1
|
Gharibkandi NA, Majkowska-Pilip A, Walczak R, Wierzbicki M, Bilewicz A. Au@ 109Pd Core-Shell Nanoparticles Conjugated to Panitumumab for the Combined β --Auger Electron Therapy of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13555. [PMID: 39769315 PMCID: PMC11676729 DOI: 10.3390/ijms252413555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Apart from HER2-positive, triple-negative breast cancer (TNBC) is the second most highly invasive type of breast cancer. Although TNBC does not overexpress HER2 receptors, it has been observed that EGFR protein expression is present in this specific type of tumor, making it an attractive target for immune and radiopharmaceutical treatments. In our current study, we used 109Pd (T1/2 = 13.7 h) in the form of a 109Pd/109mAg in vivo generator as a source of β- particles and Auger electrons in targeted radionuclide therapy for TNBC. 109Pd, obtained through neutron irradiation of the 108Pd target, was deposited onto 15 nm gold nanoparticles to form Au@109Pd core-shell nanoparticles, which were then conjugated to the panitumumab antibody. Au@109Pd-PEG-panitumumab nanoparticles were bound, internalized, and partially routed to the nucleus in MDA-MB-231 human breast cancer cells overexpressing EGFR receptors. The Au@109Pd-panitumumab radioconjugate significantly reduced the metabolic activity of MDA-MB-231 cells in a dose-dependent manner. In conclusion, we have found that Au@109Pd-PEG-panitumumab nanoparticles show potential as a therapeutic agent for combined β--Auger electron targeted radionuclide therapy of TNBC. The simultaneous emission of β-, conversion, and Auger electrons from the 109Pd/109mAg generator, similar to 161Tb conjugates, significantly enhances the therapeutic effect. The partial localization of these nanoparticles into the cell nucleus, provided by the panitumumab vector, ensures effective therapy with Auger electrons. This is particularly important for the treatment of drug-resistant TNBC cells.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
- Department of Nuclear Medicine, Central Clinical Hospital of the Ministry of the Interior and Administration, Wołoska 137 St., 02-507 Warsaw, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
| |
Collapse
|
2
|
Sarrami N, Nelson B, Leier S, Wilson J, Chan C, Meens J, Komal T, Ailles L, Wuest M, Schultz M, Lavasanifar A, Reilly RM, Wuest F. SPECT/CT imaging of EGFR-positive head and neck squamous cell carcinoma patient-derived xenografts with 203Pb-PSC-panitumumab in NRG mice. EJNMMI Radiopharm Chem 2024; 9:79. [PMID: 39589608 PMCID: PMC11599518 DOI: 10.1186/s41181-024-00313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The objective of this research was the development and evaluation of 203Pb-labelled panitumumab (203Pb-PSC-panitumumab) as an immuno-SPECT radioligand for the detection of EGFR + head and neck squamous cell carcinoma (HNSCC) in a patient-derived xenograft (PDX) mouse model. The 51.9 h physical half-life and favourable γ-emission (279 keV; 81%) of 203Pb offer an excellent opportunity for developing immuno-SPECT radioligands. Moreover, 203Pb has a complementary therapeutic radionuclide (212Pb), making 203Pb and 212Pb an ideal matched radiotheranostic pair. RESULTS Radiolabeling of panitumumab was performed at a pH of 5.0 and room temperature for 5-10 min with [203Pb]Pb(OAc)2, and the incorporation efficiency was determined using radio-TLC. 203Pb-PSC-panitumumab (~ 10 MBq, 140 μl of saline) was injected into the tail vein of NRG mice bearing subcutaneous (s.c.) HNSCC patient-derived xenografts (PDX). SPECT/CT images were acquired at 48 and 120 h post-injection. For biodistribution studies, mice were euthanized five days after 203Pb-panitumumab injection. The tumour and normal tissues were collected and weighed, and uptake of 203Pb was measured in a γ-counter. The uptake was calculated as the percent injected dose per gram of each tissue (ID%/g). Blocking experiments were performed by pretreating a group of mice (n = 5) with 1 mg of panitumumab 1 h before administering 203Pb-PSC-panitumumab. 4-5 chelators of a new lead-specific chelator (PSC) were attached per antibody; radiolabeling efficiency was 99.2 ± 0.7%. The isolated radiochemical yield of 203Pb-PSC-panitumumab was 41.4 ± 8% (n = 5), and the molar activity was 1.2 ± 0.35 GB/mg. SPECT imaging and biodistribution confirmed high accumulation and retention of 203Pb-PSC-panitumumab in the tumour (26% ID/g) at 120 h post-injection (p.i.), which could be reduced to 6.2%ID/g at 120 h p.i. by predosing with panitumumab (1 mg) confirming EGFR specificity of 203Pb-PSC-panitumumab uptake. CONCLUSIONS Panitumumab was successfully and reproducibly labelled with 203Pb in high radiochemical purity using the chelator PSC-NCS. 203Pb-PSC-panitumumab was specifically accumulated and retained in EGFR + tumours in NRG mice with s.c. HNSCC PDX. 203Pb-PSC-panitumumab is a suitable immuno-SPECT radioligand for imaging EGFR + tumours and has great potential for combining with 212Pb-PSC-panitumumab in a radiotheranostic strategy for imaging and treating HNSCC.
Collapse
Affiliation(s)
- Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Bryce Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Samantha Leier
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Conrad Chan
- Leslie Dan Faculty of Pharmacy and Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Teesha Komal
- STTARR Innovation Centre, University Health Network, Toronto, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Melinda Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | | | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Raymond M Reilly
- Leslie Dan Faculty of Pharmacy and Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Frank Wuest
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada.
- Department of Chemistry, University of Alberta, Edmonton, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada.
| |
Collapse
|
3
|
Chen LA, Yu YH, Tian WT, Lin WC, Grauffel C, Wu CY, Chen CL, Lim C, Chu HM, Chang TW, Peng CJ. Site-specific Conjugation of 6 DOTA Chelators to a CA19-9-targeting scFv-Fc Antibody for Imaging and Therapy. J Med Chem 2023; 66:10604-10616. [PMID: 37462154 PMCID: PMC10424180 DOI: 10.1021/acs.jmedchem.3c00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/11/2023]
Abstract
Antibodies conjugated with diagnostic/therapeutic radionuclides are attractive options for inoperable cancers lacking accurate imaging methods and effective therapeutics, such as pancreatic cancer. Hence, we have produced an antibody radionuclide conjugate termed TE-1132 comprising a α-CA19-9 scFv-Fc that is site-specifically conjugated at each C-terminus to 3 DOTA chelators via a cysteine-containing peptide linker. The smaller scFv-Fc size facilitates diffusivity within solid tumors, whereas the chelator-to-antibody ratio of six enabled 177Lu-radiolabeled TE-1132 to exhibit high radioactivity up to 520 MBq/nmol. In mice bearing BxPC3 tumors, immuno-SPECT/CT imaging of [111In]In-TE-1132 and the biodistribution of [177Lu]Lu-TE-1132 showed selective tumor accumulation. Single and multiple doses of [177Lu]Lu-TE-1132 effectively inhibited the BxPC3 tumor growth and prolonged the survival of mice with no irreversible body weight loss or hematopoietic damage. The adequate pharmacokinetic parameters, prominent tumor accumulation, and efficacy with good safety in mice encourage the further investigation of theranostic TE-1132 for treating pancreatic cancer.
Collapse
Affiliation(s)
- Li-An Chen
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Yueh-Hsiang Yu
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Wei-Ting Tian
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Wei-Chen Lin
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Cédric Grauffel
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Chun-Yi Wu
- Department
of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Beitou, Taipei 112, Taiwan
| | - Chuan-Lin Chen
- Department
of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Beitou, Taipei 112, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Academia Road, Taipei 115, Taiwan
| | - Hsing-Mao Chu
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Tse-Wen Chang
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| | - Chi-Jiun Peng
- Immunwork,
Inc., Academia Rd., Sec.
1, Nangang, Taipei 11571, Taiwan
| |
Collapse
|
4
|
Boyle AJ, Cai Z, O'Brien S, Crick J, Angers S, Reilly RM. Relative Biological Effectiveness (RBE) of [ 64Cu]Cu and [ 177Lu]Lu-NOTA-panitumumab F (ab') 2 radioimmunotherapeutic agents vs. γ-radiation for decreasing the clonogenic survival in vitro of human pancreatic ductal adenocarcinoma (PDAC) cells. Nucl Med Biol 2023; 122-123:108367. [PMID: 37506639 DOI: 10.1016/j.nucmedbio.2023.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Our objective was to compare [64Cu]Cu-NOTA-panitumumab F(ab')2 and [177Lu]Lu-NOTA-panitumumab F(ab')2 radioimmunotherapy (RIT) agents for decreasing the clonogenic survival fraction (SF) in vitro of EGFR-positive human pancreatic ductal adenocarcinoma (PDAC) cell lines and estimate the relative biological effectiveness (RBE) vs. γ-radiation (XRT). METHODS EGFR-positive PDAC cell lines (AsPC-1, PANC-1, MIAPaCa-2, Capan-1) and EGFR-knockout PANC-1 EGFR KO cells were treated in vitro for 18 h with (0-19.65 MBq; 72 nmols/L) of [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 or XRT (0-8 Gy) followed by clonogenic assay. The SF was determined after culturing single treated cells for 14 d. Cell fractionation studies were performed for cells incubated with 1 MBq (72 nmols/L) of [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 for 1, 4, or 24 h to estimate the time-integrated activity (Ã) on the cell surface, cytoplasm, nucleus and medium. Radiation absorbed doses in the nucleus were calculated by multiplying à by S-factors calculated by Monte Carlo N Particle (MCNP) modeling using monolayer cell culture geometry. The SF of PDAC cells was plotted vs. dose and fitted to a linear quadratic model to estimate the dose required to decrease the SF to 0.1 (D10). The D10 for RIT agents were compared to XRT to estimate the RBE. DNA double-strand breaks (DSBs) caused by [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 continuous exposure for 5 h or 20 h were probed by immunofluorescence for γ-H2AX. Relative EGFR expression of PDAC cells was assessed by flow cytometry (scored + to +++) and cell doubling times for untreated cells were determined. RESULTS The D10 for [64Cu]Cu-NOTA-panitumumab F(ab')2 ranged from 9.1 Gy (PANC-1) to 39.9 Gy (Capan-1). The D10 for [177Lu]Lu-NOTA-panitumumab F(ab')2 ranged from 11.7 Gy (AsPC-1) to 170.8 Gy (Capan-1). The D10 for XRT ranged from 2.5 Gy (Capan-1) to 6.7 Gy (PANC-1 EGFR KO). D10 values were not correlated with EGFR expression over a relatively narrow range (++ to +++) or with cell doubling times. Based on D10 values, PANC-1 EGFR KO cells were 1.6-fold less sensitive than PANC-1 cells to [64Cu]Cu-NOTA-panitumumab F(ab')2 and 1.9-fold less sensitive to [177Lu]Lu-NOTA-panitumumab F(ab')2. The RBE for [64Cu]Cu-NOTA-panitumumab F(ab')2 ranged from 0.06 for Capan-1 cells to 0.45 for PANC-1 cells. The RBE for [177Lu]Lu-NOTA-panitumumab F(ab')2 ranged from 0.015 for Capan-1 cells to 0.28 for AsPC-1 cells. DNA DSBs were detected in PDAC cells exposed to [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 but were not correlated with the SF of the cells. CONCLUSIONS We conclude that at the same dose delivered to the cell nucleus [64Cu]Cu-NOTA-panitumumab F(ab')2 and [177Lu]Lu-NOTA-panitumumab F(ab')2 were less radiobiologically effective than XRT for decreasing the SF of human PDAC cells, but [64Cu]Cu-NOTA-panitumumab F(ab')2 was more cytotoxic than [177Lu]Lu-NOTA-panitumumab F(ab')2 except for AsPC-1 cells which were more sensitive to [177Lu]Lu-NOTA-panitumumab F(ab')2. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This study demonstrates that higher radiation doses may be required for RIT than XRT to achieve radiobiologically equivalent effects when used to treat PDAC.
Collapse
Affiliation(s)
- Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Siobhan O'Brien
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jennifer Crick
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada.
| |
Collapse
|
5
|
Yuki Y, Harada N, Sawada SI, Uchida Y, Nakahashi-Ouchida R, Mori H, Yamanoue T, Machita T, Kanazawa M, Fukumoto D, Ohba H, Miyazaki T, Akiyoshi K, Fujihashi K, Kiyono H. Biodistribution assessment of cationic pullulan nanogel, a nasal vaccine delivery system, in mice and non-human primates. Vaccine 2023:S0264-410X(23)00754-5. [PMID: 37385890 DOI: 10.1016/j.vaccine.2023.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Cationic cholesteryl-group-bearing pullulan nanogel (cCHP-nanogel) is an effective drug-delivery system for nasal vaccines. However, cCHP-nanogel-based nasal vaccines might access the central nervous system due to its close proximity via the olfactory bulb in the nasal cavity. Using real-time quantitative tracking of the nanogel-based nasal botulinum neurotoxin and pneumococcal vaccines, we previously confirmed the lack of deposition of vaccine antigen in the cerebrum or olfactory bulbs of mice and non-human primates (NHPs), rhesus macaques. Here, we used positron emission tomography to investigate the biodistribution of the drug-delivery system itself, cCHP-nanogel after mice and NHPs were nasally administered with 18F-labeled cCHP nanogel. The results generated by the PET analysis of rhesus macaques were consistent with the direct counting of radioactivity due to 18F or 111In in dissected mouse tissues. Thus, no depositions of cCHP-nanogel were noted in the cerebrum, olfactory bulbs, or eyes of both species after nasal administration of the radiolabeled cCHP-nanogel compound. Our findings confirm the safe biodistribution of the cCHP-nanogel-based nasal vaccine delivery system in mice and NHPs.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; HanaVax Inc, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | | | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | | | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; HanaVax Inc, Tokyo, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV) Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
6
|
Nagata H, Yoshimoto M, Walde P. Preparation and Catalytic Properties of Carbonic Anhydrase Conjugated to Liposomes through a Bis-Aryl Hydrazone Bond. ACS OMEGA 2023; 8:18637-18652. [PMID: 37273636 PMCID: PMC10233673 DOI: 10.1021/acsomega.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Liposomes (lipid vesicles) with sizes of about 100-200 nm carrying surface-bound (immobilized) water-soluble enzymes are functionalized molecular compartment systems for possible applications, for example, as therapeutic materials or as catalytic reaction units for running reactions in aqueous media in vitro. One way of covalently attaching enzyme molecules under mild conditions in a controlled way to the surface of preformed liposomes is to apply the spectrophotometrically traceable bis-aryl hydrazone (BAH) bond between the liposome and the enzyme molecules of interest. Using bovine carbonic anhydrase (BCA), an aqueous dispersion of liposome-BAH-BCA - conjugates of defined composition was prepared. The liposomes used consisted of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG), and N-(aminopropylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG-NH2). The amino group of some of the DSPE-PEG-NH2 molecules present in the liposomes were converted into an aromatic aldehyde, which (after purification) reacted with (purified) BCA molecules that had on their surface on average one acetone protected aromatic hydrazine. After purification of the liposome-BAH-BCA conjugate dispersion obtained, it was characterized in terms of (i) BCA activity, (ii) overall BCA structure, and (iii) storage stability. For an average liposome of 138 nm diameter, about 1200 BCA molecules were attached to the outer liposome surface. Liposomally bound BCA was found to exhibit (i) similar catalytic activity at 25 °C and (ii) similar storage stability when stored in a dispersed state in aqueous solution at 4 °C as free BCA. Measurements at 5 °C clearly showed that liposome-BAH-BCA is able to catalyze the hydration of carbon dioxide to hydrogen carbonate.
Collapse
Affiliation(s)
- Hikaru Nagata
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| |
Collapse
|
7
|
Liao Z, Tang Y, Liu W, Liu Y, Peng S, Lan T, Liao J, Yang Y, Liu N, Li F. 111In and 131I labeled nimotuzumabs for targeted radiotherapy of a murine model of glioma. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus. Int J Radiat Biol 2023; 99:28-38. [PMID: 32856963 DOI: 10.1080/09553002.2020.1815889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus. PURPOSE This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed. CONCLUSION Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
10
|
Facca VJ, Cai Z, Gopal NEK, Reilly RM. Panitumumab-DOTA- 111In: An Epidermal Growth Factor Receptor Targeted Theranostic for SPECT/CT Imaging and Meitner-Auger Electron Radioimmunotherapy of Triple-Negative Breast Cancer. Mol Pharm 2022; 19:3652-3663. [PMID: 35926098 DOI: 10.1021/acs.molpharmaceut.2c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidermal growth factor receptors (EGFR) are overexpressed in triple-negative breast cancer (TNBC) and are an attractive target for the development of theranostic radiopharmaceuticals. We studied anti-EGFR panitumumab labeled with 111In (panitumumab-DOTA-111In) for SPECT/CT imaging and Meitner-Auger electron (MAE) radioimmunotherapy (RIT) of TNBC. Panitumumab-DOTA-111In was bound, internalized, and routed to the nucleus in MCF7, MDA-MB-231/Luc, and MDA-MB-468 human breast cancer (BC) cells dependent on the EGFR expression level (1.5 × 104, 1.7 × 105, or 1.3 × 106 EGFR/cell, respectively). The absorbed dose in the nuclei of MCF7, MDA-MB-231/Luc, and MDA-MB-468 cells incubated with 4.4 MBq of panitumumab-DOTA-111In (20 nM) was 1.20 ± 0.02, 2.2 ± 0.1, and 25 ± 2 Gy, respectively. The surviving fraction (SF) of MDA-MB-231/Luc cells treated with panitumumab-DOTA-111In (10-300 nM; 1.5 MBq/μg) was reduced as the absorbed dose in the cell increased, with clonogenic survival reduced to an SF = 0.12 ± 0.05 at 300 nM corresponding to 12.7 Gy. The SFs of MDA-MB-468, MDA-MB-231/Luc, and MCF7 cells treated with panitumumab-DOTA-111In (20 nM; 1.7 MBq/μg) were <0.01, 0.56 ± 0.05, and 0.67 ± 0.04, respectively. Unlabeled panitumumab had no effect on SF, and irrelevant IgG-DOTA-111In only modestly reduced the SF of MDA-MB-231/Luc cells but not MCF7 or MDA-MB-468 cells. The cytotoxicity of panitumumab-DOTA-111In was mediated by increased DNA double-strand breaks (DSB), cell cycle arrest at G2/M-phase and apoptosis measured by immunofluorescence detection by flow cytometry. MDA-MB-231/Luc tumors in the mammary fat pad (MFP) of NRG mice were clearly imaged with panitumumab-DOTA-111In by microSPECT/CT at 4 days postinjection (p.i.), and biodistribution studies revealed high tumor uptake [18 ± 2% injected dose/g (% ID/g] and lower normal tissue uptake (<10% ID/g). Administration of up to 24 MBq (15 μg) of panitumumab-DOTA-111In to healthy NRG mice caused no major hematological, renal, or hepatic toxicity with no decrease in body weight. Treatment of NOD SCID mice with MDA-MB-231 tumors with panitumumab-DOTA-111In (22 MBq; 15 μg) slowed tumor growth. The mean time for tumors to reach a volume of ≥500 mm3 was 61 ± 5 days for RIT with panitumumab-DOTA-111In compared to 42 ± 6 days for mice treated with irrelevant IgG2-DOTA-111In (P < 0.0001) and 35 ± 3 days for mice receiving 0.9% NaCl (P < 0.0001). However, tumors regrew at later time points. The median survival of mice treated with panitumumab-DOTA-111In was 70 days versus 46 days for IgG2-DOTA-111In (P < 0.0001) or 40 days for 0.9% NaCl (P < 0.0001). We conclude that panitumumab-DOTA-111In is a promising theranostic agent for TNBC. Increasing the administered amount of panitumumab-DOTA-111In and/or combination with radiosensitizing PARP inhibitors used for treatment of patients with TNBC may provide a more durable response to RIT.
Collapse
Affiliation(s)
- Valerie J Facca
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nakita E K Gopal
- Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.,Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
11
|
Lin J, Yin M, Liu X, Meng F, Luo L. Nanomaterials Based on Functional Polymers for Sensitizing Cancer Radiotherapy. Macromol Rapid Commun 2022; 43:e2200194. [PMID: 35578790 DOI: 10.1002/marc.202200194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Despite being the mainstay treatment for many types of cancer in clinic, radiotherapy is undertaking great challenges in overcoming a series of limitations. Radiosensitizers are promising agents capable of depositing irradiation energy and generating free radicals to enhance the radiosensitivity of tumor cells. Combining radiosensitizers with functional polymer-based nanomaterials holds great potential to improve biodistribution, circulation time, and stability in vivo. The derived polymeric nano-radiosensitizers can significantly improve the efficiency of tumor targeting and radiotherapy, and reduce the side effect to healthy tissues. In this review, we provide an overview of functional polymer-based nanomaterials for radiosensitization in recent years. Particular emphases are given to the action mechanisms, drug loading methods, targeting efficiencies, the impact on therapeutic effects and biocompatibility of various radiosensitizing polymers, which are classified as polymeric micelles, dendrimers, polymeric nanospheres, nanoscale coordination polymers, polymersomes, and nanogels. The challenges and outlooks of polymeric nano-radiosensitizers are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinfeng Lin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
12
|
Chen J, Dong H, Bai L, Li L, Chen S, Tian X, Pan Y. Multifunctional high- Z nanoradiosensitizers for multimodal synergistic cancer therapy. J Mater Chem B 2022; 10:1328-1342. [PMID: 35018941 DOI: 10.1039/d1tb02524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy (RT) is one of the most common and effective clinical therapies for malignant tumors. However, there are several limitations that undermine the clinical efficacy of cancer RT, including the low X-ray attenuation coefficient of organs, serious damage to normal tissues, and radioresistance in hypoxic tumors. With the rapid development of nanotechnology and nanomedicine, high-Z nanoradiosensitizers provide novel opportunities to overcome radioresistance and improve the efficacy of RT by deposition of radiation energy through photoelectric effects. To date, several types of nanoradiosensitizers have entered clinical trials. Nevertheless, the limitation of the single treatment mode and the unclear mechanism of nanoparticle radiosensitization have hindered the further development of nanoradiosensitizers. In this review, we systematically describe the interaction mechanisms between X-rays and nanomaterials and summarize recent advances in multifunctional high-Z nanomaterials for radiotherapeutic-based multimodal synergistic cancer therapy. Finally, the challenges and prospects are discussed to stimulate the development of nanomedicine-based cancer RT.
Collapse
Affiliation(s)
- Jieyao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Haiyue Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Linrong Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Sijie Chen
- Ming Wai Lau Centre of Reparative Medicine Karolinska Institutet, Hong Kong
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
13
|
Principles and Applications of Auger-Electron Radionuclide Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Ku A, Kondo M, Cai Z, Meens J, Li MR, Ailles L, Reilly RM. Dose predictions for [ 177Lu]Lu-DOTA-panitumumab F(ab') 2 in NRG mice with HNSCC patient-derived tumour xenografts based on [ 64Cu]Cu-DOTA-panitumumab F(ab') 2 - implications for a PET theranostic strategy. EJNMMI Radiopharm Chem 2021; 6:25. [PMID: 34383182 PMCID: PMC8360260 DOI: 10.1186/s41181-021-00140-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Epidermal growth factor receptors (EGFR) are overexpressed on many head and neck squamous cell carcinoma (HNSCC). Radioimmunotherapy (RIT) with F(ab')2 of the anti-EGFR monoclonal antibody panitumumab labeled with the β-particle emitter, 177Lu may be a promising treatment for HNSCC. Our aim was to assess the feasibility of a theranostic strategy that combines positron emission tomography (PET) with [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC and predict the radiation equivalent doses to the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2. Results Panitumumab F(ab')2 were conjugated to DOTA and complexed to 64Cu or 177Lu in high radiochemical purity (95.6 ± 2.1% and 96.7 ± 3.5%, respectively) and exhibited high affinity EGFR binding (Kd = 2.9 ± 0.7 × 10− 9 mol/L). Biodistribution (BOD) studies at 6, 24 or 48 h post-injection (p.i.) of [64Cu]Cu-DOTA-panitumumab F(ab')2 (5.5–14.0 MBq; 50 μg) or [177Lu]Lu-DOTA-panitumumab F(ab')2 (6.5 MBq; 50 μg) in NRG mice with s.c. HNSCC patient-derived xenografts (PDX) overall showed no significant differences in tumour uptake but modest differences in normal organ uptake were noted at certain time points. Tumours were imaged by microPET/CT with [64Cu]Cu-DOTA-panitumumab F(ab')2 or microSPECT/CT with [177Lu]Lu-DOTA-panitumumab F(ab')2 but not with irrelevant [177Lu]Lu-DOTA-trastuzumab F(ab')2. Tumour uptake at 24 h p.i. of [64Cu]Cu-DOTA-panitumumab F(ab')2 [14.9 ± 1.1% injected dose/gram (%ID/g) and [177Lu]Lu-DOTA-panitumumab F(ab')2 (18.0 ± 0.4%ID/g) were significantly higher (P < 0.05) than [177Lu]Lu-DOTA-trastuzumab F(ab')2 (2.6 ± 0.5%ID/g), demonstrating EGFR-mediated tumour uptake. There were no significant differences in the radiation equivalent doses in the tumour and most normal organs estimated for [177Lu]Lu-DOTA-panitumumab F(ab')2 based on the BOD of [64Cu]Cu-DOTA-panitumumab F(ab')2 compared to those estimated directly from the BOD of [177Lu]Lu-DOTA-panitumumab F(ab')2 except for the liver and whole body which were modestly underestimated by [64Cu]Cu-DOTA-panitumumab F(ab')2. Region-of-interest (ROI) analysis of microPET/CT images provided dose estimates for the tumour and liver that were not significantly different for the two radioimmunoconjugates. Human doses from administration of [177Lu]Lu-DOTA-panitumumab F(ab')2 predicted that a 2 cm diameter HNSCC tumour in a patient would receive 1.1–1.5 mSv/MBq and the whole body dose would be 0.15–0.22 mSv/MBq. Conclusion A PET theranostic strategy combining [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC tumours and predict the equivalent radiation doses in the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 is feasible. RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 may be a promising approach to treatment of HNSCC due to frequent overexpression of EGFR. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00140-1.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Min Rong Li
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
17
|
Ailuno G, Iacobazzi RM, Lopalco A, Baldassari S, Arduino I, Azzariti A, Pastorino S, Caviglioli G, Denora N. The Pharmaceutical Technology Approach on Imaging Innovations from Italian Research. Pharmaceutics 2021; 13:1214. [PMID: 34452175 PMCID: PMC8402236 DOI: 10.3390/pharmaceutics13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Many modern therapeutic approaches are based on precise diagnostic evidence, where imaging procedures play an essential role. To date, in the diagnostic field, a plethora of agents have been investigated to increase the selectivity and sensitivity of diagnosis. However, the most common drawbacks of conventional imaging agents reside in their non-specificity, short imaging time, instability, and toxicity. Moreover, routinely used diagnostic agents have low molecular weights and consequently a rapid clearance and renal excretion, and this represents a limitation if long-lasting imaging analyses are to be conducted. Thus, the development of new agents for in vivo diagnostics requires not only a deep knowledge of the physical principles of the imaging techniques and of the physiopathological aspects of the disease but also of the relative pharmaceutical and biopharmaceutical requirements. In this scenario, skills in pharmaceutical technology have become highly indispensable in order to respond to these needs. This review specifically aims to collect examples of newly developed diagnostic agents connoting the importance of an appropriate formulation study for the realization of effective products. Within the context of pharmaceutical technology research in Italy, several groups have developed and patented promising agents for fluorescence and radioactive imaging, the most relevant of which are described hereafter.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Sara Pastorino
- Nuclear Medicine Unit, S. Andrea Hospital, via Vittorio Veneto 197, 19124 La Spezia, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| |
Collapse
|
18
|
Rigby A, Blower JE, Blower PJ, Terry SYA, Abbate V. Targeted Auger electron-emitter therapy: Radiochemical approaches for thallium-201 radiopharmaceuticals. Nucl Med Biol 2021; 98-99:1-7. [PMID: 33906122 PMCID: PMC7610824 DOI: 10.1016/j.nucmedbio.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Thallium-201 is a radionuclide that has previously been used clinically for myocardial perfusion scintigraphy. Although in this role it has now been largely replaced by technetium-99 m radiopharmaceuticals, thallium-201 remains attractive in the context of molecular radionuclide therapy for cancer micrometastases or single circulating tumour cells. This is due to its Auger electron (AE) emissions, which are amongst the highest in total energy and number per decay for AE-emitters. Currently, chemical platforms to achieve this potential through developing thallium-201-labelled targeted radiopharmaceuticals are not available. Here, we describe convenient methods to oxidise [201Tl]Tl(I) to chelatable [201Tl]Tl(III) and identify challenges in stable chelation of thallium to support future synthesis of effective [201Tl]-labelled radiopharmaceuticals. METHODS A plasmid pBR322 assay was carried out to determine the DNA damaging properties of [201Tl]Tl(III). A range of oxidising agents (ozone, oxygen, hydrogen peroxide, chloramine-T, iodogen, iodobeads, trichloroisocyanuric acid) and conditions (acidity, temperature) were assessed using thin layer chromatography. Chelators EDTA, DTPA and DOTA were investigated for their [201Tl]Tl(III) radiolabelling efficacy and complex stability. RESULTS Isolated plasmid studies demonstrated that [201Tl]Tl(III) can induce single and double-stranded DNA breaks. Iodo-beads, iodogen and trichloroisocyanuric acid enabled more than 95% conversion from [201Tl]Tl(I) to [201Tl]Tl(III) under conditions compatible with future biomolecule radiolabelling (mild pH, room temperature and post-oxidation removal of oxidising agent). Although chelation of [201Tl]Tl(III) was possible with EDTA, DTPA and DOTA, only radiolabeled DOTA showed good stability in serum. CONCLUSIONS Decay of [201Tl]Tl(III) in proximity to DNA causes DNA damage. Iodobeads provide a simple, mild method to convert thallium-201 from a 1+ to 3+ oxidation state and [201Tl]Tl(III) can be chelated by DOTA with moderate stability. Of the well-established chelators evaluated, DOTA is most promising for future molecular radionuclide therapy using thallium-201; nevertheless, a new generation of chelating agents offering resistance to reduction and dissociation of [201Tl]Tl(III) complexes is required.
Collapse
Affiliation(s)
- Alex Rigby
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Julia E Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Samantha Y A Terry
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Vincenzo Abbate
- King's College London, School of Population Health and Environmental Sciences, Analytical, Environmental and Forensic Sciences, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
19
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
20
|
Le PJ, Miersch S, Forbes MW, Jarvik N, Ku A, Sidhu SS, Reilly RM, Winnik MA. Site-Specific Conjugation of Metal-Chelating Polymers to Anti-Frizzled-2 Antibodies via Microbial Transglutaminase. Biomacromolecules 2021; 22:2491-2504. [PMID: 33961407 DOI: 10.1021/acs.biomac.1c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-chelating polymer-based radioimmunoconjugates (RICs) are effective agents for radioimmunotherapy but are currently limited by nonspecific binding and off-target organ uptake. Nonspecific binding appears after conjugation of the polymer to the antibody and may be related to random lysine conjugation since the polymers themselves do not bind to cells. To investigate the role of conjugation sites on nonspecific binding of polymer RICs, we developed a microbial transglutaminase reaction to prepare site-specific antibody-polymer conjugates. The reaction was enabled by introducing a Q-tag (i.e., 7M48) into antibody (i.e., Fab) fragments and synthesizing a polyglutamide-based metal-chelating polymer with a PEG amine block to yield substrates. Mass spectrometric analyses confirmed that the microbial transglutaminase conjugation reaction was site-specific. For comparison, random lysine conjugation analogs with an average of one polymer per Fab were prepared by bis-aryl hydrazone conjugation. Conjugates were prepared from an anti-frizzled-2 Fab to target the Wnt pathway, along with a nonbinding specificity control, anti-Luciferase Fab. Fabs were engineered from a trastuzumab-based IgG1 framework and lack lysines in the antigen-binding site. Conjugates were analyzed for thermal conformational stability by differential scanning fluorimetry, which showed that the site-specific conjugate had a similar melting temperature to the parent Fab. Binding assays by biolayer interferometry showed that the site-specific anti-frizzled-2 conjugate maintained high affinity to the antigen, while the random conjugate showed a 10-fold decrease in affinity, which was largely due to changes in association rates. Radioligand cell-binding assays on frizzled-2+ PANC-1 cells and frizzled-2- CHO cells showed that the site-specific anti-frizzled-2 conjugate had ca. 4-fold lower nonspecific binding compared to the random conjugate. Site-specific conjugation appeared to reduce nonspecific binding associated with random conjugation of the polymer in polymer RICs.
Collapse
Affiliation(s)
- Penny J Le
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Shane Miersch
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Matthew W Forbes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Nick Jarvik
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.,Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
21
|
|
22
|
Liao Z, Li F, Tang Y, Liu W, Gao J, Lan T, Yang J, Liao J, Liu N, Yang Y. Preliminary in vitro comparison of 111In and 131I labeled nimotuzumabs. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07677-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
24
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
25
|
Facca VJ, Al-Saden N, Ku A, Reilly RM. Imaging of HER2-Positive Tumors in NOD/SCID Mice with Pertuzumab Fab-Hexahistidine Peptide Immunoconjugates Labeled with [ 99mTc]-(I)-Tricarbonyl Complex. Mol Imaging Biol 2021; 23:495-504. [PMID: 33479914 DOI: 10.1007/s11307-020-01571-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Molecular imaging of tumor HER2 expression may allow patient selection for HER2-targeted therapies. Our aim was to introduce hexahistidine (His6) peptides into pertuzumab Fab to enable labeling with the [99mTc(CO)3(H2O)3]+ complex and study these radioimmunoconjugates for microSPECT/CT imaging of HER2-positive tumor xenografts in mice. PROCEDURES Fab were produced by papain digestion of pertuzumab and reacted with sulfo-SMCC for conjugation to His6-containing peptides (CGYGGHHHHHH). His6-peptide conjugation was measured by a radiometric assay. His6-pertuzumab Fab were labeled at 0.4-1.0 MBq/μg with [99mTc(CO)3(H2O)3]+ for 1 h at 37 °C. HER2 immunoreactivity was assessed in a direct (saturation) binding assay using HER2-overexpressing SK-BR-3 human breast cancer (BC) cells. MicroSPECT/CT and biodistribution studies were performed in NOD/SCID mice with HER2-positive s.c. SK-OV-3 human ovarian cancer, or MDA-MB-361 or MDA-MB-231 human BC xenografts at 4 or 24 h post i.v. injection of [99mTc]His6-pertuzumab Fab (29-49 MBq, 70 μg). The specificity of tumor uptake was assessed by comparison to irrelevant [99mTc]Fab 3913 in SK-OV-3 tumor-bearing mice. RESULTS SDS-PAGE analysis demonstrated cleavage of pertuzumab to produce Fab, which eluted as a single peak with a retention time of 13.8 min on SE-HPLC. Fab were conjugated to 2.1 ± 0.5 His6 peptides and labeled with [99mTc(CO)3(H2O)3]+ to a radiochemical purity of 92-97 % at 0.4-0.8 MBq/μg. [99mTc]His6-pertuzumab Fab exhibited saturable and specific binding to SK-BR-3 cells with a KD = 51.3 ± 5.2 × 10-9 M and Bmax = 3.5 ± 0.1 × 106 receptors/cell. SK-OV-3 tumors were imaged at 4 and 24 h p.i [99mTc]His6-pertuzumab Fab. Tumor uptake at 24 h p.i. was 4.1 ± 0.6 %ID/g, which was 13-fold significantly greater than [99mTc]Fab 3913 (0.3 ± 0.0 %ID/g; P < 0.01). MicroSPECT/CT imaged HER2-overexpressing MDA-MB-361 tumors but not MDA-MB-231 tumors with low HER2 expression. Tumor uptake was 5.2-fold significantly greater at 24 h p.i. in MDA-MB-361 than MDA-MB-231 tumors (3.2 ± 0.1 %ID/g vs. 0.8 ± 0.1 %ID/g; P < 0.05). CONCLUSIONS MicroSPECT/CT with [99mTc]His6-pertuzumab Fab imaged tumors in NOD/SCID mice that exhibited intermediate or high HER2 expression, but not tumors with low HER2. [99mTc]His6-pertuzumab Fab is promising for SPECT imaging of tumor HER2 expression.
Collapse
Affiliation(s)
- Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Noor Al-Saden
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre and Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
26
|
Nimotuzumab Site-Specifically Labeled with 89Zr and 225Ac Using SpyTag/SpyCatcher for PET Imaging and Alpha Particle Radioimmunotherapy of Epidermal Growth Factor Receptor Positive Cancers. Cancers (Basel) 2020; 12:cancers12113449. [PMID: 33233524 PMCID: PMC7699480 DOI: 10.3390/cancers12113449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Monoclonal antibodies (IgG) are excellent probes for targeting cell surface receptors for imaging and therapeutic applications. These theranostic agents are often developed by randomly conjugating radioisotopes/drugs/chelators to the primary amine of lysine or the sulfhydryl groups of cysteine on the antibody. Random conjugation often alters the properties of the antibody. We have site-specifically radiolabeled nimotuzumab an anti-epidermal growth factor receptor (EGFR) monoclonal antibody with 89Zr and 225Ac using SpyTag: ∆N-SpyCatcher for positron emission tomography (PET) imaging and alpha particle radiotherapy, and evaluated these agents in a model of EGFR-positive triple negative breast cancer (TNBC). Nimotuzumab-SpyTag-∆N-SpyCatcher constructs showed improved binding in vitro compared with randomly conjugated constructs. 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher specifically delineated EGFR-positive xenograft in vivo using microPET/CT imaging. Compared with control treatment groups, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher more than doubled the survival of mice bearing EGFR-positive MDA-MB-231 TNBC xenograft. This work highlights a facile method to site-specifically radiolabel antibodies using SpyTag: ∆N-SpyCatcher. Abstract To develop imaging and therapeutic agents, antibodies are often conjugated randomly to a chelator/radioisotope or drug using a primary amine (NH2) of lysine or sulfhydryl (SH) of cysteine. Random conjugation to NH2 or SH groups can require extreme conditions and may affect target recognition/binding and must therefore be tested. In the present study, nimotuzumab was site-specifically labeled using ∆N-SpyCatcher/SpyTag with different chelators and radiometals. Nimotuzumab is a well-tolerated anti-EGFR antibody with low skin toxicities. First, ΔN-SpyCatcher was reduced using tris(2-carboxyethyl)phosphine (TCEP), which was followed by desferoxamine-maleimide (DFO-mal) conjugation to yield a reactive ΔN-SpyCatcher-DFO. The ΔN-SpyCatcher-DFO was reacted with nimotuzumab-SpyTag to obtain stable nimotuzumab-SpyTag-∆N-SpyCatcher-DFO. Radiolabeling was performed with 89Zr, and the conjugate was used for the in vivo microPET imaging of EGFR-positive MDA-MB-468 xenografts. Similarly, ∆N-SpyCatcher was conjugated to an eighteen-membered macrocyclic chelator macropa-maleimide and used to radiolabel nimotuzumab-SpyTag with actinium-225 (225Ac) for in vivo radiotherapy studies. All constructs were characterized using biolayer interferometry, flow cytometry, radioligand binding assays, HPLC, and bioanalyzer. MicroPET/CT imaging showed a good tumor uptake of 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher with 6.0 ± 0.6%IA/cc (n = 3) at 48 h post injection. The EC50 of 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher and 225Ac-control-IgG-SpyTag-∆N-SpyCatcher against an EGFR-positive cell-line (MDA-MB-468) was 3.7 ± 3.3 Bq/mL (0.04 ± 0.03 nM) and 18.5 ± 4.4 Bq/mL (0.2 ± 0.04 nM), respectively. In mice bearing MDA-MB-468 EGFR-positive xenografts, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher significantly (p = 0.0017) prolonged the survival of mice (64 days) compared to 225Ac-control IgG (28.5 days), nimotuzumab (28.5 days), or PBS-treated mice (30 days). The results showed that the conjugation and labeling using SpyTag/∆N-SpyCatcher to nimotuzumab did not significantly (p > 0.05) alter the receptor binding of nimotuzumab compared with a non-specific conjugation approach. 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher was effective in vitro and in an EGFR-positive triple negative breast cancer xenograft model.
Collapse
|
27
|
Aghevlian S, Cai Z, Hedley D, Winnik MA, Reilly RM. Radioimmunotherapy of PANC-1 human pancreatic cancer xenografts in NOD/SCID or NRG mice with Panitumumab labeled with Auger electron emitting, 111In or β-particle emitting, 177Lu. EJNMMI Radiopharm Chem 2020; 5:22. [PMID: 33169241 PMCID: PMC7652961 DOI: 10.1186/s41181-020-00111-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptors (EGFR) are overexpressed on > 90% of pancreatic cancers (PnCa) and represent an attractive target for the development of novel therapies, including radioimmunotherapy (RIT). Our aim was to study RIT of subcutaneous (s.c.) PANC-1 human PnCa xenografts in mice using the anti-EGFR monoclonal antibody, panitumumab labeled with Auger electron (AE)-emitting, 111In or β-particle emitting, 177Lu at amounts that were non-toxic to normal tissues. RESULTS Panitumumab was conjugated to DOTA chelators for complexing 111In or 177Lu (panitumumab-DOTA-[111In]In and panitumumab-DOTA-[177Lu]Lu) or to a metal-chelating polymer (MCP) with multiple DOTA to bind 111In (panitumumab-MCP-[111In]In). Panitumumab-DOTA-[177Lu]Lu was more effective per MBq exposure at reducing the clonogenic survival in vitro of PANC-1 cells than panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In. Panitumumab-DOTA-[177Lu]Lu caused the greatest density of DNA double-strand breaks (DSBs) in the nucleus measured by immunofluorescence for γ-H2AX. The absorbed dose in the nucleus was 3.9-fold higher for panitumumab-DOTA-[177Lu]Lu than panitumumab-DOTA-[111In]In and 7.7-fold greater than panitumumab-MCP-[111In]In. No normal tissue toxicity was observed in NOD/SCID mice injected intravenously (i.v.) with 10.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In or in NRG mice injected i.v. with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu. There was no decrease in complete blood cell counts (CBC) or increased serum alanine aminotransferase (ALT) or creatinine (Cr) or decreased body weight. RIT inhibited the growth of PANC-1 tumours but a 5-fold greater total amount of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In (30 MBq; 30 μg; ~ 0.21 nmoles) administered in three fractionated amounts every three weeks was required to achieve greater or equivalent tumour growth inhibition, respectively, compared to a single amount of panitumumab-DOTA-[177Lu]Lu (6 MBq; 10 μg; ~ 0.07 nmoles). The tumour doubling time (TDT) for NOD/SCID mice with s.c. PANC-1 tumours treated with panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In was 51.8 days and 28.1 days, respectively. Panitumumab was ineffective yielding a TDT of 15.3 days vs. 15.6 days for normal saline treated mice. RIT of NRG mice with s.c. PANC-1 tumours with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu increased the TDT to 20.9 days vs. 11.5 days for panitumumab and 9.1 days for normal saline. The absorbed doses in PANC-1 tumours were 8.8 ± 3.0 Gy and 2.6 ± 0.3 Gy for panitumumab-DOTA-[111In]In and panitumumab-MCP-[111In]In, respectively, and 11.6 ± 4.9 Gy for panitumumab-DOTA-[177Lu]Lu. CONCLUSION RIT with panitumumab labeled with Auger electron-emitting, 111In or β-particle-emitting, 177Lu inhibited the growth of s.c. PANC-1 tumours in NOD/SCID or NRG mice, at administered amounts that caused no normal tissue toxicity. We conclude that EGFR-targeted RIT is a promising approach to treatment of PnCa.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - David Hedley
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada.
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Allen B, Bezak E. Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma: A Review of the Current Status of Literature. Cancers (Basel) 2020; 12:E481. [PMID: 32092952 PMCID: PMC7072553 DOI: 10.3390/cancers12020481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has long been associated with low survival rates. A lack of accurate diagnostic tests and limited treatment options contribute to the poor prognosis of PDAC. Radioimmunotherapy using α- or β-emitting radionuclides has been identified as a potential treatment for PDAC. By harnessing the cytotoxicity of α or β particles, radioimmunotherapy may overcome the anatomic and physiological factors which traditionally make PDAC resistant to most conventional treatments. Appropriate selection of target receptors and the development of selective and cytotoxic radioimmunoconjugates are needed to achieve the desired results of radioimmunotherapy. The aim of this review is to examine the growing preclinical and clinical trial evidence regarding the application of α and β radioimmunotherapy for the treatment of PDAC. A systematic search of MEDLINE® and Scopus databases was performed to identify 34 relevant studies conducted on α or β radioimmunotherapy of PDAC. Preclinical results demonstrated α and β radioimmunotherapy provided effective tumour control. Clinical studies were limited to investigating β radioimmunotherapy only. Phase I and II trials observed disease control rates of 11.2%-57.9%, with synergistic effects noted for combination therapies. Further developments and optimisation of treatment regimens are needed to improve the clinical relevance of α and β radioimmunotherapy in PDAC.
Collapse
Affiliation(s)
- Ashleigh Hull
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
| | - Yanrui Li
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia;
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia;
| | - Barry Allen
- Faculty of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia;
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
- Department of Physics, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
29
|
Boyle AJ, Cao PJ, Cai Z, Chan C, Hedley DW, Reilly RM. Radioimmunotherapy of human pancreatic cancer xenografts in NOD-scid mice with [ 64Cu]Cu-NOTA-panitumumab F(ab') 2 alone or combined with radiosensitizing gemcitabine and the PARP inhibitor, rucaparib. Nucl Med Biol 2020; 84-85:46-54. [PMID: 32062317 DOI: 10.1016/j.nucmedbio.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Our objective was to determine the feasibility of extending our previously reported PET imaging study of pancreatic cancer (PnCa) with [64Cu]Cu-NOTA-panitumumab F(ab')2 to radioimmunotherapy (RIT) by exploiting the β-particle and Auger electron emissions of 64Cu (PET theranostic concept). To enhance the effectiveness of [64Cu]Cu-NOTA-panitumumab F(ab')2, we further combined RIT with radiosensitizing gemcitabine (GEM) and the poly(ADP)ribose polymerase inhibitor (PARPi), rucaparib. METHODS Normal tissue toxicity was assessed in non-tumor-bearing NOD-scid mice injected i.v. with [64Cu]Cu-NOTA-panitumumab F(ab')2 (1.85-9.25 MBq; 10 μg) or [64Cu]Cu-NOTA-anti-mouse EGFR Ab30 F(ab')2 (12.95 MBq). Body weight was monitored, and hematopoietic (CBC), liver (ALT) and kidney [creatinine (SCr)] toxicity were assessed. RIT studies were performed in NOD-scid mice with s.c. OCIP23 human PnCa patient-derived xenografts (PDX) administered [64Cu]Cu-NOTA-panitumumab F(ab')2 (3.7 MBq; 10 μg), unlabeled panitumumab F(ab')2 (10 μg) or normal saline every two weeks. Subsequent studies evaluated RIT with [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.95 MBq; 10 μg) administered alone or combined with GEM and the PARPi, rucaparib administered on a 14-day treatment cycle for up to 6 cycles in NOD-scid mice with s.c. PANC-1 human PnCa xenografts. The radiation absorbed dose in PANC-1 tumors and normal organs in mice after a single i.v. injection of [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.95 MBq; 10 μg) was estimated based on previously reported biodistribution studies of [64Cu]Cu-NOTA-panitumumab F(ab')2. RESULTS No normal tissue toxicity was observed in non-tumor-bearing NOD-scid mice administered up to 3.7 MBq (10 μg) of [64Cu]Cu-NOTA-panitumumab F(ab')2 but slightly increased ALT was noted at 9.25 MBq. Administration of [64Cu]Cu-NOTA-anti-mouse EGFR Ab30 F(ab')2 (12.95 MBq; 10 μg) caused some hematopoietic toxicity but no increase in ALT or SCr or decreased body weight. A slight tumor growth delay and increased survival was noted in NOD-scid mice with s.c. OCIP23 PDX treated with [64Cu]Cu-NOTA-panitumumab F(ab')2 (3.7 MBq; 10 μg) or unlabeled panitumumab F(ab')2 (10 μg) compared to normal saline treated mice. RIT with [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.95 MBq; 10 μg) combined with GEM + PARPi for up to 6 cycles was most effective for the treatment of PANC-1 tumors. Tumor doubling time increased to 13.3 ± 0.9 days vs. 7.8 ± 3.7 days for RIT alone and 9.3 ± 2.2 days for normal saline treatment. Median survival was significantly longer (P < 0.05) than in mice treated with normal saline (35 days) for RIT + GEM + PARPi (71 days), GEM + PARPi (44 days) and RIT + GEM (43 days) but not for RIT alone (25 days). RIT + GEM + PARPi provided a longer median survival than RIT (P < 0.01), GEM + PARPi (P = 0.01) but not RIT + GEM (P = 0.23). Nonetheless, PANC-1 tumors grew exponentially in all treatment groups. The absorbed dose in PANC-1 tumors after a single i.v. injection of [64Cu]Cu-NOTA-panitumumab F(ab')2 (12.85 MBq; 10 μg) was 0.8 Gy, while the dose in normal organs ranged from 0.6-1.2 Gy. CONCLUSIONS We conclude that RIT with [64Cu]Cu-NOTA-panitumumab F(ab')2 did not cause significant normal tissue toxicity but was not effective when administered alone for treatment of PnCa xenografts in NOD-scid mice. Combining RIT with GEM and the PARPi, rucaparib enhanced its effectiveness but tumors continued to grow exponentially. Our results suggest that 64Cu is not feasible for RIT of PnCa due to low tumor absorbed doses. 177Lu which has a higher abundance of moderate energy β-particle emissions may be more effective than 64Cu. The hematopoietic toxicity of [64Cu]Cu-NOTA-anti-mouse EGFR Ab30 F(ab')2 may be mediated by binding to mouse EGFR expressed on some hematopoietic stem cells. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Direct extension of PET with 64Cu(Cu)-NOTA-panitumumab F(ab')2 to RIT exploiting the β-particle and Auger electron emissions of 64Cu is not feasible. Theranostic approaches that combine PET with RIT employing 177Lu may be more promising and should be explored.
Collapse
Affiliation(s)
- Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ping-Jiang Cao
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - David W Hedley
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
30
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
31
|
Delivery systems exploiting natural cell transport processes of macromolecules for intracellular targeting of Auger electron emitters. Nucl Med Biol 2019; 80-81:45-56. [PMID: 31810828 DOI: 10.1016/j.nucmedbio.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The presence of Auger electrons (AE) among the decay products of a number of radionuclides makes these radionuclides an attractive means for treating cancer because these short-range electrons can cause significant damage in the immediate vicinity of the decomposition site. Moreover, the extreme locality of the effect provides a potential for selective eradication of cancer cells with minimal damage to adjacent normal cells provided that the delivery of the AE emitter to the most vulnerable parts of the cell can be achieved. Few cellular compartments have been regarded as the desired target site for AE emitters, with the cell nucleus generally recognized as the preferred site for AE decay due to the extreme sensitivity of nuclear DNA to direct damage by radiation of high linear energy transfer. Thus, the advantages of AE emitters for cancer therapy are most likely to be realized by their selective delivery into the nucleus of the malignant cells. To achieve this goal, delivery systems must combine a challenging complex of properties that not only provide cancer cell preferential recognition but also cell entry followed by transport into the cell nucleus. A promising strategy for achieving this is the recruitment of natural cell transport processes of macromolecules, involved in each of the aforementioned steps. To date, a number of constructs exploiting intracellular transport systems have been proposed for AE emitter delivery to the nucleus of a targeted cell. An example of such a multifunctional vehicle that provides smart step-by-step delivery is the so-called modular nanotransporter, which accomplishes selective recognition, binding, internalization, and endosomal escape followed by nuclear import of the delivered radionuclide. The current review will focus on delivery systems utilizing various intracellular transport pathways and their combinations in order to provide efficient targeting of AE to the cancer cell nucleus.
Collapse
|
32
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
33
|
Hermawan A, Putri H, Utomo RY. Comprehensive bioinformatics study reveals targets and molecular mechanism of hesperetin in overcoming breast cancer chemoresistance. Mol Divers 2019; 24:933-947. [PMID: 31659695 DOI: 10.1007/s11030-019-10003-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The effectiveness of chemotherapy in breast cancer treatment can be increased using a combinatorial agent. Hesperetin has been reported to increase the sensitivity of doxorubicin in breast cancer cells; however, the underlying molecular mechanism remains unclear. This present study was conducted to identify the potential target and molecular mechanism of hesperetin in circumventing breast cancer chemoresistance using a bioinformatics approach. Microarray data obtained after hesperetin treatment in the NCI-60 cell line panel collection were retrieved from the COMPARE public library. These data were then compared with the list of the regulatory genes of breast cancer resistance obtained from PubMed and further analyzed for gene ontology and KEGG pathway enrichment, as well as protein-protein interaction network. A Venn diagram of COMPARE microarray data and the gene list from PubMed generated 56 genes (potential therapeutic target genes/PTTGs). These PTTGs participate in the biological process of the JAK-STAT cascade and are located in the nucleus, exert a molecular function in protein serine/threonine kinase activity, and regulate the erbB signaling pathway. Drug association analysis demonstrated that both hesperetin and the erbB receptor inhibitors, i.e., monoclonal antibody and tyrosine kinase inhibitor, target the same mRNA expression. Furthermore, results of the molecular docking study revealed that hesperetin is a promising inhibitor that targets ABL1, DNMT3B, and MLH1 due to the similarity of binding properties with its native ligand. In conclusion, the possible pathways and the regulatory genes identified in this study may offer new insights into the mechanism by which hesperetin overcomes breast cancer chemoresistance. A combinatorial therapy with hesperetin targeting ABL1, DNMT3B, and MLH1 may be effective in circumventing chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Rohmad Yudi Utomo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| |
Collapse
|
34
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
35
|
Indium-111 labeled bleomycin for targeting diagnosis and therapy of liver tumor: optimized preparation, biodistribution and SPECT imaging with xenograft models. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06801-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Ku A, Chan C, Aghevlian S, Cai Z, Cescon D, Bratman SV, Ailles L, Hedley DW, Reilly RM. MicroSPECT/CT Imaging of Cell-Line and Patient-Derived EGFR-Positive Tumor Xenografts in Mice with Panitumumab Fab Modified with Hexahistidine Peptides To Enable Labeling with 99mTc(I) Tricarbonyl Complex. Mol Pharm 2019; 16:3559-3568. [PMID: 31242384 DOI: 10.1021/acs.molpharmaceut.9b00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the feasibility of conjugating synthetic hexahistidine peptides (His6) peptides to panitumumab Fab (PmFab) to enable labeling with [99mTc(H2O)3(CO)3]+ complex and study these radioimmunoconjugates for imaging EGFR-overexpressing tumor xenografts in mice by microSPECT/CT. Fab were reacted with a 10-fold excess of sulfo-SMCC to introduce maleimide functional groups for reaction with the terminal thiol on peptides [CGYGGHHHHHH] that harbored the His6 motif. Modification of Fab with His6 peptides was assessed by SDS-PAGE/Western blot, and the number of His6 peptides introduced was quantified by a radiometric assay incorporating 123I-labeled peptides into the conjugation reaction. Radiolabeling was achieved by incubation of PmFab-His6 in PBS, pH 7.0, with [99mTc(H2O)3(CO)3]+ in a 1.4 MBq/μg ratio. The complex was prepared by adding [99mTcO4]- to an Isolink kit (Paul Scherrer Institute). Immunoreactivity was assessed in a direct (saturation) binding assay using MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Tumor and normal tissue uptake and imaging properties of 99mTc-PmFab-His6 (70 μg; 35-40 MBq) injected i.v. (tail vein) were compared to irrelevant 99mTc-Fab 3913 in NOD/SCID mice engrafted subcutaneously (s.c.) with EGFR-overexpressing MDA-MB-468 or PANC-1 human pancreatic ductal carcinoma (PDCa) cell-line derived xenografts (CLX) at 4 and 24 h post injection (p.i.). In addition, tumor imaging studies were performed with 99mTc-PmFab-His6 in mice with patient-derived tumor xenografts (PDX) of TNBC, PDCa, and head and neck squamous cell carcinoma (HNSCC). Biodistribution studies in nontumor bearing Balb/c mice were performed to project the radiation absorbed doses for imaging studies in humans with 99mTc-PmFab-His6. PmFab was derivatized with 0.80 ± 0.03 His6 peptides. Western blot and SDS-PAGE confirmed the presence of His6 peptides. 99mTc-PmFab-His6 was labeled to high radiochemical purity (≥95%), and the Kd for binding to EGFR on MDA-MB-468 cells was 5.5 ± 0.4 × 10-8 mol/L. Tumor uptake of 99mTc-PmFab-His6 at 24 h p.i. was significantly (P < 0.05) higher than irrelevant 99mTc-Fab 3913 in mice with MDA-MB-468 tumors (14.9 ± 3.1%ID/g vs 3.0 ± 0.9%ID/g) and in mice with PANC-1 tumors (5.6 ± 0.6 vs 0.5 ± 0.1%ID/g). In mice implanted orthotopically in the pancreas with the same PDCa PDX, tumor uptake at 24 h p.i. was 4.2 ± 0.2%ID/g. Locoregional metastases of these PDCa tumors in the peritoneum exhibited slightly and significantly lower uptake than the primary tumors (3.1 ± 0.3 vs 4.2 ± 0.3%ID/g; P = 0.02). In mice implanted with different TNBC or HNSCC PDX, tumor uptake at 24 h p.i. was variable and ranged from 3.7 to 11.4%ID/g and 3.8-14.5%ID/g, respectively. MicroSPECT/CT visualized all CLX and PDX tumor xenografts at 4 and 24 h p.i. Dosimetry estimates revealed that in humans, the whole body dose from administration of 740-1110 MBq of 99mTc-PmFab-His6 would be 2-3 mSv, which is less than for a 99mTc-medronate bone scan (4 mSv).
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Sadaf Aghevlian
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | | | | | | | | | - Raymond M Reilly
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada.,Department of Medical Imaging , University of Toronto , 263 McCaul Street , Toronto , ON M5T 1W7 , Canada.,Toronto General Research Institute and Joint Department of Medical Imaging , University Health Network , 200 Elizabeth Street , Toronto , ON M5G 2C4 , Canada
| |
Collapse
|
37
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
38
|
Aghevlian S, Cai Z, Lu Y, Hedley DW, Winnik MA, Reilly RM. Radioimmunotherapy of PANC-1 Human Pancreatic Cancer Xenografts in NRG Mice with Panitumumab Modified with Metal-Chelating Polymers Complexed to 177Lu. Mol Pharm 2019; 16:768-778. [PMID: 30589553 DOI: 10.1021/acs.molpharmaceut.8b01040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our aim was to evaluate the effectiveness and normal tissue toxicity of radioimmunotherapy (RIT) of s.c. PANC-1 human pancreatic cancer (PnCa) xenografts in NRG mice using anti-EGFR panitumumab linked to metal-chelating polymers (MCPs) that present 13 DOTA chelators to complex the β-emitter, 177Lu. The clonogenic survival (CS) of PANC-1 cells treated in vitro with panitumumab-MCP-177Lu (0.3-1.2 MBq) and DNA double-strand breaks (DSBs) in the nucleus of these cells were measured by confocal immunofluorescence microscopy for γ-H2AX. Subcellular distribution of radioactivity for panitumumab-MCP-177Lu was measured, and absorbed doses to the cell nucleus were calculated. Normal tissue toxicity was assessed in non tumor-bearing NRG mice by monitoring body weight, complete blood cell counts (CBC), serum alanine aminotransferase (ALT), and creatinine (Cr) after i.v. injection of 6 MBq (10 μg) of panitumumab-MCP-177Lu. RIT was performed in NRG mice with s.c. PANC-1 tumors injected i.v. with 6 MBq (10 μg) of panitumumab-MCP-177Lu. Control mice received nonspecific human IgG-MCP-177Lu (6 MBq; 10 μg), unlabeled panitumumab (10 μg), or normal saline. The tumor growth index (TGI) was compared. Tumor and normal organ doses were estimated based on biodistribution studies. Panitumumab-MCP-177Lu reduced the CS of PANC-1 cells in vitro by 7.7-fold at the highest amount tested (1.2 MBq). Unlabeled panitumumab had no effect on the CS of PANC-1 cells. γ-H2AX foci were increased by 3.8-fold by panitumumab-MCP-177Lu. Panitumumab-MCP-177Lu deposited 3.84 Gy in the nucleus of PANC-1 cells. Administration of panitumumab-MCP-177Lu (6 MBq; 10 μg) to NRG mice caused no change in body weight, CBC, or ALT and only a slight increase in Cr compared to NRG mice treated with normal saline. Panitumumab-MCP-177Lu strongly inhibited tumor growth in NRG mice (TGI = 2.3 ± 0.2) compared to normal saline-treated mice (TGI = 5.8 ± 0.5; P < 0.01). Unlabeled panitumumab had no effect on tumor growth (TGI = 6.0 ± 1.6; P > 0.05). The absorbed dose of PANC-1 tumors was 12.3 Gy. The highest normal organ doses were absorbed by the pancreas, liver, spleen, and kidneys. We conclude that EGFR-targeted RIT with panitumumab-MCP-177Lu was able to overcome resistance to panitumumab in KRAS mutant PANC-1 tumors in NRG mice and may be a promising approach to treatment of PnCa in humans.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Yijie Lu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - David W Hedley
- Department of Medical Oncology , Princess Margaret Cancer Centre , 610 University Avenue , Toronto , Ontario M5G 2M9 , Canada
| | - Mitchell A Winnik
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada.,Department of Medical Imaging , University of Toronto , 263 McCaul Street , Toronto , Ontario M5T 1W7 , Canada.,Toronto General Research Institute and Joint Department of Medical Imaging , University Health Network , 200 Elizabeth Street , Toronto , Ontario M5G 2C4 , Canada
| |
Collapse
|
39
|
Qiu W, Chen R, Chen X, Zhang H, Song L, Cui W, Zhang J, Ye D, Zhang Y, Wang Z. Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer. Int J Nanomedicine 2018; 13:6809-6827. [PMID: 30425490 PMCID: PMC6205542 DOI: 10.2147/ijn.s177993] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose Early diagnosis and therapy are critical to improve the prognosis of patients with pancreatic cancer. However, conventional imaging does not significantly increase the capability to detect early stage disease. In this study, we developed a multifunctional theranostic nanoplatform for accurate diagnosis and effective treatment of pancreatic cancer. Methods We developed a theranostic nanoparticle (NP) based on gold nanocages (AuNCs) modified with hyaluronic acid (HA) and conjugated with anti-Glypican-1 (anti-GPC1) antibody, oridonin (ORI), gadolinium (Gd), and Cy7 dye. We assessed the characteristics of GPC1-Gd-ORI@HAuNCs-Cy7 NPs (ORI-GPC1-NPs) including morphology, hydrodynamic size, stability, and surface chemicals. We measured the drug loading and release efficiency in vitro. Near-infrared fluorescence (NIRF)/magnetic resonance imaging (MRI) and therapeutic capabilities were tested in vitro and in vivo. Results ORI-GPC1-NPs demonstrated long-time stability and fluorescent/MRI properties. Bio-transmission electron microscopy (bio-TEM) imaging showed that ORI-GPC1-NPs were endocytosed into PANC-1 and BXPC-3 (overexpression GPC1) but not in 293 T cells (GPC1- negative). Compared with ORI and ORI-NPs, ORI-GPC1-NPs significantly inhibited the viability and enhanced the apoptosis of pancreatic cancer cells in vitro. Moreover, blood tests suggested that ORI-GPC1-NPs showed negligible toxicity. In vivo studies showed that ORI-GPC1-NPs enabled multimodal imaging and targeted therapy in pancreatic tumor xenografted mice. Conclusion ORI-GPC1-NP is a promising theranostic platform for the simultaneous diagnosis and effective treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenli Qiu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Huifeng Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Jingjing Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dandan Ye
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| |
Collapse
|
40
|
Cook BE, Membreno R, Zeglis BM. Dendrimer Scaffold for the Amplification of In Vivo Pretargeting Ligations. Bioconjug Chem 2018; 29:2734-2740. [PMID: 29969558 DOI: 10.1021/acs.bioconjchem.8b00385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of immunoconjugates requires a careful balance between preserving the functionality of the antibody and modifying the immunoglobulin with the desired cargo. Herein, we describe the synthesis, development, and in vivo evaluation of a novel bifunctional dendrimeric scaffold and its application in pretargeted PET imaging. The site-specific modification of the huA33 antibody with this dendrimeric scaffold yields an immunoconjugate-sshuA33-DEN-TCO-decorated with ∼8 trans-cyclooctene (TCO) moieties, a marked increase compared to the ∼2 TCO/mAb of a nondendrimeric control immunoconjugate (sshuA33-PEG12-TCO). Pretargeted PET imaging and biodistribution experiments were used to compare the in vivo performance of these two immunoconjugates in athymic nude mice bearing subcutaneous SW1222 human colorectal cancer xenografts. To this end, the mice were administered 100 μg of each immunoconjugate followed 120 h later by the injection of a tetrazine-bearing radioligand, [64Cu]Cu-SarAr-Tz. Pretargeting with sshuA33-DEN-TCO produced excellent tumoral uptake at 24 h (8.9 ± 1.9 %ID/g), more than double that created by sshuA33-PEG12-TCO (4.1 ± 1.3 %ID/g). Critically-and somewhat surprisingly-the attachment of the G0.5 dendrimeric structures did not hamper the in vivo behavior of the immunoconjugate, suggesting that this versatile bifunctional scaffold may have applications beyond pretargeting.
Collapse
Affiliation(s)
- Brendon E Cook
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10065 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Rosemery Membreno
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10065 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Brian M Zeglis
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10065 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|