanding of the molecular details of the ligand-ABCB1 interactions is of crucial importance. In a previous study, we found that quercetin (QUR) hampers both the transport and ATPase activity of ABCB1, while cyandin-3O-sophroside (C3S) stimulates the ATPase activity and causes only a weak inhibition of substrate transport. In the current study, when QUR and C3S were applied together, both a stronger ATPase inhibition and a robust decrease in substrate transport were observed, supporting their synergistic ABCB1 inhibitory effect. Similar to cyclosporine A, a potent ABCB1 inhibitor, co-treatment with QUR and C3S shifted the conformational equilibrium to the "inward-facing" conformer of ABCB1, as it was detected by the conformation-selective UIC2 mAb. To gain deeper insight into the molecular details of ligand-ABCB1 interactions, molecular docking experiments and MD simulations were also carried out. Our in silico studies support that QUR and C3S can bind simultaneously to ABCB1. The most favourable ligand-ABCB1 interaction is obtained when C3S binds to the central substrate binding site and QUR occupies the "access tunnel". Our results also highlight that the strong ABCB1 inhibitory effect of the combined treatment with QUR and C3S may be exploited in chemotherapy protocols for the treatment of multidrug-resistant tumors or for improving drug delivery through pharmacological barriers.
Collapse
Affiliation(s)
- Kuljeet Singh
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's Sinhgad College of Pharmacy, OffSinhgad Road, Vadgaon (Bk), Pune 411041, Maharashtra, India
| | - Vikas Patel
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, 1052 Budapest, Hungary
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Blevins DJ, Nazir R, Hossein Dabiri SM, Akbari M, Wulff JE. The effects of cell culture conditions on premature hydrolysis of traceless ester-linked disulfide linkers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:784-804. [PMID: 34993424 PMCID: PMC8730335 DOI: 10.20517/cdr.2021.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp) and ABCG2 are multidrug transporters that confer drug resistance to numerous anti-cancer therapeutics in cell culture. These findings initially created great excitement in the medical oncology community, as inhibitors of these transporters held the promise of overcoming clinical multidrug resistance in cancer patients. However, clinical trials of P-gp and ABCG2 inhibitors in combination with cancer chemotherapeutics have not been successful due, in part, to flawed clinical trial designs resulting from an incomplete molecular understanding of the multifactorial basis of multidrug resistance (MDR) in the cancers examined. The field was also stymied by the lack of high-resolution structural information for P-gp and ABCG2 for use in the rational structure-based drug design of inhibitors. Recent advances in structural biology have led to numerous structures of both ABCG2 and P-gp that elucidated more clearly the mechanism of transport and the polyspecific nature of their substrate and inhibitor binding sites. These data should prove useful helpful for developing even more potent and specific inhibitors of both transporters. As such, although possible pharmacokinetic interactions would need to be evaluated, these inhibitors may show greater effectiveness in overcoming ABC-dependent multidrug resistance in combination with chemotherapeutics in carefully selected subsets of cancers. Another perhaps even more compelling use of these inhibitors may be in reversibly inhibiting endogenously expressed P-gp and ABCG2, which serve a protective role at various blood-tissue barriers. Inhibition of these transporters at sanctuary sites such as the brain and gut could lead to increased penetration by chemotherapeutics used to treat brain cancers or other brain disorders and increased oral bioavailability of these agents, respectively.
Collapse
Affiliation(s)
- Jason Goebel
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | | |
Collapse
|
7
|
Singh K, Tarapcsák S, Gyöngy Z, Ritter Z, Batta G, Bosire R, Remenyik J, Goda K. Effects of Polyphenols on P-Glycoprotein (ABCB1) Activity. Pharmaceutics 2021; 13:pharmaceutics13122062. [PMID: 34959345 PMCID: PMC8707248 DOI: 10.3390/pharmaceutics13122062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (Pgp, ABCB1) is a member of one of the largest families of active transporter proteins called ABC transporters. Thanks to its expression in tissues with barrier functions and its broad substrate spectrum, it is an important determinant of the absorption, metabolism and excretion of many drugs. Pgp and/or some other drug transporting ABC proteins (e.g., ABCG2, MRP1) are overexpressed in nearly all cancers and cancer stem cells by which cancer cells become resistant against many drugs. Thus, Pgp inhibition might be a strategy for fighting against drug-resistant cancer cells. Previous studies have shown that certain polyphenols interact with human Pgp. We tested the effect of 15 polyphenols of sour cherry origin on the basal and verapamil-stimulated ATPase activity of Pgp, calcein-AM and daunorubicin transport as well as on the conformation of Pgp using the conformation sensitive UIC2 mAb. We found that quercetin, quercetin-3-glucoside, narcissoside and ellagic acid inhibited the ATPase activity of Pgp and increased the accumulation of calcein and daunorubicin by Pgp-positive cells. Cyanidin-3O-sophoroside, catechin, naringenin, kuromanin and caffeic acid increased the ATPase activity of Pgp, while they had only a weaker effect on the intracellular accumulation of fluorescent Pgp substrates. Several tested polyphenols including epicatechin, trans-ferulic acid, oenin, malvin and chlorogenic acid were ineffective in all assays applied. Interestingly, catechin and epicatechin behave differently, although they are stereoisomers. We also investigated the effect of quercetin, naringenin and ellagic acid added in combination with verapamil on the transport activity of Pgp. In these experiments, we found that the transport inhibitory effect of the tested polyphenols and verapamil was additive or synergistic. Generally, our data demonstrate diverse interactions of the tested polyphenols with Pgp. Our results also call attention to the potential risks of drug–drug interactions (DDIs) associated with the consumption of dietary polyphenols concurrently with chemotherapy treatment involving Pgp substrate/inhibitor drugs.
Collapse
Affiliation(s)
- Kuljeet Singh
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Department of Genetics and Applied Microbiology, Faculty of Science of Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
8
|
Xia X, Zhou Y, Gao H. Prodrug strategy for enhanced therapy of central nervous system disease. Chem Commun (Camb) 2021; 57:8842-8855. [PMID: 34486590 DOI: 10.1039/d1cc02940a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) disease is one of the most notorious arch-criminals of human health across the world. Although considerable efforts have been devoted to promote the development of CNS drugs, ideal therapeutical effects are yet far from enough. The blood-brain barrier remains a major player that impedes the full potential of CNS therapeutical agents as it blocks the entry of CNS drugs into the brain. The past few decades have witnessed the upspring of prodrug strategies as a promising method to accelerate CNS drug development. The prodrug strategy with the ability to overcome the formidable blood-brain barrier enhances the delivery to the brain and hence improves the effects of the CNS therapeutics. In this Feature Article, we summarize the reported barriers and strategies for CNS therapeutics and spotlight prodrug design strategies to improve the efficiency of crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
9
|
Synthesis, crystal structure and DFT study of a novel compound N-(4-(2,4-dimorpholinopyrido[2,3-d]pyrimidin-6-yl)phenyl)pyrrolidine-1-carboxamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier. J Control Release 2021; 335:398-407. [PMID: 34087246 DOI: 10.1016/j.jconrel.2021.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein serves as a gatekeeper in the blood-brain-barrier wherein, it shows a vital part in the elimination of xenobiotics, drugs, foreign molecules etc. and guards the central nervous system from infections and external toxic molecules by functioning as an efflux transporter. It plays an essential role in various brain-related conditions like Parkinsonism, Alzheimer's disease, depression, cancer, etc. and terminates the entry of therapeutic agents across blood-brain-barrier which remains a significant challenge serving as major hindrance in pharmacotherapy of disease. The physiological structure and topology of P-glycoprotein and its relation with blood-brain-barrier and central nervous system gives an idea for targeting nanocarriers across the barrier into brain. This review article provides an overview of current understanding of the nanoformulations-based P-gp trafficking strategies like nanocarriers, stem cell therapy, drugs, substrates, polymeric materials, chemical compounds as well as naturally occurring active constituents for improving drug transport in brain across blood-brain-barrier and contributing in effective nanotherapeutic development for treatment of CNS disorders.
Collapse
|
11
|
Agrawal N, Rowe J, Lan J, Yu Q, Hrycyna CA, Chmielewski J. Potential Tools for Eradicating HIV Reservoirs in the Brain: Development of Trojan Horse Prodrugs for the Inhibition of P-Glycoprotein with Anti-HIV-1 Activity. J Med Chem 2019; 63:2131-2138. [PMID: 31505928 PMCID: PMC7073916 DOI: 10.1021/acs.jmedchem.9b00779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Combination
antiretroviral therapy is the mainstay of HIV treatment,
lowering plasma viral levels below detection. However, eradication
of HIV is a major challenge due to cellular and anatomical viral reservoirs
that are often protected from treatment by efflux transporters, such
as P-glycoprotein (P-gp) at the blood–brain barrier (BBB).
Herein we described a Trojan horse approach to therapeutic evasion
of P-gp based on a reversibly linked combination of HIV reverse transcriptase
and protease inhibitors. Potent inhibition of P-gp efflux in cells,
including human brain endothelial cells, was observed with the linked
heterodimeric compounds. In vitro regeneration of active monomeric
drugs was observed in a reducing environment with these dimeric prodrugs,
with the superior leaving group promoting more facile release from
the tether. These release trends were mirrored in the efficacy of
the in cyto anti-HIV-1 activity of the Trojan horse heterodimers.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jennifer Rowe
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jie Lan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Christine A Hrycyna
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
12
|
Liu H, Zhao X, Liang S, Fan L, Li Z, Zhang Y, Ni J. Amphiphilic Endomorphin-1 Derivative Functions as Self-assembling Nanomedicine for Effective Brain Delivery. Chem Pharm Bull (Tokyo) 2019; 67:977-984. [DOI: 10.1248/cpb.c19-00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hui Liu
- School of Pharmacy, Lanzhou University
| | | | | | - Linlan Fan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical, Lanzhou University
| | | | - Yun Zhang
- School of Pharmacy, Lanzhou University
| | | |
Collapse
|
13
|
Waghray D, Zhang Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J Med Chem 2017; 61:5108-5121. [PMID: 29251920 DOI: 10.1021/acs.jmedchem.7b01457] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. P-glycoprotein (P-gp), a promiscuous drug efflux pump, has been extensively studied for its association with MDR due to overexpression in cancer cells. Several P-gp inhibitors or modulators have been investigated in clinical trials in hope of circumventing MDR, with only limited success. Alternative strategies are actively pursued, such as the modification of existing drugs, development of new drugs, or combination of novel drug delivery agents to evade P-gp-dependent efflux. Despite the importance and numerous studies, these efforts have mostly been undertaken without a priori knowledge of how drugs interact with P-gp at the molecular level. This review highlights and discusses progress toward and challenges impeding drug development for inhibiting or evading P-gp in the context of our improved understanding of the structural basis and mechanism of P-gp-mediated MDR.
Collapse
Affiliation(s)
- Deepali Waghray
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
14
|
Murakami M, Ohnuma S, Fukuda M, Chufan EE, Kudoh K, Kanehara K, Sugisawa N, Ishida M, Naitoh T, Shibata H, Iwabuchi Y, Ambudkar SV, Unno M. Synthetic Analogs of Curcumin Modulate the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCG2. Drug Metab Dispos 2017; 45:1166-1177. [PMID: 28904007 PMCID: PMC5637816 DOI: 10.1124/dmd.117.076000] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) transporters in cancer cells is a major obstacle in cancer chemotherapy. Previous studies have shown that curcumin, a natural product and a dietary constituent of turmeric, inhibits the function of MDR-related ABC transporters, including ABCB1, ABCC1, and especially ABCG2. However, the limited bioavailability of curcumin prevents its use for modulation of the function of these transporters in the clinical setting. In this study, we investigated the effects of 24 synthetic curcumin analogs with increased bioavailability on the transport function of ABCG2. The screening of the 24 synthetic analogs by means of flow cytometry revealed that four of the curcumin analogs (GO-Y030, GO-Y078, GO-Y168, and GO-Y172) significantly inhibited the efflux of the ABCG2 substrates, mitoxantrone and pheophorbide A, from ABCG2-overexpressing K562/breast cancer resistance protein (BCRP) cells. Biochemical analyses showed that GO-Y030, GO-Y078, and GO-Y172 stimulated the ATPase activity of ABCG2 at nanomolar concentrations and inhibited the photolabeling of ABCG2 with iodoarylazidoprazosin, suggesting that these analogs interact with the substrate-binding sites of ABCG2. In addition, when used in cytotoxicity assays, GO-Y030 and GO-Y078 were found to improve the sensitivity of the anticancer drug, SN-38, in K562/BCRP cells. Taken together, these results suggest that nontoxic synthetic curcumin analogs with increased bioavailability, especially GO-Y030 and GO-Y078, inhibit the function of ABCG2 by directly interacting at the substrate-binding site. These synthetic curcumin analogs could therefore be developed as potent modulators to overcome ABCG2-mediated MDR in cancer cells.
Collapse
Affiliation(s)
- Megumi Murakami
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Shinobu Ohnuma
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Michihiro Fukuda
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Eduardo E Chufan
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Katsuyoshi Kudoh
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Keigo Kanehara
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Norihiko Sugisawa
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Masaharu Ishida
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Takeshi Naitoh
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Hiroyuki Shibata
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Yoshiharu Iwabuchi
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Suresh V Ambudkar
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine (M.M., S.O., K.Ku., K.Ka., N.S., M.I., T.N., M.U.), and Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences (M.F., Y.I.), Tohoku University, Sendai, Japan; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (E.E.C., S.V.A.); and Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan (H.S.)
| |
Collapse
|