1
|
Bartalucci E, Quaranta C, Manzoni F, Silva IDA, Zobel M, Bolm C, Ernst M, Wiegand T. The influence of fluorine spin-diffusion on 13C solid-state NMR line shapes of CF 3 groups. Phys Chem Chem Phys 2025; 27:5995-6004. [PMID: 40042529 DOI: 10.1039/d5cp00275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Indirect spin-spin couplings ("J-couplings") lead to well-known multiplet patterns in nuclear magnetic resonance (NMR) spectra that are also observable in non-decoupled solid-state NMR spectra, if the J-coupling constant exceeds the linewidth. Such J-multiplet line shapes in the solid state might however be affected by spin diffusion (SD) on the passive nuclei. When the SD rate constant is fast compared to the J-coupling constant, the multiplet resolution can be lost due to a so-called "self-decoupling" mechanism as has been already reported in the context of decoupling and for proton SD in solid adamantane. We herein report on the influence of 19F SD on 13C-detected solid-state NMR spectra of a small organic molecule bearing a trifluoromethyl group. The target compound is the chiral α-(trifluoromethyl)lactic acid (TFLA). Enantiopure phases ((R) or (S), respectively) of TFLA are composed of homochiral dimers whereas the racemic phase consists of heterochiral dimers in the solid state. Despite their structural similarity, the 13C line shapes of the CF3 group in cross-polarization spectra recorded at slow to medium magic-angle spinning (MAS) frequencies - in the range between 14.0 kHz and 60.0 kHz - differ substantially. By combining experimental observations, analytical calculations based on the Bloch-McConnell equations, and numerical spin-dynamics simulations, we demonstrate that differences in the 19F SD rate constant between racemic and enantiopure TFLA-phases significantly affect the respective solid-state 13C NMR spectral line shapes. Slowing down SD by increasing the MAS frequency restores the quartet line shape for both phases of TFLA.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim/Ruhr, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Calogero Quaranta
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Fabio Manzoni
- Institute of Crystallography, RWTH Aachen University, Jägerstrasse 17-19, 52066 Aachen, Germany
| | | | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, Jägerstrasse 17-19, 52066 Aachen, Germany
- JCNS-3: Neutron Analytics for Energy Research, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim/Ruhr, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
2
|
Almeida LS, Carneiro J, Colnago LA. Time domain NMR for polymorphism characterization: Current status and future perspectives. Int J Pharm 2025; 669:125027. [PMID: 39638268 DOI: 10.1016/j.ijpharm.2024.125027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Polymorphism is the ability of a compound to exist in multiple crystal forms while maintaining the same chemical composition. This phenomenon is reflected in different solid-state physicochemical properties due to variations in structural energy and the degree of lattice disorder. The pharmaceutical industry places significant emphasis on thoroughly characterizing polymorphism in Active Pharmaceutical Ingredients (APIs) because of its impact on the pharmacokinetic properties on the final medicine product. Standard characterization techniques are well documented in pharmacopeias and by international agencies. These techniques, whether applied individually or in combination, include crystallography (X-Ray Diffraction), thermal analysis (Differential Scanning Calorimetry), and various forms of spectroscopy, such as Near-Infrared, Raman, and solid-state Nuclear Magnetic Resonance (NMR). Analyzing NMR applications for solid-state characterization over the past five years, there has been a growing number of reports on the use of Time Domain NMR (TD-NMR) to evaluate polymorphism on APIs. Due to the increasing interest in this compelling technique, this study provides an overview of the current advancements in TD-NMR for polymorphism assessment in pharmaceutical products. Compared to high-field devices, TD-NMR has proven to be more convenient to industrial applications due to its smaller equipment size and shorter measurement times. This mini-review compares various applications of TD-NMR for API solid-state characterization and offer guidance for future research in this area.
Collapse
Affiliation(s)
- Luisa Souza Almeida
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, SP, Brazil.
| | - Jaqueline Carneiro
- Pharmacy Department, Parana Federal University. Avenida Prefeito Lothário Meissner, 632, 80210-170, Curitiba, PR, Brazil.
| | - Luiz Alberto Colnago
- Embrapa Instrumentação Agropecuária, Rua Quinze de Novembro, 1452, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Lafrance AA, Girard M, Bryce DL. Solid-state NMR spectra of amino acid enantiomers and their relative intensities. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 131:101925. [PMID: 38582022 DOI: 10.1016/j.ssnmr.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Under normal experimental conditions in an achiral environment, NMR spectra of enantiomers have chemical shifts and J couplings which are not differentiable. In this work, the reproducibility of spectral intensities for pairs of amino acid enantiomers, as well as factors influencing these intensities, is assessed using 13C and 15N cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. Prompted by a recent literature debate over a possible influence of the chirality-induced spin selectivity (CISS) effect on spectral intensities obtained in CP/MAS NMR experiments carried out on enantiomers, a number of control experiments were performed with recycle delays of at least 5T1. These included the analysis of proton-decoupled Bloch decay solid-state NMR spectra as well as solution NMR spectra where the cross polarization process is absent. Bloch decay and CP/MAS NMR spectra yield the same relative intensities for pairs of enantiomers while solution NMR spectra provide relative intensities closest to unity. Differences of plus-or-minus a few percent in the D/L spectral intensity ratios observed in all solid-state NMR experiments are due to sample preparation (i.e., grinding, particle size, partial amorphization) and limitations on sample purity. As previously described in the literature, more drastic intensity differences on the order of 50% are easily created by ball milling the samples. Finally, apodization is shown to invert the apparent D/L ratio in low signal-to-noise 15N CP/MAS NMR spectra of aspartic acid enantiomers. In summary, no spectral intensity differences attributable to enantiomerism are identified.
Collapse
Affiliation(s)
- Audrey-Anne Lafrance
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Manon Girard
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
4
|
Okada K, Ono T, Hayashi Y, Kumada S, Onuki Y. Use of Time-Domain NMR for 1H T 1 Relaxation Measurement and Fitting Analysis in Homogeneity Evaluation of Amorphous Solid Dispersion. J Pharm Sci 2024; 113:680-687. [PMID: 37659719 DOI: 10.1016/j.xphs.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
This study examined the usefulness of 1H T1 relaxation measurements for evaluating the homogeneity of amorphous solid dispersion (ASD). Indomethacin and polyvinylpyrrolidone were used to prepare two kinds of ASDs. One was inhomogeneous ASD (ASDmelt) prepared by a melt-quenching method, and the other was homogeneous ASD (ASDsolvent) prepared by a solvent evaporation method. The T1 relaxation was measured by the time-domain NMR (TD-NMR) technique using a low-field NMR system. Curve-fitting analysis of T1 relaxation plots was conducted using the Akaike information criterion. This fitting analysis revealed that the T1 relaxation of ASDmelt and ASDsolvent was biphasic and monophasic, respectively. ASDmelt and ASDsolvent were inhomogeneous and homogeneous on a nanometer scale, respectively, considering the spin diffusion of 1H nuclei. These T1 results were consistent with the Raman mapping of ASDs. From the fitting analysis of 1H T1 relaxation, we conclude that TD-NMR is a promising technique for evaluating ASD homogeneity.
Collapse
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Takashi Ono
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan; Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Yoshihiro Hayashi
- Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Shungo Kumada
- Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Okada K, Hayashi Y, Tsuji T, Onuki Y. Low-Field NMR to Characterize the Crystalline State of Ibuprofen Confined in Ordered or Nonordered Mesoporous Silica. Chem Pharm Bull (Tokyo) 2022; 70:550-557. [DOI: 10.1248/cpb.c22-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| | - Yoshihiro Hayashi
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Takahiro Tsuji
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| |
Collapse
|
6
|
Comparison of Differential Scanning Calorimetry, Powder X-ray Diffraction, and Solid-state Nuclear Magnetic Resonance Spectroscopy for Measuring Crystallinity in Amorphous Solid Dispersions - Application to Drug-in-Polymer Solubility. J Pharm Sci 2022; 111:2765-2778. [DOI: 10.1016/j.xphs.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
7
|
Dobson DP, Yanez E, Lubach JW, Stumpf A, Pellet J, Tso J. Utilizing Solid-State Techniques and Accelerated Conditions to Understand Particle Size Instability in Inhaled Drug Substances. J Pharm Sci 2021; 110:3037-3046. [PMID: 34004219 DOI: 10.1016/j.xphs.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022]
Abstract
Micronization by air jet milling is often used to produce drug substance particles of acceptable respirable size for use in dry powder inhaler formulations. The energy from this process often induces surface disordered sites on the micronized particles with potential consequences for the long-term stability of the drug substance. In this study, two lots of the same drug substance were qualitatively determined to have different extents of disordered surface using dynamic vapor sorption and scanning electron microscopy. These differences led to observable divergences in particle size and morphology between lots of drug substances on long-term and accelerated stability. The studies investigate the contribution of temperature and humidity, morphology prior to milling, and stability behavior post-micronization. The results highlight the importance of controlling the crystallization solvents upstream of micronization and their contribution to a material's susceptibility to milling-induced disorder on long-term physical stability. Furthermore, this work proposes an accelerated technique useful in predicting stability behavior of micronized drug substances in days rather than months, especially in cases where small differences cannot be detected by standard solid-state techniques.
Collapse
Affiliation(s)
- Daniel P Dobson
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Evelyn Yanez
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Joseph W Lubach
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Andreas Stumpf
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jackson Pellet
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jerry Tso
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
8
|
Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Int J Pharm 2020; 586:119555. [PMID: 32562654 DOI: 10.1016/j.ijpharm.2020.119555] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023]
Abstract
Intravenous (IV) route is preferred for rapid onset of action, avoiding first pass metabolism and achieving site specific delivery. Development of IV formulations for poorly water soluble drugs poses significant challenges. Formulation approaches like salt formation, co-solvents, surfactants and inclusion complexation using cyclodextrins are used for solubilisation. However, these approaches are not applicable universally and have limitations in extent of solubilisation, hypersensitivity, toxicity and application to only specific type of molecules. IV nanosuspension have been attracting attention as a viable strategy for development of IV formulations of poorly water-soluble drugs. Nanosuspension consists of nanocrystals of poorly water soluble drug suspended in aqueous media and stabilized using minimal concentration of stabilizers. Recent years have witnessed their potential in formulations for toxicological studies and clinical trials. However various challenges are associated with the translational development of IV nanosuspensions. Therefore, the objective of the current review is to provide a holistic view of formulation development and desired properties of IV nanosuspensions. It will also focus on advancements in characterization tools, manufacturing techniques and post-production processing. Challenges associated with translational development and regulatory aspects of IV nanosuspension will be addressed. Additionally, their role in preclinical evaluation and special applications like targeting will also be discussed with the help of case studies. The applications of IV nanosuspensions shall expand as their applications move from preclinical phase to commercialization.
Collapse
Affiliation(s)
- Dipeekakumari Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sandeep S Zode
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
9
|
Lu X, Tsutsumi Y, Huang C, Xu W, Byrn SR, Templeton AC, Buevich AV, Amoureux JP, Su Y. Molecular packing of pharmaceuticals analyzed with paramagnetic relaxation enhancement and ultrafast magic angle pinning NMR. Phys Chem Chem Phys 2020; 22:13160-13170. [DOI: 10.1039/d0cp02049d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Probing molecular details of fluorinated pharmaceutical compounds at a faster acquisition utilizing paramagnetic relaxation enhancement and better resolution from ultrafast magic angle spinning (νrot = 110 kHz) and high magnetic field (B0 = 18.8 T).
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- MRL, Merck & Co., Inc
- Kenilworth
- USA
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- Indiana 47907
- USA
| | | | | | | | - Yongchao Su
- MRL, Merck & Co., Inc
- Kenilworth
- USA
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
| |
Collapse
|
10
|
Sarpal K, Delaney S, Zhang GGZ, Munson EJ. Phase Behavior of Amorphous Solid Dispersions of Felodipine: Homogeneity and Drug–Polymer Interactions. Mol Pharm 2019; 16:4836-4851. [DOI: 10.1021/acs.molpharmaceut.9b00731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kanika Sarpal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Sean Delaney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Geoff G. Z. Zhang
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Eric J. Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
11
|
Santos JI, Rivilla I, Cossío FP, García-García FJ, Matxain JM, Grzeliczak M, Mazinani SKS, Ugalde JM, Mujica V. Reply to "Comment on 'Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance'". ACS NANO 2019; 13:6133-6136. [PMID: 31135135 DOI: 10.1021/acsnano.9b00946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Jose I Santos
- SGIker-UPV/EHU, Centro "Joxe Mari Korta" , Tolosa Hiribidea, 72 , E-20018 Donostia-San Sebastian , Spain
| | - Iván Rivilla
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 3 , 20018 Donostia-San Sebastián Spain
| | - Fernando P Cossío
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 3 , 20018 Donostia-San Sebastián Spain
| | - F Javier García-García
- ICTS-Centro Nacional de Microscopía Electrónica, UCM , Av. Complutense S/N , 28040 Madrid , Spain
| | - Jon M Matxain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K.1072, 20080 Donostia , Euskadi , Spain
| | - Marek Grzeliczak
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K.1072, 20080 Donostia , Euskadi , Spain
| | - Shobeir K S Mazinani
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Jesus M Ugalde
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K.1072, 20080 Donostia , Euskadi , Spain
| | - Vladimiro Mujica
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
12
|
Venkatesh A, Wijesekara AV, O'Dell LA, Rossini AJ. Comment on "Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance". ACS NANO 2019; 13:6130-6132. [PMID: 31184130 DOI: 10.1021/acsnano.9b00221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | | | - Luke A O'Dell
- Institute for Frontier Materials , Deakin University , Geelong , Victoria 3220 , Australia
| | - Aaron J Rossini
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
13
|
Lu X, Skomski D, Thompson KC, McNevin MJ, Xu W, Su Y. Three-Dimensional NMR Spectroscopy of Fluorinated Pharmaceutical Solids under Ultrafast Magic Angle Spinning. Anal Chem 2019; 91:6217-6224. [DOI: 10.1021/acs.analchem.9b00884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xingyu Lu
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Karen C. Thompson
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael J. McNevin
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Pajzderska A, Fojud Z, Jarek M, Wąsicki J. NMR relaxometry in the investigation of the kinetics of the recrystallization of felodipine. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Highly Soluble Drugs Directly Granulated by Water Dispersions of Insoluble Eudragit® Polymers as a Part of Hypromellose K100M Matrix Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8043415. [PMID: 30949510 PMCID: PMC6425467 DOI: 10.1155/2019/8043415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to investigate the suitability of insoluble Eudragit® water dispersions (NE, NM, RL, and RS) for direct high-shear granulation of very soluble levetiracetam in order to decrease its burst effect from HPMC K100M matrices. The process characteristics, ss-NMR analysis, in vitro dissolution behavior, drug release mechanism and kinetics, texture profile analysis of the gel layer, and PCA analysis were explored. An application of water dispersions directly on levetiracetam was feasible only in a multistep process. All prepared formulations exhibited a 12-hour sustained release profile characterized by a reduced burst effect in a concentration-dependent manner. No effect on swelling extent of HPMC K100M was observed in the presence of Eudragit®. Contrary, higher rigidity of formed gel layer was observed using combination of HPMC and Eudragit®. Not only the type and concentration of Eudragit®, but also the presence of the surfactant in water dispersions played a key role in the dissolution characteristics. The dissolution profile close to zero-order kinetic was achieved from the sample containing levetiracetam directly granulated by the water dispersion of Eudragit® NE (5% of solid polymer per tablet) with a relatively high amount of surfactant nonoxynol 100 (1.5%). The initial burst release of drug was reduced to 8.04% in 30 min (a 64.2% decrease) while the total amount of the released drug was retained (97.02%).
Collapse
|
16
|
Okada K, Hirai D, Kumada S, Kosugi A, Hayashi Y, Onuki Y. 1H NMR Relaxation Study to Evaluate the Crystalline State of Active Pharmaceutical Ingredients Containing Solid Dosage Forms Using Time Domain NMR. J Pharm Sci 2019; 108:451-456. [DOI: 10.1016/j.xphs.2018.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
|
17
|
Lou X, Shen M, Li C, Chen Q, Hu B. Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T 1 by ball milling in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:20-25. [PMID: 30125796 DOI: 10.1016/j.ssnmr.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical samples have notably long 1H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1H T1, which also leads to enhanced sensitivity in {1H}-13C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.
Collapse
Affiliation(s)
- Xiaobing Lou
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ming Shen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Qun Chen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
18
|
Brus J, Czernek J, Hruby M, Svec P, Kobera L, Abbrent S, Urbanova M. Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiri Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Jiri Czernek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Sabina Abbrent
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Martina Urbanova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
19
|
Thrane LW, Berglund EA, Wilking JN, Vodak D, Seymour JD. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct. Mol Pharm 2018; 15:2614-2620. [DOI: 10.1021/acs.molpharmaceut.8b00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linn W. Thrane
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Emily A. Berglund
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
| | - James N. Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
| | - David Vodak
- Bend Research Incorporated, Lonza, Bend, Oregon 97701, United States
| | - Joseph D. Seymour
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
| |
Collapse
|
20
|
Naiserová M, Kubová K, Vysloužil J, Pavloková S, Vetchý D, Urbanová M, Brus J, Vysloužil J, Kulich P. Investigation of Dissolution Behavior HPMC/Eudragit ®/Magnesium Aluminometasilicate Oral Matrices Based on NMR Solid-State Spectroscopy and Dynamic Characteristics of Gel Layer. AAPS PharmSciTech 2018; 19:681-692. [PMID: 28971441 DOI: 10.1208/s12249-017-0870-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Burst drug release is often considered a negative phenomenon resulting in unexpected toxicity or tissue irritation. Optimal release of a highly soluble active pharmaceutical ingredient (API) from hypromellose (HPMC) matrices is technologically impossible; therefore, a combination of polymers is required for burst effect reduction. Promising variant could be seen in combination of HPMC and insoluble Eudragits® as water dispersions. These can be applied only on API/insoluble filler mixture as over-wetting prevention. The main hurdle is a limited water absorption capacity (WAC) of filler. Therefore, the object of this study was to investigate the dissolution behavior of levetiracetam from HPMC/Eudragit®NE matrices using magnesium aluminometasilicate (Neusilin® US2) as filler with excellent WAC. Part of this study was also to assess influence of thermal treatment on quality parameters of matrices. The use of Neusilin® allowed the application of Eudragit® dispersion to API/Neusilin® mixture in one step during high-shear wet granulation. HPMC was added extragranularly. Obtained matrices were investigated for qualitative characteristics, NMR solid-state spectroscopy (ssNMR), gel layer dynamic parameters, SEM, and principal component analysis (PCA). Decrease in burst effect (max. of 33.6%) and dissolution rate, increase in fitting to zero-order kinetics, and paradoxical reduction in gel layer thickness were observed with rising Eudragit® NE concentration. The explanation was done by ssNMR, which clearly showed a significant reduction of the API particle size (150-500 nm) in granules as effect of surfactant present in dispersion in dependence on Eudragit®NE amount. This change in API particle size resulted in a significantly larger interface between these two entities. Based on ANOVA and PCA, thermal treatment was not revealed as a useful procedure for this system.
Collapse
|