1
|
Lee JH, Kozoriz K, Hong KT, Murale DP, An SJ, Choi SH, Lee JS. Dyad System of BOAHY-BODIPY Conjugates as Novel Photoswitchable Photosensitizers for Photodynamic Therapy. J Med Chem 2025; 68:9947-9957. [PMID: 39885647 DOI: 10.1021/acs.jmedchem.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Photodynamic therapy (PDT) offers minimally invasive and repeatable cancer treatment options. Despite advancements in photosensitizer (PS) design, the optical control of PS activation remains unexplored. Here, we present the first photoswitchable PS based on a BOAHY-BODIPY dyad system. Inspired by BODIPY multimer structures and BOAHY's photoisomerization properties, we designed mono-(4 series) and bis-BOAHY-BODIPY (5 series) conjugates. These dyads primarily generate reactive oxygen species via a type-I process under white light. Notably, the 4 series compounds demonstrated effective photocytotoxicity and photoswitching properties in vitro. Building on these, we iodinated the monoconjugates to develop the highly efficient photoswitching PS, 6b, which exhibited enhanced intersystem crossing and type-II reactive oxygen species generation due to a reduced singlet-triplet energy gap. As the first demonstration of photoswitchable PDT agents, this strategy introduces a new approach with significant potential for selective cancer treatment and clinical applications.
Collapse
Affiliation(s)
- Jung Hoon Lee
- Department of Pharmacology, Korea University College of Medicine, Korea University, Seoul 02841, South Korea
| | - Kostiantyn Kozoriz
- Department of Pharmacology, Korea University College of Medicine, Korea University, Seoul 02841, South Korea
| | - Kyung Tae Hong
- Department of Pharmacology, Korea University College of Medicine, Korea University, Seoul 02841, South Korea
| | - Dhiraj P Murale
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Seo Jeong An
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Korea University, Seoul 02841, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Korea University, Seoul 02841, South Korea
| |
Collapse
|
2
|
Nkune NW, Abrahamse H. The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment. JOURNAL OF BIOPHOTONICS 2025:e70005. [PMID: 40083278 DOI: 10.1002/jbio.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Scientists have been actively investigating novel therapies that can effectively eradicate cancer cells with negligible side effects in normal tissues when used alone or in a combinatorial approach. Photodynamic therapy has emerged as a promising non-invasive therapy that integrates photosensitizer, oxygen, and a specific wavelength of light for the treatment of cancer. Despite encouraging outcomes yielded by PDT, conventional PSs are faced with longstanding challenges such as poor water solubility, a short half-life, and off-target toxicity. Development of nanotherapeutics has shown great potential in overcoming this issue. The tumor microenvironment is inherently hypoxic, and this promotes tumor resistance to PDT, as it is oxygen-dependent. Photoactivated chemotherapy, an oxygen-independent light-based therapy, utilizes chemotherapeutic regimens that remain inert until exposed to light, allowing target-specific activation while minimizing off-target toxicity. Integration of these techniques can improve selectivity and yield synergistic cytotoxic effects that could improve cancer treatment.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
3
|
Pirota V, Bisbano G, Oldani A, Bernardi E, Serra M, Paolillo M, Doria F. Selective delivery of G-quadruplex ligand in glioma cell lines: the power of cyclic-RGD peptide. Sci Rep 2024; 14:30180. [PMID: 39633084 PMCID: PMC11618373 DOI: 10.1038/s41598-024-81513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Compounds targeting non-canonical secondary structures of nucleic acids, known as G-quadruplexes, are highly cytotoxic, both for cancer and healthy cells, because of their action mechanism's lack of appropriate selectivity. The targeted delivery of cytotoxic molecules to cancer cells is a valuable strategy to expand the repertoire of potential drugs, especially for cancer types for which new therapeutic tools are urgently needed, like glioblastoma. In this work, we conjugated a cyclic arginyl-glycyl-aspartic acid peptide to a naphthalene diimide, previously described as a highly performing stabilizing ligand for DNA G-quadruplexes, to specifically target glioma cells overexpressing RGD-binding integrin receptors. Our results, including confocal microscopy and cell toxicity assays, demonstrated improved efficacy and selective cellular absorption of the new conjugate without affecting the NDI's ability to interact with the G4 target.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, viale Taramelli, 10, Pavia, 27100, Italy
| | - Giovanni Bisbano
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Amanda Oldani
- Centro Grandi Strumenti, PASS-Bio Med, University of Pavia, Pavia, Italy
| | - Eric Bernardi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy.
| | - Mayra Paolillo
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, viale Taramelli, 10, Pavia, 27100, Italy.
| |
Collapse
|
4
|
Porubský M, Hodoň J, Stanková J, Džubák P, Hajdúch M, Urban M, Hlaváč J. Near-infrared pH-switchable BODIPY photosensitizers for dual biotin/cRGD targeted photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113010. [PMID: 39141981 DOI: 10.1016/j.jphotobiol.2024.113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Photodynamic therapy (PDT) is a clinically-approved cancer treatment that is based on production of cytotoxic reactive oxygen species to induce cell death. However, its efficiency depends on distribution of photosensitizer (PS) and depth of light penetration through the tissues. Tendency of pathological cancer tissues to exhibit lower pH than healthy tissues inspired us to explore dual-targeted pH-activatable photosensitizers based on tunable near-infrared (NIR) boron-dipyrromethene (BODIPY) dyes. Our BODIPY PSs were designed to carry three main attributes: (i) biotin or cRGD peptide as an effective cancer cell targeting unit, (ii) amino moiety that is protonated in acidic (pH <6.5) conditions for pH-activation of the PS based on photoinduced electron transfer (PET) and (iii) hydrophilic groups enhancing the water solubility of very hydrophobic BODIPY dyes. Illumination of such compounds with suitable light (>640nm) allowed for high phototoxicity against HeLa (αvβ3 integrin and biotin receptor positive) and A549 (biotin receptor positive) cells compared to healthy MRC-5 (biotin negative) cells. Moreover, no dark toxicity was observed on selected cell lines (>10 μM) providing promising photosensitizers for tumour-targeted photodynamic therapy.
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
5
|
Namulinda T, Song ZB, Yan YJ, Zhang M, Meerovich GA, Margetic D, Chen ZL. Enhanced biosafety, anticancer and antibacterial photodynamic activities using silver-pyropheophorbide-a nanoconjugates. Nanomedicine (Lond) 2024; 19:1643-1658. [PMID: 39011648 PMCID: PMC11389735 DOI: 10.1080/17435889.2024.2370226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: A study of the enhancement of photodynamic activities of pyropheophorbide-a using PG-Ag-PPa nanoconjugates.Materials & methods: The nanoconjugates were formulated from silver nanoparticles and PPa via amide linkage, then characterized, and their photodynamic activities were examined.Results: The nanoconjugates displayed a higher rate of reactive oxygen species generation, commendable cellular uptake by Eca-109 cancer cells, higher photocytotoxicity toward the cancer cells and better bio-safety. They revealed strong antibacterial activity against Escherichia coli following internal reactive oxygen species generation and membrane disintegration. The in vivo anticancer studies confirmed higher cytotoxicity of the nanoconjugates toward cancer cells and better safety than PPa.Conclusion: Therefore, PG-Ag-PPa nanoconjugates could be considered potential nano photosensitizers for photodynamic therapy of tumors and bacterial infection with good bio-safety.
Collapse
Affiliation(s)
- Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhi-Bing Song
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
- Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China
| | - Min Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Gennady A Meerovich
- General Physics Institute of Russian Academy of Sciences, Moscow 119435, Russia
| | | | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
6
|
Wang B, Wang W, Xu Y, Liu R, Li R, Yang P, Zhao C, Dai Z, Wang Y. Manipulating Redox Homeostasis of Cancer Stem Cells Overcome Chemotherapeutic Resistance through Photoactivatable Biomimetic Nanodiscs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308539. [PMID: 38326103 DOI: 10.1002/smll.202308539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Tumor heterogeneity remains a significant obstacle in cancer therapy due to diverse cells with varying treatment responses. Cancer stem-like cells (CSCs) contribute significantly to intratumor heterogeneity, characterized by high tumorigenicity and chemoresistance. CSCs reside in the depth of the tumor, possessing low reactive oxygen species (ROS) levels and robust antioxidant defense systems to maintain self-renewal and stemness. A nanotherapeutic strategy is developed using tumor-penetrating peptide iRGD-modified high-density lipoprotein (HDL)-mimetic nanodiscs (IPCND) that ingeniously loaded with pyropheophorbide-a (Ppa), bis (2-hydroxyethyl) disulfide (S-S), and camptothecin (CPT) by synthesizing two amphiphilic drug-conjugated sphingomyelin derivatives. Photoactivatable Ppa can generate massive ROS which as intracellular signaling molecules effectively shut down self-renewal and trigger differentiation of the CSCs, while S-S is utilized to deplete GSH and sustainably imbalance redox homeostasis by reducing ROS clearance. Simultaneously, the depletion of GSH is accompanied by the release of CPT, which leads to subsequent cell death. This dual strategy successfully disturbed the redox equilibrium of CSCs, prompting their differentiation and boosting the ability of CPT to kill CSCs upon laser irradiation. Additionally, it demonstrated a synergistic anti-cancer effect by concurrently eliminating therapeutically resistant CSCs and bulk tumor cells, effectively suppressing tumor growth in CSC-enriched heterogeneous colon tumor mouse models.
Collapse
Affiliation(s)
- Bo Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wuwan Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chenyang Zhao
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
7
|
Boidin L, Moinard M, Moussaron A, Merlier M, Moralès O, Grolez GP, Baydoun M, Mohd-Gazzali A, Tazizi MHDM, Allah HHA, Kerbage Y, Arnoux P, Acherar S, Frochot C, Delhem N. Targeted Photodynamic Therapy using a Vectorized Photosensitizer coupled to Folic Acid Analog induces Ovarian Tumor Cell Death and inhibits IL-6-mediated Inflammation. J Control Release 2024; 371:351-370. [PMID: 38789088 DOI: 10.1016/j.jconrel.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Ovarian cancer (OC) is one of the most lethal cancers among women. Frequent recurrence in the peritoneum due to the presence of microscopic tumor residues justifies the development of new therapies. Indeed, our main objective is to develop a targeted photodynamic therapy (PDT) treatment of peritoneal carcinomatosis from OC to improve the life expectancy of cancer patients. Herein, we propose a targeted-PDT using a vectorized photosensitizer (PS) coupled with a newly folic acid analog (FAA), named PSFAA, in order to target folate receptor alpha (FRα) overexpressed on peritoneal metastasis. This PSFAA was the result of the coupling of pyropheophorbide-a (Pyro-a), as the PS, to a newly synthesized FAA via a polyethylene glycol (PEG) spacer. The selectivity and the PDT efficacy of PSFAA was evaluated on two human OC cell lines overexpressing FRα compared to fibrosarcoma cells underexpressing FRα. Final PSFAA, including the synthesis of a newly FAA and its conjugation to Pyro-a, was obtained after 10 synthesis steps, with an overall yield of 19%. Photophysical properties of PSFAA in EtOH were performed and showed similarity with those of free Pyro-a, such as the fluorescence and singlet oxygen quantum yields (Φf = 0.39 and ΦΔ = 0.53 for free Pyro-a, and Φf = 0.26 and ΦΔ = 0.41 for PSFAA). Any toxicity of PSFAA was noticed. After light illumination, a dose-dependent effect on PS concentration and light dose was shown. Furthermore, a PDT efficacy of PSFAA on OC cell secretome was detected inducing a decrease of a pro-inflammatory cytokine secretion (IL-6). This new PSFAA has shown promising biological properties highlighting the selectivity of the therapy opening new perspectives in the treatment of a cancer in a therapeutic impasse.
Collapse
Affiliation(s)
- Léa Boidin
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Morgane Moinard
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France
| | - Albert Moussaron
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France; Univ. Lorraine, CNRS, UMR7375 - LCPM - Laboratoire de Chimie-Physique Macromoléculaire, Nancy F-54000, France
| | - Margaux Merlier
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France; Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Amirah Mohd-Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Hassan Hadi Abd Allah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Yohan Kerbage
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Philippe Arnoux
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France
| | - Samir Acherar
- Univ. Lorraine, CNRS, UMR7375 - LCPM - Laboratoire de Chimie-Physique Macromoléculaire, Nancy F-54000, France.
| | - Céline Frochot
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France.
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France.
| |
Collapse
|
8
|
Bai H, Huang W, Li J, Ji Y, He S, Hu H. Enhancing anticancer treatment: Development of cRGD-Conjugated F-OH-Evo prodrugs for targeted delivery. Bioorg Med Chem 2024; 107:117759. [PMID: 38795572 DOI: 10.1016/j.bmc.2024.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Small molecule drugs sourced from natural products are pivotal for novel therapeutic discoveries. However, their clinical deployment is often impeded by non-specific activity and severe adverse effects. This study focused on 3-fluoro-10-hydroxy-Evodiamine (F-OH-Evo), a potent derivative of Evodiamine, whose development is curtailed due to suboptimal tumor selectivity and heightened cytotoxicity. By harnessing the remarkable stability, specificity, and αvβ3 integrin affinity of c(RGDFK), a novel prodrug by conjugating F-OH-Evo with cRGD was synthesized. This innovative prodrug substantially enhanced the tumor-specific targeting of F-OH-Evo and improved the anti-tumor activities. Among them, compound 3c demonstrated the best selective inhibitory activity toward U87 cancer cells in vitro. It selectively enterd U87 cells by binding to αvβ3 integrin, releasing the parent molecule under the dual response of ROS and GSH to exert inhibitory activity on topo I. The results highlight the potential of cRGD-conjugated prodrugs in targeted cancer therapy. This approach signifies a significant advancement in developing safer and more effective chemotherapy drugs, emphasizing the role of prodrug strategies in overcoming the limitations of traditional cancer treatments.
Collapse
Affiliation(s)
- Haohao Bai
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenjing Huang
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jinqiu Li
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yajing Ji
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Shipeng He
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| | - Honggang Hu
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
10
|
Jain P, Jangid AK, Pooja D, Kulhari H. Design of manganese-based nanomaterials for pharmaceutical and biomedical applications. J Mater Chem B 2024; 12:577-608. [PMID: 38116805 DOI: 10.1039/d3tb00779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In the past few years, manganese-based nanostructures have been extensively investigated in the biomedical field particularly to design highly biocompatible theranostics, which can not only act as efficient diagnostic imaging contrast agents but also deliver the drugs to the target sites. The nanoscale size, large surface area-to-volume ratio, availability of cheap precursors, flexibility to synthesize nanostructures with reproducible properties and high yield, and easy scale up are the major reasons for the attraction towards manganese nanostructures. Along with these properties, the nontoxic nature, pH-sensitive degradation, and easy surface functionalization are additional benefits for the use of manganese nanostructures in biomedical and pharmaceutical sciences. Therefore, in this review, we discuss the recent progress made in the synthesis of manganese nanostructures, describe the attempts made to modify their surfaces to impart biocompatibility and stability in biological fluids, and critically discuss their use in magnetic resonance imaging, drug and gene delivery, hyperthermia, photothermal/photodynamic, immunotherapy, biosensing and tumor diagnosis.
Collapse
Affiliation(s)
- Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda Road, Vadodara, Gujarat, 391760, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Deep Pooja
- School of Pharmacy, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
11
|
Akbar A, Khan S, Chatterjee T, Ghosh M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112796. [PMID: 37804542 DOI: 10.1016/j.jphotobiol.2023.112796] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
This comprehensive review provides the current trends and recent developments of porphyrin-based photosensitizers. We discuss their evolution from first-generation to third-generation compounds, including cutting-edge nanoparticle-integrated derivatives, and explores their pivotal role in advancing photodynamic therapy (PDT) for enhanced cancer treatment. Integrating porphyrins with nanoparticles represents a promising avenue, offering improved selectivity, reduced toxicity, and heightened biocompatibility. By elucidating recent breakthroughs, innovative methodologies, and emerging applications, this review provides a panoramic snapshot of the dynamic field, addressing challenges and charting prospects. With a focus on harnessing reactive oxygen species (ROS) through light activation, PDT serves as a minimally invasive therapeutic approach. This article offers a valuable resource for researchers, clinicians, and PDT enthusiasts, highlighting the potential of porphyrin photosensitizers to improve the future of cancer therapy.
Collapse
Affiliation(s)
- Alibasha Akbar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mihir Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
12
|
Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers. Top Curr Chem (Cham) 2023; 381:10. [PMID: 36826755 DOI: 10.1007/s41061-023-00421-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023]
Abstract
Photodynamic therapy is a minimally invasive treatment of tumors using photosensitizers, light, and reactive oxygen species, which can destroy cellular structures. With the development of photodynamic therapy, significant efforts have been made to create new efficient photosensitizers with improved delivery to cells, stability, and selectivity against cancer tissues. Naturally occurring tetrapyrrolic macrocycles, such as porphyrins and chlorins, are very attractive as photosensitizers, and their structural modification and conjugation with other biologically active molecules are promising approaches for creating new photosensitizers specifically targeting cancer cells. The present review aims to highlight recent developments in the design, preparation, and investigation of complex conjugates of tetrapyrrolic macrocycles, which can potentially be used as sensitizers for target-oriented photodynamic therapy of cancer. In this review, we discuss the structure, photodynamic effect, and anticancer activity of the following conjugates of tetrapyrrolic macrocycles: (1) conjugates obtained by modifying peripheral substituents in porphyrins and chlorins; (2) conjugates of porphyrins and chlorins with lipids, carbohydrates, steroids, and peptides; (3) conjugates of porphyrins and chlorins with anticancer drugs and some other biologically active molecules; (4) metal-containing conjugates. The question of how the conjugate structure affects its specificity, internalization, localization, and photoinduced toxicity within cancer cells is the focus of this review.
Collapse
|
13
|
Liu H, Yu C, Lyu M, Lyu S, Hu L, Xiao E, Xu P. Novel albumin-binding photodynamic agent EB-Ppa for targeted fluorescent imaging guided tumour photodynamic therapy. RSC Adv 2023; 13:3534-3540. [PMID: 36756591 PMCID: PMC9890653 DOI: 10.1039/d2ra07380c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The targeted and novel albumin-binding strategy has been attractive in the field of cancer therapy. Herein, we have developed an organic small molecule-based photosensitizer, Evans Blue-Pyropheophorbide-alpha (EB-Ppa), to treat solid tumors with extremely high photodynamic therapeutic efficiency, which is stable in serum-containing aqueous media and can effectively accumulate in the tumor site due to the enhanced permeability and retention (EPR) effect. Particularly, after the photodynamic therapeutic treatment with EB-Ppa, all breast tumors (4T1 cell line) xenografted in nude mice shrink fast due to the singlet oxygen generated by EB-Ppa with laser irradiation. Furthermore, EB-Ppa shows negligible toxicity in major organs. These results demonstrate that EB-Ppa presents the great potential of photodynamic therapy for efficient tumor treatment.
Collapse
Affiliation(s)
- Huan Liu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Cheng Yu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Min Lyu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Shiyi Lyu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - LiNan Hu
- Departments of Radiology, Zhuzhou Central HospitalZhuzhou 412000HunanP. R. China
| | - Enhua Xiao
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical UniversityJining 272000P. R. China,Department of Diagnostic Radiology Yong Loo Lin School of Medicine, National University of Singapore119074Singapore
| |
Collapse
|
14
|
Ramzi NI, Mishiro K, Munekane M, Fuchigami T, Hu X, Jastrząb R, Kitamura Y, Kinuya S, Ogawa K. Synthesis and evaluation of radiolabeled porphyrin derivatives for cancer diagnoses and their nonradioactive counterparts for photodynamic therapy. RSC Med Chem 2022; 13:1565-1574. [PMID: 36561065 PMCID: PMC9749959 DOI: 10.1039/d2md00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
Radioiodinated porphyrin derivatives and the corresponding nonradioactive iodine introduced compounds, [125I]I-TPPOH ([125I]3), [125I]I-l-tyrosine-TPP ([125I]9), I-TPPOH (3), and I-l-tyrosine-TPP (9) were designed, synthesized, and evaluated by in vitro and in vivo experiments. In cytotoxicity assays, 3 and 9 exhibited significant cytotoxicity under light conditions but did not show significant cytotoxicity without light irradiation. Biodistribution experiments with [125I]3 and [125I]9 showed similar distribution patterns with high retention in tumors. In photodynamic therapeutic (PDT) experiments, 3 and 9 at a dose of 13.6 μmol kg-1 weight with 50 W single light irradiation onto the tumor area significantly inhibited tumor growth. These results indicate that the iodinated porphyrin derivatives [123/natI]3 and [123/natI]9 are promising cancer theranostic agents.
Collapse
Affiliation(s)
- Nur Izni Ramzi
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Masayuki Munekane
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University Shanghai 200444 China
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University of Poznan Uniwersytetu Poznanskiego 8 Poznan 61-614 Poland
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
15
|
Zhang Y, Chen S, Xia Q, Zhang H, Wang Z, Yan R, Zhang X, Dai J, Wu X, Fang W, Jin Y. Photodynamic antitumor activity of tetrahydroxyl-methyl pyropheophorbide-a with improved water-solubility and depth of treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges. J Nanobiotechnology 2022; 20:437. [PMID: 36195918 PMCID: PMC9531473 DOI: 10.1186/s12951-022-01637-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022] Open
Abstract
Photodynamic therapy (PDT), and sonodynamic therapy (SDT) that developed from PDT, have been studied for decades to treat solid tumors. Compared with other deep tumors, the accessibility of urological tumors (e.g., bladder tumor and prostate tumor) makes them more suitable for PDT/SDT that requires exogenous stimulation. Due to the introduction of nanobiotechnology, emerging photo/sonosensitizers modified with different functional components and improved physicochemical properties have many outstanding advantages in cancer treatment compared with traditional photo/sonosensitizers, such as alleviating hypoxia to improve quantum yield, passive/active tumor targeting to increase drug accumulation, and combination with other therapeutic modalities (e.g., chemotherapy, immunotherapy and targeted therapy) to achieve synergistic therapy. As WST11 (TOOKAD® soluble) is currently clinically approved for the treatment of prostate cancer, emerging photo/sonosensitizers have great potential for clinical translation, which requires multidisciplinary participation and extensive clinical trials. Herein, the latest research advances of newly developed photo/sonosensitizers for the treatment of urological cancers, and the efficacy, as well as potential biological effects, are highlighted. In addition, the clinical status of PDT/SDT for urological cancers is presented, and the optimization of the photo/sonosensitizer development procedure for clinical translation is discussed.
Collapse
|
17
|
Activity control of pH-responsive photosensitizer bis(6-quinolinoxy)P(V)tetrakis(4-chlorophenyl)porphyrin through intramolecular electron transfer. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Zhang Y, Ouyang M, Wang H, Zhang B, Guang W, Liu R, Li X, Shih TC, Li Z, Cao J, Meng Q, Su Z, Ye J, Liu F, Hong A, Chen X. A cyclic peptide retards the proliferation of DU145 prostate cancer cells in vitro and in vivo through inhibition of FGFR2. MedComm (Beijing) 2021; 1:362-375. [PMID: 34766128 PMCID: PMC8491194 DOI: 10.1002/mco2.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
In malignancies, fibroblast growth factor receptors (FGFRs) signaling is reinforced through overexpression of fibroblast growth factors (FGFs) or their receptors. FGFR2 has been proposed as a target for cancer therapy, because both the expression and activation of FGFR2 are boosted in various malignant carcinomas. Although several chemicals have been designed against FGFR2, they did not exhibit enough specificity and might bring potential accumulated toxicity. In this study, we developed an epitope peptide (P5) and its cyclic derivative (DcP5) based on the structure of FGF2 to limit the activation of FGFR2. The anticancer activities of P5 and DcP5 were examined in vitro and in vivo. Our results demonstrated that P5 significantly inhibited the cell proliferation in FGFR2‐dependent manner in DU145 cells and retarded tumor growth in DU145 xenograft model with negligible toxicity toward normal organs. Further investigations found that the Gln4 and Glu6 residues of P5 bind to FGFR2 to abolish its activation. Moreover, we developed the P5 cyclic derivative, DcP5, which achieved reinforced stability and anticancer activity in vivo. Our findings suggest P5 and its cyclic derivative DcP5 as potential candidates for anticancer therapy.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Man Ouyang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Hailong Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Wenhua Guang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine University of California Davis Sacramento California
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine University of California Davis Sacramento California
| | - Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine University of California Davis Sacramento California
| | - Zhixin Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Qiling Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University Guangzhou China
| | - Feng Liu
- China Nuclear Power Technology Research Institute Co Ltd Shenzhen China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| |
Collapse
|
19
|
Zhou H, Qi Z, Pei P, Shen W, Zhang Y, Yang K, Sun L, Liu T. Biocompatible nanomicelles for sensitive detection and photodynamic therapy of early-stage cancer. Biomater Sci 2021; 9:6227-6235. [PMID: 34365494 DOI: 10.1039/d1bm00847a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lack of sensitive detection techniques and agents for early-stage tumors, which are characterized by small size, juvenile blood vessels and scarce secreted markers, has hampered timely cancer therapy and human well-being. Herein, the natural product pyropheophorbide-a (PPa) and FDA-approved Pluronic F127 are organized to develop F127-PPa nanomicelles with favorable size, red-shifted fluorescence and decent biocompatibility. After intravenous (i.v.) injection, the F127-PPa nanomicelles could not only accurately identify early-stage xenografted tumors, but also sensitively detect cancer metastasis in lungs through near-infrared (NIR) fluorescence imaging. The fluorescence signals are consistent with radionuclide imaging, photoacoustic (PA) imaging and bioluminescence imaging of tumors, consolidating the reliability of using F127-PPa nanomicelles for sensitive cancer diagnosis in a non-invasive and low-cost manner. Moreover, the fluorescence intensity of small tumors is linearly correlated with the tumoral mass ranging from 10 to 120 mg with a fluorescence coefficient of 4.5 × 107 mg-1. Under the guidance of multimodal imaging, the tumors could be thoroughly eradicated by F127-PPa under laser irradiation due to efficient reactive oxygen species (ROS) generation. These findings may provide clinically translatable agents and strategies for sensitive diagnosis of early-stage tumors and timely cancer therapy.
Collapse
Affiliation(s)
- Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhongyuan Qi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
20
|
Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021; 9:5691-5702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
Collapse
Affiliation(s)
- Robert Conway-Kenny
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Xiaoneng Cui
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | | | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
21
|
Wang X, Luo D, Basilion JP. Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers. Cancers (Basel) 2021; 13:cancers13122992. [PMID: 34203805 PMCID: PMC8232794 DOI: 10.3390/cancers13122992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is a minimally invasive treatment option that can kill cancerous cells by subjecting them to light irradiation at a specific wavelength. The main problem related to most photosensitizers is the lack of tumor selectivity, which leads to undesired uptake in normal tissues resulting in side effects. Passive targeting and active targeting are the two strategies to improve uptake in tumor tissues. This review focused on active targeting and summarizes recent active targeting approaches in which highly potent photosensitizers are rendered tumor-specific by means of an appended targeting moiety that interacts with a protein unique to, or at least significantly more abundant on, tumor cell surfaces compared to normal cells. Abstract Photodynamic therapy (PDT) is a well-documented therapy that has emerged as an effective treatment modality of cancers. PDT utilizes harmless light to activate non- or minimally toxic photosensitizers to generate cytotoxic species for malignant cell eradication. Compared with conventional chemotherapy and radiotherapy, PDT is appealing by virtue of the minimal invasiveness, its safety, as well as its selectivity, and the fact that it can induce an immune response. Although local illumination of the cancer lesions renders intrinsic selectivity of PDT, most photosensitizers used in PDT do not display significant tumor tissue selectivity. There is a need for targeted delivery of photosensitizers. The molecular identification of cancer antigens has opened new possibilities for the development of effective targeted therapy for cancer patients. This review provides a brief overview of recent achievements of targeted delivery of photosensitizers to cancer cells by targeting well-established cancer biomarkers. Overall, targeted PDT offers enhanced intracellular accumulation of the photosensitizer, leading to improved PDT efficacy and reduced toxicity to normal tissues.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH 44106, USA
- Correspondence: (X.W.); (J.P.B.); Tel.: +216-844-4848 (X.W.); +216-983-3246 (J.P.B.); Fax: +216-844-4987 (X.W. & J.P.B.)
| | - Dong Luo
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-44, Cleveland, OH 44106, USA;
| | - James P. Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-44, Cleveland, OH 44106, USA;
- Correspondence: (X.W.); (J.P.B.); Tel.: +216-844-4848 (X.W.); +216-983-3246 (J.P.B.); Fax: +216-844-4987 (X.W. & J.P.B.)
| |
Collapse
|
22
|
Ding Y, Yang R, Yu W, Hu C, Zhang Z, Liu D, An Y, Wang X, He C, Liu P, Tang Q, Chen D. Chitosan oligosaccharide decorated liposomes combined with TH302 for photodynamic therapy in triple negative breast cancer. J Nanobiotechnology 2021; 19:147. [PMID: 34011362 PMCID: PMC8136194 DOI: 10.1186/s12951-021-00891-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive tumor with extremely high mortality that results from its lack of effective therapeutic targets. As an adhesion molecule related to tumorigenesis and tumor metastasis, cluster of differentiation-44 (also known as CD44) is overexpressed in TNBC. Moreover, CD44 can be effectively targeted by a specific hyaluronic acid analog, namely, chitosan oligosaccharide (CO). In this study, a CO-coated liposome was designed, with Photochlor (HPPH) as the 660 nm light mediated photosensitizer and evofosfamide (also known as TH302) as the hypoxia-activated prodrug. The obtained liposomes can help diagnose TNBC by fluorescence imaging and produce antitumor therapy by synergetic photodynamic therapy (PDT) and chemotherapy. RESULTS Compared with the nontargeted liposomes, the targeted liposomes exhibited good biocompatibility and targeting capability in vitro; in vivo, the targeted liposomes exhibited much better fluorescence imaging capability. Additionally, liposomes loaded with HPPH and TH302 showed significantly better antitumor effects than the other monotherapy groups both in vitro and in vivo. CONCLUSION The impressive synergistic antitumor effects, together with the superior fluorescence imaging capability, good biocompatibility and minor side effects confers the liposomes with potential for future translational research in the diagnosis and CD44-overexpressing cancer therapy, especially TNBC.
Collapse
Affiliation(s)
- Yinan Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Weiping Yu
- Medical School of Southeast University, Nanjing, 210009, China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Affiliated Hospital of Southeast University (The Second Hospital of Nanjing), Nanjing, 210009, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, 210009, China
| | - Yanli An
- Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Xihui Wang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Chen He
- Medical School of Southeast University, Nanjing, 210009, China
| | - Peidang Liu
- Medical School of Southeast University, Nanjing, 210009, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| |
Collapse
|
23
|
|
24
|
Pan Q, Li K, Cheng X, Chen L, Yu Q, Fan H, Zheng L, Yang Z, Ni F. A photoactivatable antibody-Chlorin e6 conjugate enabling singlet oxygen production for tumor-targeting photodynamic therapy. Biomed Mater 2021; 16. [PMID: 32584266 DOI: 10.1088/1748-605x/ab9f57] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy is a new technology for disease diagnosis and treatment in modern medical clinics. The main advantages of photodynamic therapy are low toxicity and side effects, a wide range of applications, no drug resistance, and no obvious trauma in the treatment process. However, to achieve effective photodynamic therapy, new photosensitizer carriers need to be constructed, which can selectively deliver photosensitizers into tumor tissues. In this work, a photoactivatable antibody-Chlorin e6 conjugate with a dual-function to target tumor tissue and realize cancer photodynamic therapy is constructed. Bothin vitroandin vivoexperiments indicate that the antibody-Chlorin e6 conjugate has the ability to target tumors rapidly and efficiently, and has the ability to generate reactive oxygen species and kill tumor cells. Overall, this photoactivable antibody-Chlorin e6 conjugate may provide a promising strategy to address the current challenges of cancer photodynamic therapy.
Collapse
Affiliation(s)
- Qi Pan
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Kaixuan Li
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoyi Cheng
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Lin Chen
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - HengXin Fan
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Liang Zheng
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Zihua Yang
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Feng Ni
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
25
|
Hwang B, Kim TI, Kim H, Jeon S, Choi Y, Kim Y. Ubiquinone-BODIPY nanoparticles for tumor redox-responsive fluorescence imaging and photodynamic activity. J Mater Chem B 2021; 9:824-831. [PMID: 33338098 DOI: 10.1039/d0tb02529a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Successful applications of photodynamic therapy (PDT) in cancer treatment require the development of effective photosensitizers with controllable singlet oxygen generation. Here we report a ubiquinone-BODIPY photosensitizer that self-assembles into nanoparticles (PS-Q-NPs) and undergoes selective activation and deaggregation within the highly reductive intracellular environment of tumor cells. PS-Q-NPs are highly stable in aqueous buffer solution, and exhibit minimal fluorescence and photosensitization due to a rapid non-radiative relaxation process. Upon endocytosis by cancer cells, reduction of the ubiquinone moiety by intracellular glutathione (GSH) triggers the conversion of the aggregated hydrophobic precursor into the active hydrophilic carboxylate derivative PS-A. The conversion results in enhanced fluorescence and therapeutic singlet oxygen generation, portending to its application as an activatable photosensitizer for fluorescence imaging-guided photodynamic cancer therapy.
Collapse
Affiliation(s)
- Byunghee Hwang
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| | | | | | | | | | | |
Collapse
|
26
|
Yan S, Tang D, Hong Z, Wang J, Yao H, Lu L, Yi H, Fu S, Zheng C, He G, Zou H, Hou X, He Q, Xiong L, Li Q, Deng X. CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomater Sci 2021; 9:2020-2031. [PMID: 33439161 DOI: 10.1039/d0bm01874k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer around the world. Recent findings suggest that cancer stem cells (CSCs) play a pivotal role in the resistance to current therapeutic modalities, including surgery and chemotherapy. Photodynamic therapy (PDT) is a promising non-invasive therapeutic strategy for advanced metastatic CRC. Traditional photosensitizers such as pyropheophorbide-a (Pyro) lack tumor selectivity, causing unwanted treatment-related toxicity to the surrounding normal tissue. In order to enhance the targeting properties of Pyro, we synthesize a novel photosensitizer, CD133-Pyro, via the conjugation of Pyro to a peptide domain targeting CD133, which is highly expressed on CRC CSCs and correlated with poor prognosis of CRC patients. We demonstrate that CD133-Pyro possesses the targeted delivery capacity both in CRC CSCs derived from HT29 and SW620 cell lines and in a xenograft mouse model of tumor growth. CD133-Pyro PDT can promote the production of reactive oxygen species (ROS), suppress the stemness properties, and induce autophagic cell death in CRC CSCs. Furthermore, CD133-Pyro PDT has a potent inhibitory effect on CRC CSC-derived xenograft tumors in nude mice. These findings may offer a useful and important strategy for the treatment of CRC through targeting CSCs.
Collapse
Affiliation(s)
- Shichao Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li WP, Yen CJ, Wu BS, Wong TW. Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine. Biomedicines 2021; 9:69. [PMID: 33445690 PMCID: PMC7828119 DOI: 10.3390/biomedicines9010069] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) works through photoactivation of a specific photosensitizer (PS) in a tumor in the presence of oxygen. PDT is widely applied in oncology to treat various cancers as it has a minimally invasive procedure and high selectivity, does not interfere with other treatments, and can be repeated as needed. A large amount of reactive oxygen species (ROS) and singlet oxygen is generated in a cancer cell during PDT, which destroys the tumor effectively. However, the efficacy of PDT in treating a deep-seated tumor is limited due to three main reasons: Limited light penetration depth, low oxygen concentration in the hypoxic core, and poor PS accumulation inside a tumor. Thus, PDT treatments are only approved for superficial and thin tumors. With the advancement of nanotechnology, PDT to treat deep-seated or thick tumors is becoming a reachable goal. In this review, we provide an update on the strategies for improving PDT with nanomedicine using different sophisticated-design nanoparticles, including two-photon excitation, X-ray activation, targeting tumor cells with surface modification, alteration of tumor cell metabolism pathways, release of therapeutic gases, improvement of tumor hypoxia, and stimulation of host immunity. We focus on the difficult-to-treat pancreatic cancer as a model to demonstrate the influence of advanced nanomedicine in PDT. A bright future of PDT application in the treatment of deep-seated tumors is expected.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Bo-Sheng Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
28
|
Horiuchi H, Tajima K, Okutsu T. Triply pH-activatable porphyrin as a candidate photosensitizer for near-infrared photodynamic therapy and diagnosis. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Goddard ZR, Beekman AM, Cominetti MMD, O'Connell MA, Chambrier I, Cook MJ, Marín MJ, Russell DA, Searcey M. Peptide directed phthalocyanine-gold nanoparticles for selective photodynamic therapy of EGFR overexpressing cancers. RSC Med Chem 2020; 12:288-292. [PMID: 34041483 PMCID: PMC8127329 DOI: 10.1039/d0md00284d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Gold nanoparticles, covalently functionalised with the photosensitiser C11Pc and PEG, were actively targeted towards epidermal growth factor receptor overexpressing cancers using the peptide FITC-βAAEYLRK. Selective phototoxicity was observed at nanomolar concentrations with minimal dark toxicity.
Collapse
Affiliation(s)
- Zoë Rachael Goddard
- School of Pharmacy, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | | | - Marco M D Cominetti
- School of Pharmacy, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Isabelle Chambrier
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Michael J Cook
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - María J Marín
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - David A Russell
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Mark Searcey
- School of Pharmacy, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
30
|
Fan D, Wang K, Gao H, Luo Q, Wang X, Li X, Tong W, Zhang X, Luo C, Yang G, Ai L, Shi J. A 64 Cu-porphyrin-based dual-modal molecular probe with integrin α v β 3 targeting function for tumour imaging. J Labelled Comp Radiopharm 2020; 63:212-221. [PMID: 32083750 DOI: 10.1002/jlcr.3833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/01/2023]
Abstract
Pyropheophorbide-a (Pyro) is a promising multifunctional molecule for multimodal tumour imaging and photodynamic therapy, but its clinical applications are seriously restricted by the limited tumour accumulation capability. Here, we designed and synthesized a small-molecule probe that achieved specific dual-modal tumour imaging based on Pyro. Briefly, a novel molecule combining Pyro, an RGD dimer peptide (3PRGD2 ) and 64 Cu, was designed and synthesized, and the obtained molecule, 64 Cu-Pyro-3PRGD2 , exhibited high tumour specificity in both positron emission tomography and optical imaging in vivo. c (RGDfk) peptide blocking significantly reduced the efficacy of the probe, which confirmed the integrin αV β3 targeting of this molecular probe. 64 Cu-Pyro-3PRGD2 had very low accumulation in normal organs and could be rapidly cleared through kidney metabolism, which prevented the potential damage to adjacent normal tissues. Overall, combining tumour targeting, dual-modal imaging, and biosafety, 64 Cu-Pyro-3PRGD2 has the potential for clinical use as a molecular imaging probe for tumour diagnosis.
Collapse
Affiliation(s)
- Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hannan Gao
- Medical Isotopes Research Center, Peking University, Beijing, China
| | - Qi Luo
- Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Li
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wu Tong
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Medical Isotopes Research Center, Peking University, Beijing, China
| | - Chuangwei Luo
- Medical Isotopes Research Center, Peking University, Beijing, China
| | - Guangjie Yang
- Medical Isotopes Research Center, Peking University, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiyun Shi
- Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
31
|
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213233] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Zhou H, Xia L, Zhong J, Xiong S, Yi X, Chen L, Zhu R, Shi Q, Yang K. Plant-derived chlorophyll derivative loaded liposomes for tri-model imaging guided photodynamic therapy. NANOSCALE 2019; 11:19823-19831. [PMID: 31633141 DOI: 10.1039/c9nr06941k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plant-derived chlorophyll derivatives with a porphyrin ring structure and intrinsic photosynthesis have been widely used in biomedicine for cancer theranostics. Owing to their poor water solubility, chlorophyll derivatives are very difficult to use in biomedical applications. In this work, pyropheophorbide acid (PPa) (liposome/PPa) nanoparticles, a liposome-encapsulated chlorophyll derivative, are designed for tri-model imaging guided photodynamic therapy (PDT) of cancer. The obtained liposome/PPa nanoparticles significantly enhance the water solubility of PPa, prolong blood circulation and optimize the bio-distribution in mice after intravenous injection. Utilizing their intrinsic fluorescence, high near-infrared (NIR) absorbance and extra radiolabeling, liposome/PPa nanoparticles could be used as excellent contrast agents for multimodal imaging including fluorescence (FL) imaging, photoacoustic (PA) imaging and SPECT/CT imaging. Under 690 nm laser irradiation at a low power density, liposome/PPa nanoparticles significantly inhibit tumor growth, further demonstrating the therapeutic efficiency of PDT using PPa. Therefore, our work developed liposome/PPa nanoparticles as multifunctional nanoagents for multimodal imaging guided PDT of cancer. This will further prompt the clinical applications of PPa in the future.
Collapse
Affiliation(s)
- Hailin Zhou
- School of Biology & Basic Medical Science, Medical College, Soochow University, Suzhou, Jiangsu 215123, China. and State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lu Xia
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jing Zhong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Saisai Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xuan Yi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lei Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Quanliang Shi
- School of Biology & Basic Medical Science, Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
Sun B, Chen Y, Yu H, Wang C, Zhang X, Zhao H, Chen Q, He Z, Luo C, Sun J. Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy. Acta Biomater 2019; 92:219-228. [PMID: 31078764 DOI: 10.1016/j.actbio.2019.05.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
The combination of chemotherapy with photodynamic therapy (PDT) holds promising applications in cancer therapy. However, co-encapsulation of chemotherapeutic agents and photosensitizers (PS) into the conventional nanocarriers suffers from inefficient co-loading and aggregation-caused quenching (ACQ) effect of PS trapped in dense carrier materials. Herein, we report a light-activatable photodynamic PEG-coated prodrug nanoplatform for core-shell synergistic chemo-photodynamic therapy. A novel photodynamic polymer is rationally designed and synthesized by conjugating pyropheophorbide a (PPa) to polyethylene glycol 2000 (PEG2k). PPa is used as the hydrophobic and photodynamic moiety of the amphipathic PPa-PEG2k polymer. Then, a core-shell nanoassembly is prepared, with an inner core of a reactive oxygen species (ROS)-responsive oleate prodrug of paclitaxel (PTX) and an outer layer of PPa-PEG2k. PPa-PEG2k serves for both PEGylation and PDT. Instead of being trapped in the inner core, PPa in the outer PPa-PEG2k layer significantly alleviates the ACQ effect. Under laser irradiation, ROS generated by PPa-PEG2k not only is used for PDT but also synergistically promotes PTX release in combination with the endogenous ROS overproduced in tumor cells. The photodynamic PEG-coated nanoassemblies demonstrated synergistic antitumor activity in vivo. Such a unique nanoplatform, with an inner chemotherapeutic core and an outer photodynamic PEG shell, provides a new strategy for synergistic chemo-photodynamic therapy. STATEMENT OF SIGNIFICATION: The combination of chemotherapy with photodynamic therapy (PDT) holds promising prospects in cancer therapy. However, it remains a tremendous challenge to effectively co-deliver chemotherapeutic drugs and photosensitizers into tumors. Herein, we construct a photodynamic PEGylation-coated prodrug-nanoplatform for high-efficiency synergistic cancer therapy, which is composed of a light-activatable PPa-PEG2k shell and a ROS-responsive paclitaxel (PTX) prodrug core. The PPa-PEG2k-generated ROS not only was used for synergistic PTX release but also synergistically facilitated tumor cell apoptosis in combination with PTX-initiated chemo-cytotoxicity. The light-activatable nanoassemblies exhibited multiple drug delivery advantages including high co-loading efficiency, self-enhanced PTX release, extended circulation time, favorable biodistribution, and potent synergistic anticancer activity. Our findings provide a new strategy for the rational design of advanced nano-DDS for high-efficiency combinational chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Han Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Chen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xuanbo Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Hanqing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
34
|
Zagami R, Rapozzi V, Piperno A, Scala A, Triolo C, Trapani M, Xodo LE, Monsù Scolaro L, Mazzaglia A. Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics. Biomacromolecules 2019; 20:2530-2544. [PMID: 31241900 DOI: 10.1021/acs.biomac.9b00306] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic β-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = -51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FR-α. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(-)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Valentina Rapozzi
- Dipartimento di Area Medica , Università di Udine , P.le Kolbe 4 , Udine 33100 , Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Claudia Triolo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra , Università di Messina , Viale F. Stagno d'Alcontres, 31 , 98166 Messina , Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Luigi E Xodo
- Dipartimento di Area Medica , Università di Udine , P.le Kolbe 4 , Udine 33100 , Italy
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| |
Collapse
|
35
|
Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
36
|
Zhao J, Li S, Jin Y, Wang JY, Li W, Wu W, Hong Z. Multimerization Increases Tumor Enrichment of Peptide⁻Photosensitizer Conjugates. Molecules 2019; 24:molecules24040817. [PMID: 30823562 PMCID: PMC6413024 DOI: 10.3390/molecules24040817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) is an established therapeutic modality for the management of cancers. Conjugation with tumor-specific small molecule ligands (e.g., short peptides or peptidomimetics) could increase the tumor targeting of PDT agents, which is very important for improving the outcome of PDT. However, compared with antibody molecules, small molecule ligands have a much weaker affinity to their receptors, which means that their tumor enrichment is not always ideal. In this work, we synthesized multimeric RGD ligand-coupled conjugates of pyropheophorbide-a (Pyro) to increase the affinity through multivalent and cluster effects to improve the tumor enrichment of the conjugates. Thus, the dimeric and trimeric RGD peptide-coupled Pyro conjugates and the monomeric one for comparison were efficiently synthesized via a convergent strategy. A short polyethylene glycol spacer was introduced between two RGD motifs to increase the distance required for multivalence. A subsequent binding affinity assay verified the improvement of the binding towards integrin αvβ3 receptors after the increase in the valence, with an approximately 20-fold improvement in the binding affinity of the trimeric conjugate compared with that of the monomeric conjugate. In vivo experiments performed in tumor-bearing mice also confirmed a significant increase in the distribution of the conjugates in the tumor site via multimerization, in which the trimeric conjugate had the best tumor enrichment compared with the other two conjugates. These results indicated that the multivalence interaction can obviously increase the tumor enrichment of RGD peptide-conjugated Pyro photosensitizers, and the prepared trimeric conjugate can be used as a novel antitumor photodynamic agent with high tumor enrichment.
Collapse
Affiliation(s)
- Jisi Zhao
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Shuang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yingying Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Jessica Yijia Wang
- Tianjin Sirui International School, Sisui Road, Hexi District, Tianjin 300222, China.
| | - Wenjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenjie Wu
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
37
|
Zolottsev VA, Ponomarev GV, Taratynova MO, Morozevich GE, Novikov RA, Timofeev VP, Solyev PN, Zavialova MG, Zazulina OV, Tkachev YV, Misharin AY. Conjugates of 17-substituted testosterone and epitestosterone with pyropheophorbide a differing in the length of linkers. Steroids 2018; 138:82-90. [PMID: 30033342 DOI: 10.1016/j.steroids.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Conjugates of 17α-substituted testosterone (1 and 2) and 17β-substituted epitestosterone (3 and 4) with pyropheophorbide a were synthesized. The scheme consisted of synthesis of 17α-hydroxy-3-oxopregn-4-en-21-oic and 17β-hydroxy-3-oxopregn-4-en-21-oic acids, and their coupling with pyropheophorbide a by means of either ethylene diamine, or 1,5-diamino pentane linkers. Mutual influence of steroidal and macrocyclic fragments in conjugates molecules was dependent on configuration of C17 and length of linker, that was established by analysis of 1H NMR spectra and molecular models of conjugates. Studies of interaction of conjugates with prostate carcinoma cells revealed that their uptake and internalization were independent on the androgen receptor activity, but dependent on the structure of conjugates, decreasing in the following row: 3 > 4 ≥ 1 > 2. Conjugates significantly decreased the LNCaP and PC-3 cells growth at 96 h incubation. Epitestosterone derivatives 3 and 4 also showed superior anti-proliferative activity versus testosterone ones. Conformationally more rigid conjugates 1 and 3, comprising short linkers, were more active than those with long linkers; conjugate 3 was the most potent.
Collapse
Affiliation(s)
| | | | | | | | - Roman A Novikov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | - Olga V Zazulina
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|