1
|
Rinné S, Schick F, Vowinkel K, Schütte S, Krasel C, Kauferstein S, Schäfer MKH, Kiper AK, Müller T, Decher N. Potassium channel TASK-5 forms functional heterodimers with TASK-1 and TASK-3 to break its silence. Nat Commun 2024; 15:7548. [PMID: 39215006 PMCID: PMC11364637 DOI: 10.1038/s41467-024-51288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
TASK-5 (KCNK15) belongs to the acid-sensitive subfamily of two-pore domain potassium (K2P) channels, which includes TASK-1 and TASK-3. TASK-5 stands out as K2P channel for which there is no functional data available, since it was reported in 2001 as non-functional and thus "silent". Here we show that TASK-5 channels are indeed non-functional as homodimers, but are involved in the formation of functional channel complexes with TASK-1 and TASK-3. TASK-5 negatively modulates the surface expression of TASK channels, while the heteromeric TASK-5-containing channel complexes located at the plasma membrane are characterized by changes in single-channel conductance, Gq-coupled receptor-mediated channel inhibition, and sensitivity to TASK modulators. The unique pharmacology of TASK-1/TASK-5 heterodimers, affected by a common polymorphism in KCNK15, needs to be carefully considered in the future development of drugs targeting TASK channels. Our observations provide an access to study TASK-5 at the functional level, particularly in malignant cancers associated with KCNK15.
Collapse
Affiliation(s)
- Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Florian Schick
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Sven Schütte
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Cornelius Krasel
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Silke Kauferstein
- Centre for Sudden Cardiac Death and Institute of Legal Medicine, University Hospital Frankfurt, Goethe-University, Frankfurt/Main, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Thomas Müller
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
3
|
Arévalo B, Bedoya M, Kiper AK, Vergara F, Ramírez D, Mazola Y, Bustos D, Zúñiga R, Cikutovic R, Cayo A, Rinné S, Ramirez-Apan MT, Sepúlveda FV, Cerda O, López-Collazo E, Decher N, Zúñiga L, Gutierrez M, González W. Selective TASK-1 Inhibitor with a Defined Structure–Activity Relationship Reduces Cancer Cell Proliferation and Viability. J Med Chem 2022; 65:15014-15027. [DOI: 10.1021/acs.jmedchem.1c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados−CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, 3460000 Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, 3480094 Talca, Chile
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037 Marburg, Germany
| | - Fernando Vergara
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, 4030000 Concepción, Chile
| | - Yuliet Mazola
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, 3460000 Talca, Chile
| | - Rafael Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, 3460000 Talca, Chile
| | - Rocio Cikutovic
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
| | - Angel Cayo
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037 Marburg, Germany
| | - M. Teresa Ramirez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, 04510 México, DF, México
| | - Francisco V. Sepúlveda
- Centro de Estudios Científicos (CECs), 5110466 Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 5110466 Valdivia, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile
| | - Eduardo López-Collazo
- The Innate Immune Response Group and Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, 8046 Madrid, Spain
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037 Marburg, Germany
- Marburg Center for Mind, Brain and Behavior−MCMBB, Philipps-University Marburg, 35037 Marburg, Germany
| | - Leandro Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
| | - Margarita Gutierrez
- Laboratorio de Síntesis y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca, 1 poniente No. 1141, 3460000 Talca, Chile
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
| |
Collapse
|
4
|
Peña-Varas C, Kanstrup C, Vergara-Jaque A, González-Avendaño M, Crocoll C, Mirza O, Dreyer I, Nour-Eldin H, Ramírez D. Structural Insights into the Substrate Transport Mechanisms in GTR Transporters through Ensemble Docking. Int J Mol Sci 2022; 23:ijms23031595. [PMID: 35163519 PMCID: PMC8836200 DOI: 10.3390/ijms23031595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate–protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources.
Collapse
Affiliation(s)
- Carlos Peña-Varas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
| | - Christa Kanstrup
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Mariela González-Avendaño
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Hussam Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
- Correspondence: ; Tel.: +56-(22)-3036667
| |
Collapse
|
5
|
Ramírez D, Mejia-Gutierrez M, Insuasty B, Rinné S, Kiper AK, Platzk M, Müller T, Decher N, Quiroga J, De-la-Torre P, González W. 5-(Indol-2-yl)pyrazolo[3,4- b]pyridines as a New Family of TASK-3 Channel Blockers: A Pharmacophore-Based Regioselective Synthesis. Molecules 2021; 26:molecules26133897. [PMID: 34202296 PMCID: PMC8271858 DOI: 10.3390/molecules26133897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader-Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 μM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-Piso 5, Santiago 8900000, Chile
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| | - Melissa Mejia-Gutierrez
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Magdalena Platzk
- Joint Pulmonary Drug Discovery Lab Bayer-MGH, Boston, MA 02114, USA;
| | - Thomas Müller
- Bayer AG, Research & Development, Pharmaceuticals, D-42096 Wuppertal, Germany;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Pedro De-la-Torre
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114, USA
- Caribe Therapeutics, Vía 40 No. 69-111, Oficina 804 A, Barranquilla 080002, Colombia
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Poniente No. 1141, Talca 3460000, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| |
Collapse
|
6
|
Kiper AK, Bedoya M, Stalke S, Marzian S, Ramírez D, de la Cruz A, Peraza DA, Vera-Zambrano A, Márquez Montesinos JCE, Arévalo Ramos BA, Rinné S, Gonzalez T, Valenzuela C, Gonzalez W, Decher N. Identification of a critical binding site for local anaesthetics in the side pockets of K v 1 channels. Br J Pharmacol 2021; 178:3034-3048. [PMID: 33817777 DOI: 10.1111/bph.15480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Local anaesthetics block sodium and a variety of potassium channels. Although previous studies identified a residue in the pore signature sequence together with three residues in the S6 segment as a putative binding site, the precise molecular basis of inhibition of Kv channels by local anaesthetics remained unknown. Crystal structures of Kv channels predict that some of these residues point away from the central cavity and face into a drug binding site called side pockets. Thus, the question arises whether the binding site of local anaesthetics is exclusively located in the central cavity or also involves the side pockets. EXPERIMENTAL APPROACH A systematic functional alanine mutagenesis approach, scanning 58 mutants, together with in silico docking experiments and molecular dynamics simulations was utilized to elucidate the binding site of bupivacaine and ropivacaine. KEY RESULTS Inhibition of Kv 1.5 channels by local anaesthetics requires binding to the central cavity and the side pockets, and the latter requires interactions with residues of the S5 and the back of the S6 segments. Mutations in the side pockets remove stereoselectivity of inhibition of Kv 1.5 channels by bupivacaine. Although binding to the side pockets is conserved for different local anaesthetics, the binding mode in the central cavity and the side pockets shows considerable variations. CONCLUSION AND IMPLICATIONS Local anaesthetics bind to the central cavity and the side pockets, which provide a crucial key to the molecular understanding of their Kv channel affinity and stereoselectivity, as well as their spectrum of side effects.
Collapse
Affiliation(s)
- Aytug K Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Sarah Stalke
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Marzian
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alicia de la Cruz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Vera-Zambrano
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Teresa Gonzalez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Vargas-Sanchez K, Losada-Barragán M, Mogilevskaya M, Novoa-Herrán S, Medina Y, Buendía-Atencio C, Lorett-Velásquez V, Martínez-Bernal J, Gonzalez-Reyes RE, Ramírez D, Petry KG. Screening for Interacting Proteins with Peptide Biomarker of Blood-Brain Barrier Alteration under Inflammatory Conditions. Int J Mol Sci 2021; 22:ijms22094725. [PMID: 33946948 PMCID: PMC8124558 DOI: 10.3390/ijms22094725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by increased permeability of the blood-brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1β-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope-receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit β-1. Among them, only laminin subunit β-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit β-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.
Collapse
Affiliation(s)
- Karina Vargas-Sanchez
- Grupo de Neurociencia Translacional, Facultad de Medicina, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-13102405706
| | - Monica Losada-Barragán
- Grupo de Biología Celular y Funcional e Ingeniería de Moléculas, Departamento de Biología, Universidad Antonio Nariño, Bogotá 110231, Colombia; (M.L.-B.); (Y.M.)
| | - Maria Mogilevskaya
- Grupo de Investigación GINIC-HUS, Universidad ECCI, Bogotá 111311, Colombia;
| | - Susana Novoa-Herrán
- Grupo de Investigación en Hormonas (Hormone Research Laboratory), Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia; or
- Grupo de Fisiología Molecular, Subdirección de Investigación Científica y Tecnológica, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Yehidi Medina
- Grupo de Biología Celular y Funcional e Ingeniería de Moléculas, Departamento de Biología, Universidad Antonio Nariño, Bogotá 110231, Colombia; (M.L.-B.); (Y.M.)
| | - Cristian Buendía-Atencio
- Grupo de Investigación en Modelado y Computación Científica, Departamento de Química, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Vaneza Lorett-Velásquez
- Facultad de Medicina y Ciencias de la Salud, Universidad Militar Nueva Granada, Bogotá 110231, Colombia; (V.L.-V.); (J.M.-B.)
| | - Jessica Martínez-Bernal
- Facultad de Medicina y Ciencias de la Salud, Universidad Militar Nueva Granada, Bogotá 110231, Colombia; (V.L.-V.); (J.M.-B.)
| | - Rodrigo E. Gonzalez-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencia Neurovitae-UR, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia;
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Klaus G. Petry
- INSERM U1049 and U1029 Neuroinflammation and Angiogenesis Group, Bordeaux University, F33000 Bordeaux, France;
| |
Collapse
|
8
|
Bustos D, Bedoya M, Ramírez D, Concha G, Zúñiga L, Decher N, Hernández-Rodríguez EW, Sepúlveda FV, Martínez L, González W. Elucidating the Structural Basis of the Intracellular pH Sensing Mechanism of TASK-2 K 2P Channels. Int J Mol Sci 2020; 21:ijms21020532. [PMID: 31947679 PMCID: PMC7013731 DOI: 10.3390/ijms21020532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Two-pore domain potassium (K2P) channels maintain the cell’s background conductance by stabilizing the resting membrane potential. They assemble as dimers possessing four transmembrane helices in each subunit. K2P channels were crystallized in “up” and “down” states. The movements of the pore-lining transmembrane TM4 helix produce the aperture or closure of side fenestrations that connect the lipid membrane with the central cavity. When the TM4 helix is in the up-state, the fenestrations are closed, while they are open in the down-state. It is thought that the fenestration states are related to the activity of K2P channels and the opening of the channels preferentially occurs from the up-state. TASK-2, a member of the TALK subfamily of K2P channels, is opened by intracellular alkalization leading the deprotonation of the K245 residue at the end of the TM4 helix. This charge neutralization of K245 could be sensitive or coupled to the fenestration state. Here, we describe the relationship between the states of the intramembrane fenestrations and K245 residue in TASK-2 channel. By using molecular modeling and simulations, we show that the protonated state of K245 (K245+) favors the open fenestration state and, symmetrically, that the open fenestration state favors the protonated state of the lysine residue. We show that the channel can be completely blocked by Prozac, which is known to induce fenestration opening in TREK-2. K245 protonation and fenestration aperture have an additive effect on the conductance of the channel. The opening of the fenestrations with K245+ increases the entrance of lipids into the selectivity filter, blocking the channel. At the same time, the protonation of K245 introduces electrostatic potential energy barriers to ion entrance. We computed the free energy profiles of ion penetration into the channel in different fenestration and K245 protonation states, to show that the effects of the two transformations are summed up, leading to maximum channel blocking. Estimated rates of ion transport are in qualitative agreement with experimental results and support the hypothesis that the most important barrier for ion transport under K245+ and open fenestration conditions is the entrance of the ions into the channel.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca 3460000, Chile; (D.B.); (M.B.)
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3460000, Chile
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca 3460000, Chile; (D.B.); (M.B.)
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8380453, Chile;
| | - Guierdy Concha
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile; (G.C.); (L.Z.)
- Magíster en Gestión de Operaciones, Facultad de Ingeniería (Campus Los Niches), Universidad de Talca, Talca 3460000, Chile
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile; (G.C.); (L.Z.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, D-35037 Marburg, Germany;
| | | | - Francisco V. Sepúlveda
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
- Correspondence: (F.V.S.); (L.M.); (W.G.)
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering & Science, University of Campinas, Campinas 13083-861 SP, Brazil
- Correspondence: (F.V.S.); (L.M.); (W.G.)
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca 3460000, Chile; (D.B.); (M.B.)
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (F.V.S.); (L.M.); (W.G.)
| |
Collapse
|
9
|
Ratte A, Wiedmann F, Kraft M, Katus HA, Schmidt C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Front Pharmacol 2019; 10:1367. [PMID: 32038227 PMCID: PMC6988797 DOI: 10.3389/fphar.2019.01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.
Collapse
Affiliation(s)
- Antonius Ratte
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Discovery of Novel TASK-3 Channel Blockers Using a Pharmacophore-Based Virtual Screening. Int J Mol Sci 2019; 20:ijms20164014. [PMID: 31426491 PMCID: PMC6720600 DOI: 10.3390/ijms20164014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions. In the present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that includes pharmacophore modeling, molecular docking, and free energy calculations. With this protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3 using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 μM. Using DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 μM. Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors (DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening and rational drug design protocol.
Collapse
|
11
|
Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D. TASK Channels Pharmacology: New Challenges in Drug Design. J Med Chem 2019; 62:10044-10058. [PMID: 31260312 DOI: 10.1021/acs.jmedchem.9b00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rational drug design targeting ion channels is an exciting and always evolving research field. New medicinal chemistry strategies are being implemented to explore the wild chemical space and unravel the molecular basis of the ion channels modulators binding mechanisms. TASK channels belong to the two-pore domain potassium channel family and are modulated by extracellular acidosis. They are extensively distributed along the cardiovascular and central nervous systems, and their expression is up- and downregulated in different cancer types, which makes them an attractive therapeutic target. However, TASK channels remain unexplored, and drugs designed to target these channels are poorly selective. Here, we review TASK channels properties and their known blockers and activators, considering the new challenges in ion channels drug design and focusing on the implementation of computational methodologies in the drug discovery process.
Collapse
Affiliation(s)
- Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud , Universidad Autónoma de Chile , El Llano Subercaseaux 2801, Piso 6 , 8900000 Santiago , Chile
| |
Collapse
|
12
|
Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019; 94:1596-1614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The K+ ion channels comprising the two-pore domain (K2P) family have specific biophysical roles in generating the critical regulatory K+ current. Ion flow through K2P channels and, implicitly, channel regulation is mediated by diverse metabolic and physical inputs such as mechanical stimulation, interaction with lipids or endogenous regulators, intra- or extracellular pH, and phosphorylation, while their function can be finely tuned by chemical compounds. In the latter category, some drug-channel interactions can lead to side effects or have clinical action, while identifying novel chemical modulators of K2Ps is an area of intense research. Due to their cellular and therapeutic importance, much attention was turned to these channels in recent years and several experimental approaches have pinpointed the molecular determinants of K2P chemical modulation. Given their unique structural features and properties, chemical modulators act on K2P channels in multiple and diverse ways. In this review, the particularities of K2P modulation by chemical compounds, such as binding modality, affinity, or position, are identified, synthesized, and linked to structural and functional properties in order to refer to how activators and blockers modify channel function and vice versa, focusing on specificity related to protein structure (and its modification) and cross-linking information among different subfamilies.
Collapse
Affiliation(s)
- Daniel Şterbuleac
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
13
|
Ramírez D, Bedoya M, Kiper AK, Rinné S, Morales-Navarro S, Hernández-Rodríguez EW, Sepúlveda FV, Decher N, González W. Structure/Activity Analysis of TASK-3 Channel Antagonists Based on a 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine. Int J Mol Sci 2019; 20:ijms20092252. [PMID: 31067753 PMCID: PMC6539479 DOI: 10.3390/ijms20092252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022] Open
Abstract
TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. El Llano Subercaseaux 2801-Piso 6, 7500912 Santiago, Chile.
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Samuel Morales-Navarro
- Bachillerato en Ciencias, Facultad de Ciencias, Universidad Santo Tomás, Av. Circunvalación Poniente #1855, 3460000 Talca, Chile.
| | - Erix W Hernández-Rodríguez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
- Escuela de Química y Farmacia. Facultad de Medicina. Universidad Católica del Maule, 3460000 Talca, Chile.
| | | | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
14
|
Rinné S, Kiper AK, Vowinkel KS, Ramírez D, Schewe M, Bedoya M, Aser D, Gensler I, Netter MF, Stansfeld PJ, Baukrowitz T, Gonzalez W, Decher N. The molecular basis for an allosteric inhibition of K +-flux gating in K 2P channels. eLife 2019; 8:39476. [PMID: 30803485 PMCID: PMC6391080 DOI: 10.7554/elife.39476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
Two-pore-domain potassium (K2P) channels are key regulators of many physiological and pathophysiological processes and thus emerged as promising drug targets. As for other potassium channels, there is a lack of selective blockers, since drugs preferentially bind to a conserved binding site located in the central cavity. Thus, there is a high medical need to identify novel drug-binding sites outside the conserved lipophilic central cavity and to identify new allosteric mechanisms of channel inhibition. Here, we identified a novel binding site and allosteric inhibition mechanism, disrupting the recently proposed K+-flux gating mechanism of K2P channels, which results in an unusual voltage-dependent block of leak channels belonging to the TASK subfamily. The new binding site and allosteric mechanism of inhibition provide structural and mechanistic insights into the gating of TASK channels and the basis for the drug design of a new class of potent blockers targeting specific types of K2P channels.
Collapse
Affiliation(s)
- Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Kirsty S Vowinkel
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - David Ramírez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Marcus Schewe
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - Diana Aser
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Isabella Gensler
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Michael F Netter
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Phillip J Stansfeld
- Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| |
Collapse
|
15
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
16
|
Navarro-Retamal C, Caballero J. Energetic differences between non-domain-swapped and domain-swapped chain connectivities in the K2P potassium channel TRAAK. RSC Adv 2018; 8:26610-26618. [PMID: 35541058 PMCID: PMC9083029 DOI: 10.1039/c8ra04159h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/19/2018] [Indexed: 01/15/2023] Open
Abstract
Two-pore domain (K2P) channels are twofold symmetric K+ channels which control cell excitability by enabling the leak of potassium ions from cells in response to physicochemical stimuli. Crystallization of K2P channels revealed the presence of several structural features, which include an external cap. In the available crystallographic structures, the cap is present as non-domain-swapped (NDS) and domain-swapped (DS) chain conformations, where DS chain conformation exchanges two opposing outer helices 180° around the channel. In this work, energy differences between the residues located at the highest point of the cap in NDS and DS conformations were evaluated for TRAAK, a K2P channel that was crystallized in both conformations. Results indicated a preference for DS conformation, but this result is not extensible to TASK K2P channels. In the available crystallographic structures of K2P channels, the cap is present as non-domain-swapped (NDS) and domain-swapped (DS) chain conformations.![]()
Collapse
Affiliation(s)
- Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular
- Facultad de Ingeniería
- Universidad de Talca
- Talca
- Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular
- Facultad de Ingeniería
- Universidad de Talca
- Talca
- Chile
| |
Collapse
|