1
|
Záhonyi P, Müncz ÁG, Péter-Haraszti A, Nagy ZK, Csontos I, Marosi G, Szabó E. Continuous twin-screw melt granulation of drug-loaded electrospun fibers. Eur J Pharm Biopharm 2025; 206:114580. [PMID: 39561819 DOI: 10.1016/j.ejpb.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Electrospinning (ES) is a promising continuous formulation strategy to produce amorphous solid dispersions (ASDs) and thereby improve the dissolution of poorly water-soluble drugs. However, processing the electrospun material into solid dosage forms (e.g. tablets) is challenging due to the poor flow properties. In this research, continuous twin-screw melt granulation was applied to improve the flowability of the fibers and therefore ease the further processing steps. During this work, two ASD compositions were investigated: one containing 60 % poly-vinylpyrrolidone-vinyl acetate 6:4 copolymer and 40 % itraconazole (ITR), and another one containing hydroxypropyl methylcellulose (HPMC) and ITR in the same ratio. Both fiber compositions were granulated with polyethene glycol as the binder material, while the effects of the process parameters were examined. The application of higher granulation temperature and screw configurations with increased shear forces compromised the fibrous structure, induced crystallization of the ASD, and decreased the dissolution. However, the stability of the ITR-HPMC fibers proved to be higher as their granulation at 60 °C led to granules with adequate flow properties and dissolution. Moreover, tablets with fewer excipients were pressed from them, resulting in a 34 % reduction in weight. Consequently, this process can complement ES technology and facilitate its industrial implementation.
Collapse
Affiliation(s)
- Petra Záhonyi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Áron Gábor Müncz
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Anna Péter-Haraszti
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - István Csontos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
2
|
Puckhaber D, Kwade A, Finke JH. Investigation of Dispersion Kinetics of Particulate Lubricants and their Effect on the Mechanical Strength of MCC Tablets. Pharm Res 2023; 40:2479-2492. [PMID: 37752367 PMCID: PMC10661788 DOI: 10.1007/s11095-023-03602-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Tablets are commonly produced by internally adding particulate lubricants, which are known to possibly lower the mechanical strength of tablets. This reduction is caused by the coverage of matrix forming components by lubricant particles, resulting in decreased interparticulate interactions. The known incompatibilities with some active compounds of the predominantly used lubricant, magnesium stearate, call for the in-depth characterization of alternative lubricants. PURPOSE Investigation of the dispersion behavior of five commonly applied pharmaceutical lubricants by mathematically modeling the dispersion kinetics for short and extended mixing times. METHODS The dispersion behavior of five different pharmaceutical lubricants were examined by systematically varying lubricant concentration and mixing time of binary formulations and evaluating the kinetic of tensile strength reduction by theoretically estimating the surface coverage based on particle sizes. RESULTS For short mixing times, a unifying relationship between compactibility reduction and theoretical surface coverage was identified. Subsequently, for extended mixing times, distinct differences in the shear strength and dispersion kinetics of the investigated lubricants were found. CONCLUSIONS The lubricant particle size controls the tensile strength reduction if short mixing times are applied. For extended mixing times, the investigated lubricants can be divided into two groups in terms of dispersion kinetics. Possible underlying reasons are discussed in detail in order to enhance the general understanding of lubricant dispersions in tablet formulations.
Collapse
Affiliation(s)
- Daniel Puckhaber
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany.
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
4
|
Nagy B, Galata DL, Farkas A, Nagy ZK. Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing-a Review. AAPS J 2022; 24:74. [PMID: 35697951 DOI: 10.1208/s12248-022-00706-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
Industry 4.0 has started to transform the manufacturing industries by embracing digitalization, automation, and big data, aiming for interconnected systems, autonomous decisions, and smart factories. Machine learning techniques, such as artificial neural networks (ANN), have emerged as potent tools to address the related computational tasks. These advancements have also reached the pharmaceutical industry, where the Process Analytical Technology (PAT) initiative has already paved the way for the real-time analysis of the processes and the science- and risk-based flexible production. This paper aims to assess the potential of ANNs within the PAT concept to aid the modernization of pharmaceutical manufacturing. The current state of ANNs is systematically reviewed for the most common manufacturing steps of solid pharmaceutical products, and possible research gaps and future directions are identified. In this way, this review could aid the further development of machine learning techniques for pharmaceutical production and eventually contribute to the implementation of intelligent manufacturing lines with automated quality assurance.
Collapse
Affiliation(s)
- Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111, Hungary.
| |
Collapse
|
5
|
Szabó E, Záhonyi P, Gyürkés M, Nagy B, Galata DL, Madarász L, Hirsch E, Farkas A, Andersen SK, Vígh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. Eur J Pharm Sci 2021; 164:105907. [PMID: 34118411 DOI: 10.1016/j.ejps.2021.105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.
Collapse
Affiliation(s)
- Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Dorián L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Tamás Vígh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
6
|
Horvat S, Yu Y, Manz H, Keller T, Beilhack A, Groll J, Albrecht K. Nanogels as Antifungal‐Drug Delivery System Against
Aspergillus Fumigatus. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sonja Horvat
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Yidong Yu
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Hannah Manz
- Department of Medicine II Center for Experimental Molecular Medicine Würzburg University Hospital 97080 Würzburg Germany
| | - Thorsten Keller
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Andreas Beilhack
- Department of Medicine II Center for Experimental Molecular Medicine Würzburg University Hospital 97080 Würzburg Germany
| | - Jürgen Groll
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Krystyna Albrecht
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| |
Collapse
|
7
|
Stojanovska Pecova M, Geskovski N, Petrushevski G, Chachorovska M, Krsteska L, Ugarkovic S, Makreski P. Solid-state interaction of ibuprofen with magnesium stearate and product characterization thereof. Drug Dev Ind Pharm 2020; 46:1308-1317. [DOI: 10.1080/03639045.2020.1788067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Nikola Geskovski
- Faculty of Pharmacy, Institute of Pharmaceutical Technology, University of Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Gjorgji Petrushevski
- Research and Development, Alkaloid AD, Skopje, Republic of North Macedonia
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
| | | | - Liljana Krsteska
- Research and Development, Alkaloid AD, Skopje, Republic of North Macedonia
| | - Sonja Ugarkovic
- Research and Development, Alkaloid AD, Skopje, Republic of North Macedonia
| | - Petre Makreski
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
| |
Collapse
|
8
|
Solanki NG, Kathawala M, Serajuddin AT. Effects of Surfactants on Itraconazole-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion III: Tableting of Extrudates and Drug Release From Tablets. J Pharm Sci 2019; 108:3859-3869. [DOI: 10.1016/j.xphs.2019.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
|
9
|
Paajanen J, Lönnrot S, Heikkilä M, Meinander K, Kemell M, Hatanpää T, Ainassaari K, Ritala M, Koivula R. Novel electroblowing synthesis of submicron zirconium dioxide fibers: effect of fiber structure on antimony(v) adsorption. NANOSCALE ADVANCES 2019; 1:4373-4383. [PMID: 36134400 PMCID: PMC9418533 DOI: 10.1039/c9na00414a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/03/2019] [Indexed: 05/17/2023]
Abstract
Both stable and radioactive antimony are common industrial pollutants. For antimonate (Sb(v)) removal from industrial waste water, we synthesized submicron zirconium dioxide (ZrO2) fibers by electroblowing and calcination of the as-electroblown fibers. The fibers are amorphous after calcination at 300 and 400 °C and their average diameter is 720 nm. The fibers calcined at 500 to 800 °C have an average diameter of 570 nm and their crystal structure transforms from tetragonal to monoclinic at the highest calcination temperatures. We investigated Sb(v) adsorption capacity of the synthesized ZrO2 fibers as a function of pH, adsorption isotherm at pH 6 and adsorption kinetics at pH 7. The tetragonal ZrO2 fibers calcined at 500 °C exhibited the best potential for Sb(v) remediation with Sb(v) uptake of 10 mg g-1 at pH 2 and a maximum Sb(v) uptake of 8.6 mg g-1 in the adsorption isotherm experiment. They also reached 30% of 7 days' Sb(v) uptake in only a minute. The adsorption kinetics followed the Elovich model.
Collapse
Affiliation(s)
- Johanna Paajanen
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| | - Satu Lönnrot
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| | - Mikko Heikkilä
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| | | | - Marianna Kemell
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| | - Timo Hatanpää
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| | - Kaisu Ainassaari
- Environmental and Chemical Engineering, Faculty of Technology, FI-90014 University of Oulu P.O. Box 4300 Finland
| | - Mikko Ritala
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| | - Risto Koivula
- Department of Chemistry, FI-00014 University of Helsinki P.O. Box 55 Finland
| |
Collapse
|
10
|
Yang Y, Li W, Yu DG, Wang G, Williams GR, Zhang Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr Polym 2019; 203:228-237. [DOI: 10.1016/j.carbpol.2018.09.061] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/19/2023]
|
11
|
Spectroscopic characterization of tablet properties in a continuous powder blending and tableting process. Eur J Pharm Sci 2018; 123:10-19. [DOI: 10.1016/j.ejps.2018.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022]
|
12
|
Huang W, Yang Y, Zhao B, Liang G, Liu S, Liu XL, Yu DG. Fast Dissolving of Ferulic Acid via Electrospun Ternary Amorphous Composites Produced by a Coaxial Process. Pharmaceutics 2018; 10:E115. [PMID: 30072675 PMCID: PMC6161269 DOI: 10.3390/pharmaceutics10030115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Enhancing the dissolution of insoluble active ingredients comprises one of the most important issues in the pharmaceutical and biomaterial fields. Here, a third generation solid dispersion (3rd SD) of ferulic acid was designed and fabricated by a modified coaxial electrospinning process. A traditional second generation SD (2nd SD) was also prepared by common one-fluid blending electrospinning and was used as a control. With poly(vinyl alcohol) as the fiber matrix and polyvinylpyrrolidone K10 as an additive in the 3rd SDs, the two electrospinning processes were investigated. The prepared 2nd and 3rd SDs were subjected to a series of characterizations, including X-ray diffraction (XRD), scanning electron microscope (SEM), hydrophilicity and in vitro drug dissolving experiments. The results demonstrate that both SDs were monolithic nanocomposites and that the drugs were amorphously distributed within the matrix. However, the 3rd SDs had better morphology with smaller size, narrower size distribution, and smaller water contact angles than the 2nd SDs. Dissolution tests verified that the 3rd SDs could release their loaded cargoes within 60 s, which was over three times faster than the 2nd SDs. Therefore, a combined strategy based on the modified coaxial electrospinning and the logical selections of drug carriers is demonstrated for creating advanced biomaterials.
Collapse
Affiliation(s)
- Weidong Huang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China.
| | - Yaoyao Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Biwei Zhao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Gangqiang Liang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Shiwei Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xian-Li Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
13
|
Démuth B, Galata DL, Balogh A, Szabó E, Nagy B, Farkas A, Hirsch E, Pataki H, Vigh T, Mensch J, Verreck G, Nagy ZK, Marosi G. Application of hydroxypropyl methylcellulose as a protective agent against magnesium stearate induced crystallization of amorphous itraconazole. Eur J Pharm Sci 2018; 121:301-308. [PMID: 29902510 DOI: 10.1016/j.ejps.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Itraconazole is a fungicide drug which has low bioavailability due to its poor water solubility. Amorphous solid dispersion (ASD) is a tool that has the potential to greatly increase the dissolution rate and extent of compounds. In this work, the dissolution of tablets containing the ASD of itraconazole with either hydroxypropyl methylcellulose (HPMC) or vinylpyrrolidone-vinyl acetate copolymer (PVPVA) was compared in order to find a formulation which can prevent the drug from the precipitation caused by magnesium stearate. Formulations containing the PVPVA-based ASD with HPMC included in various forms could reach 90% dissolution in 2 h, while HPMC-based ASDs could release 100% of the drug. However, HPMC-based ASD had remarkably poor grindability and low bulk density, which limited its processability and applicability. The latter issue could be resolved by roller compacting the ASD, which significantly increases the bulk density and the flowability of the powder blends used for tableting. This roller compaction step might be a base for the industrial application of HPMC-based, electrospun ASDs.
Collapse
Affiliation(s)
- B Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - D L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - A Balogh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - E Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - B Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - A Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - E Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - H Pataki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - T Vigh
- Janssen Research and Development, 2340 Beerse, Turnhoutseweg 30, Belgium
| | - J Mensch
- Janssen Research and Development, 2340 Beerse, Turnhoutseweg 30, Belgium
| | - G Verreck
- Janssen Research and Development, 2340 Beerse, Turnhoutseweg 30, Belgium
| | - Z K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary.
| | - G Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| |
Collapse
|
14
|
Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers. NANOMATERIALS 2018; 8:nano8040184. [PMID: 29565280 PMCID: PMC5923514 DOI: 10.3390/nano8040184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 01/10/2023]
Abstract
Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.
Collapse
|