1
|
Akidan O, Petrovic N, Misir S. mir-188-5p emerges as an oncomir to promote chronic myeloid leukemia via upregulation of BUB3 and SUMO2. Mol Biol Rep 2025; 52:269. [PMID: 40019654 DOI: 10.1007/s11033-025-10359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is an aggressive malignancy originating from hematopoietic stem cells. miRNAs play a role in physiological and developmental processes, including cellular proliferation, apoptosis, angiogenesis, and differentiation, and in CML's prognosis, diagnosis, and treatment. This study aimed to investigate the function and possible mechanisms of action of miR-188-5p in the development and progression of chronic myeloid leukemia. METHODS AND RESULTS miRNA expression profiles were obtained from the GSE90773 dataset in the Gene Expression Omnibus (GEO). GEO2R was used to identify differentially expressed miRNAs. miRNET, miRDB, CancerSEA, GeneMANIA, and BioGRID databases were applied to assess the biological function of miRNA and target molecules in CML. RT-PCR performed validation analyses of miRNA and target molecules in CML. To determine the power of miR-188-5p expression levels to distinguish patients with CML from control, the ROC analysis was performed. miR-188-5p is significantly increased in K-562 cells, and overexpression of miR-188-5p was associated with clinicopathological features. miR-188-5p showed significantly higher AUC values (AUC = 1.0, p = 0.0001). The cut-off of miR-188-5p was 6.74. miRDB and mirNET predicted BUB3 and SUMO2 as a potential target gene of miR-188-5p. Additionally, increased expression of BUB3 and SUMO2 was observed in the K-562 cell. Bub3 is implicated in apoptosis and the cell cycle, whereas Sumo2 protein sumoylation and DNA binding are believed to contribute to catabolic processes. CONCLUSIONS Our results suggest that miR-188-5p acts as an oncomiRNA in CML pathogenesis and may be a promising therapeutic target for CML.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Up-Regulation
- Male
- Small Ubiquitin-Related Modifier Proteins/genetics
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Female
- Gene Expression Regulation, Leukemic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Cell Proliferation/genetics
- K562 Cells
- Gene Expression Regulation, Neoplastic
- Middle Aged
- Apoptosis/genetics
- Gene Expression Profiling/methods
- Prognosis
- Cell Line, Tumor
Collapse
Affiliation(s)
- Osman Akidan
- Department of Hematology, Mengücek Gazi Education and Research Hospital, Erzincan, Turkey
| | - Nina Petrovic
- Laboratory for Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, 11000, Serbia
| | - Sema Misir
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
2
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
3
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
4
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
5
|
Liu Y, Hu J, Wang W, Wang Q. MircroRNA-145 Attenuates Cardiac Fibrosis Via Regulating Mitogen-Activated Protein Kinase Kinase Kinase 3. Cardiovasc Drugs Ther 2023; 37:655-665. [PMID: 35416554 DOI: 10.1007/s10557-021-07312-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to explore the effect of microRNA (miR)-145 on cardiac fibrosis in heart failure mice and its target. METHODS Experiments were carried out in mice receiving left coronary artery ligation, transverse aortic constriction (TAC), or angiotensin (Ang) II to trigger heart failure, and in cardiac fibroblasts (CFs) with Ang II-induced fibrosis. RESULTS The miR-145 levels were decreased in the mice hearts of heart failure induced by myocardial infarction (MI), TAC or Ang II infusion, and in the Ang II-treated CFs. The impaired cardiac function was ameliorated by miR-145 agomiR in MI mice. The increased fibrosis and the levels of collagen I, collagen III, and transforming growth factor-beta (TGF-β) in MI mice were inhibited by miR-145 agomiR or miR-145 transgene (TG). The agomiR of miR-145 also attenuated the increases of collagen I, collagen III, and TGF-β in Ang II-treated CFs. Bioinformatics analysis and luciferase reporter assays indicated that mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was a direct target gene of miR-145. MAP3K3 expression was suppressed by MiR-145 in CFs, while the MAP3K3 over-expression reversed the inhibiting effects of miR-145 agomiR on the Ang II-induced increases of collagen I, collagen III, and TGF-β in CFs. CONCLUSION These results indicated that miR-145 upregulation could improve cardiac dysfunction and cardiac fibrosis by inhibiting MAP3K3 in heart failure. Thus, upregulating miR-145 or blocking MAP3K3 can be used to treat heart failure and cardiac fibrosis.
Collapse
Affiliation(s)
- Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Hu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Pediatric Department, Shanghai General Hospital, No.650 Xinsongjiang Road, Shanghai, 201600, Songjiang District, China.
| |
Collapse
|
6
|
Chen Z, Fu S, Shan Y, Li H, Wang H, Liu J, Wang W, Huang Y, Huang H, Wang J, Ding M. Hsa_circ_0102485 inhibits the growth of cancer cells by regulating the miR-188-3p/ARID5B/AR axis in prostate carcinoma. Pathol Res Pract 2022; 237:154052. [DOI: 10.1016/j.prp.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
|
7
|
LncRNA OGFRP1 promotes cell proliferation and suppresses cell radiosensitivity in gastric cancer by targeting the miR-149-5p/MAP3K3 axis. J Mol Histol 2022; 53:257-271. [DOI: 10.1007/s10735-022-10058-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
|
8
|
Suppression of MGAT3 expression and the epithelial–mesenchymal transition of lung cancer cells by miR-188-5p. Biomed J 2021; 44:678-685. [PMID: 35166206 PMCID: PMC8847825 DOI: 10.1016/j.bj.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the effect of miR-188-5p overexpression on the invasion and migration of cultured lung cancer cells, and on related cellular mechanisms that underlie epithelial mesenchymal transition (EMT). Methods Human lung cancer cell line 95D was transfected with miR-188-5p mimic. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to quantify the expression levels of genes including E-cadherin, Snail, α-SMA, and MGAT3. Changes in cell motility, invasion and proliferation were studied using scratch migration assay, transwell invasion assay, and colony formation assay, respectively. The expression levels of EMT-related proteins and MGAT3 protein were also determined via immunofluorescent staining. The ability of miR-188-5p to regulate its target gene, MGAT3, was assessed using dual luciferase activity assay. Results Lung cancer cell line 95D showed the lowest miR-188-5p expression level thus was used in this study. Transfection with miR-188-5p mimic significantly suppressed migration, invasion and clonal formation potency of 95D cells. Dual luciferase activity assay implicated that miR-188-5p exerts its negative regulatory effect on MGAT3 expression through recognizing the 3′ untranslated region (3′UTR) of the MGAT3 gene. Over-expression of miR-188-5p in 95D cells also remarkably increased E-cadherin protein expression and decreased the expression levels of Snail and α-SMA, which suppressed the EMT process. Conclusion MiR-188-5p reduces the expression of MGAT3 and inhibits the metastatic properties of a highly invasive lung cancer cell line, probably via targeted regulation of EMT process. Further research to explore the potential therapeutic value of miR-188-5p, both as a biomarker and as a drug candidate for the management of metastatic lung cancer may be warranted.
Collapse
|
9
|
Li B, Zhang L. CircSETDB1 knockdown inhibits the malignant progression of serous ovarian cancer through miR-129-3p-dependent regulation of MAP3K3. J Ovarian Res 2021; 14:160. [PMID: 34789310 PMCID: PMC8597278 DOI: 10.1186/s13048-021-00875-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNA (circRNA) is recently found to participate in the regulation of tumor progression, including ovarian cancer. However, the application of circRNA SET domain bifurcated histone lysine methyltransferase 1 (circSETDB1) as a therapeutic target in serous ovarian cancer (SOC) remains to be elucidated. Herein, circSETDB1 role in SOC malignant progression and underlying mechanism are revealed. Methods The expression of circSETDB1, microRNA-129-3p (miR-129-3p) and mitogen-activated protein kinase kinase kinase 3 (MAP3K3) messenger RNA (mRNA) was detected by quantitative real-time polymerase chain reaction. Protein abundance was determined by western blot analysis. Cell proliferation, apoptosis, invasion and migration were demonstrated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine assays, flow cytometry analysis, transwell invasion assay and wound-healing assay, respectively. The interaction between miR-129-3p and circSETDB1 or MAP3K3 was predicted by online database, and identified by mechanism assays. The effect of circSETDB1 knockdown on tumor formation in vivo was unveiled by mouse model experiment. Results CircSETDB1 and MAP3K3 expression were apparently upregulated, whereas miR-129-3p expression was downregulated in SOC tissues and cells in comparison with normal fallopian tube tissues or normal ovarian epithelial cells. CircSETDB1 knockdown inhibited cell proliferation, invasion and migration, but induced cell apoptosis in SOC cells. Additionally, miR-129-3p inhibitor impaired circSETDB1 silencing-mediated SOC malignant progression. MiR-129-3p repressed SOC cell processes via binding to MAP3K3. Furthermore, circSETDB1 knockdown suppressed tumor growth in vivo. Conclusion CircSETDB1 silencing repressed SOC malignant progression through miR-129-3p/MAP3K3 pathway. This study supports circSETDB1 as a new therapeutic target for SOC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00875-0. 1. CircSETDB1 expression was increased in SOC tissues and cells. 2. CircSETDB1 silencing repressed the malignancy of SOC cells. 3. CircSETDB1 mediated SOC malignant progression by interacting with miR-129-3p. 4. MAP3K3 served as a target gene of miR-129-3p. 5. CircSETDB1 knockdown inhibited tumor formation in vivo.
Collapse
Affiliation(s)
- Bo Li
- Department of Gynaecology, Yantaishan Hospital, No.91 Jiefang Road, Zhifu DistrictShandong Province, Yantai, 264001, China.
| | - Lu Zhang
- Department of Gynaecology, Yantaishan Hospital, No.91 Jiefang Road, Zhifu DistrictShandong Province, Yantai, 264001, China
| |
Collapse
|
10
|
Yang C, Shi J, Wang J, Hao D, An J, Jiang J. Circ_0006988 promotes the proliferation, metastasis and angiogenesis of non-small cell lung cancer cells by modulating miR-491-5p/MAP3K3 axis. Cell Cycle 2021; 20:1334-1346. [PMID: 34189997 PMCID: PMC8331010 DOI: 10.1080/15384101.2021.1941612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are related to the progression of non-small cell lung cancer (NSCLC). However, the roles and mechanism of circ_0006988 are largely unknown. The levels of circ_0006988, Low-Density Lipoprotein Receptor Class A Domain Containing 3 (LDLRAD3), microRNA-491-5p (miR-491-5p), Mitogen-Activated Protein Kinase Kinase Kinase 3 (MAP3K3) were measured using quantitative real-time polymerase-chain reaction (qRT-PCR) and western blot assay. The characteristic of circ_0006988 was analyzed by RNase R assay and Actinomycin D assay. Functional analyses were processed by Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, flow cytometry analysis, transwell assay, wound-healing assay and tube formation assay. The interactions between circ_0006988 and miR-491-5p as well as miR-491-5p and MAP3K3 were analyzed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Murine xenograft model assay was processed to verify the function of circ_0006988 in vivo. Immunohistochemistry (IHC) assay was conducted to examine the level of Ki67. Circ_0006988 abundance was increased in NSCLC tissues and cells. Circ_0006988 silencing restrained NSCLC cell proliferation, migration, invasion and angiogenesis, and induced apoptosis. Circ_0006988 sponged miR-491-5p, which directly targeted MAP3K3. MiR-491-5p overexpression repressed NSCLC cell malignant behaviors. MiR-491-5p downregulation or MAP3K3 overexpression reversed the effect of circ_0006988 silencing on NSCLC cell progression. In addition, circ_0006988 knockdown reduced xenograft tumor growth. ssCirc_0006988 contributed to the development of NSCLC by miR-491-5p/MAP3K3 axis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Shi
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Wang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dexun Hao
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlu An
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junguang Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
12
|
Zhu X, Luo X, Song Z, Jiang S, Long X, Gao X, Xie X, Zheng L, Wang H. miR-188-5p promotes oxaliplatin resistance by targeting RASA1 in colon cancer cells. Oncol Lett 2021; 21:481. [PMID: 33968197 DOI: 10.3892/ol.2021.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
The efficacy of chemotherapy for colon cancer is limited due to the development of chemoresistance. MicroRNA (miR)-188-5p is downregulated in various types of cancer. The aim of the present study was to explore the molecular role of miR-188 in oxaliplatin (OXA) resistance. An OXA-resistant colon cancer cell line, SW480/OXA, was used to examine the effects of miR-188-5p on the sensitivity of colon cancer cells to OXA. The target of miR-188-5p was identified using a luciferase assay. Cell cycle distribution was also assessed using flow cytometry. The measurement of p21 protein expression, Hoechst 33342 staining and Annexin V/propidium iodide staining was used to evaluate apoptosis. The expression of miR-188-5p significantly increased in SW480/OXA compared with wild-type SW480 cells. The luciferase assay demonstrated that miR-188-5p inhibited Ras GTPase-activating protein 1 (RASA1; also known as p120/RasGAP) luciferase activity by binding to the 3'-untranslated region of RASA1 mRNA, suggesting that miR-188-5p could target RASA1. In addition, miR-188-5p downregulation or RASA1 overexpression promoted the chemosensitivity of SW480/OXA, as evidenced by increased apoptosis and G1/S cell cycle arrest. Moreover, RASA1 silencing abrogated the increase in cell apoptosis induced by the miR-188-5p inhibitor. The findings of the present study suggested that miR-188-5p could enhance colon cancer cell chemosensitivity by promoting the expression of RASA1.
Collapse
Affiliation(s)
- Xijia Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xishun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Zhike Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Shiyu Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xiangkai Long
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xueyuan Gao
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Xinyang Xie
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Laijian Zheng
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Haipeng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| |
Collapse
|
13
|
Wang YH, Zhu ZR, Tong D, Zhou R, Xiao K, Peng L. MicroRNAs and Lung Cancer: A Review Focused on Targeted Genes. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:1-10. [DOI: 10.14218/erhm.2020.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Riaz F, Chen Q, Lu K, Osoro EK, Wu L, Feng L, Zhao R, Yang L, Zhou Y, He Y, Zhu L, Du X, Sadiq M, Yang X, Li D. Inhibition of miR-188-5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. J Cell Mol Med 2021; 25:4073-4087. [PMID: 33689215 PMCID: PMC8051718 DOI: 10.1111/jcmm.16376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR‐188‐5p is dysregulated during the process of HF. However, the role of miR‐188‐5p in HF remains unclear. This study investigated the potential role of miR‐188‐5p in HSCs and HF. Firstly, we validated the miR‐188‐5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4)‐induced mice, TGF‐β1‐induced LX‐2 cells, livers from 6‐month high‐fat diet (HFD)‐induced rat and 4‐month HFD‐induced mice NASH models, and human non‐alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR‐188‐5p inhibitors to investigate the therapeutic effects of miR‐188‐5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR‐188‐5p in the activation and proliferation of HSCs. This present study reported that miR‐188‐5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR‐188‐5p resulted in the up‐regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR‐188‐5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR‐188‐5p suppressed the HF parameters, pro‐fibrotic and pro‐inflammatory genes, and fibrosis. Collectively, our results uncover the pro‐fibrotic role of miR‐188‐5p. Furthermore, we demonstrated that miR‐188‐5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.
Collapse
Affiliation(s)
- Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Ezra Kombo Osoro
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yimeng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Muhammad Sadiq
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Ye S, Sharipova D, Kozinova M, Klug L, D'Souza J, Belinsky MG, Johnson KJ, Einarson MB, Devarajan K, Zhou Y, Litwin S, Heinrich MC, DeMatteo R, von Mehren M, Duncan JS, Rink L. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight 2021; 6:143474. [PMID: 33320833 PMCID: PMC7934848 DOI: 10.1172/jci.insight.143474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Management of gastrointestinal stromal tumors (GISTs) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of RTK inhibitors in advanced disease. Stratification of GISTs into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GISTs, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GISTs requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases essential in GISTs. Using multiplexed inhibitor beads and mass spectrometry, we explored the majority of the kinome in GIST specimens from the 3 most common molecular subtypes (KIT mutant, PDGFRA mutant, and succinate dehydrogenase deficient) to identify kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2/M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT mutant and PDGFRA mutant GIST cell lines as well as notable efficacy of MK-1775 as a monotherapy in the engineered PDGFRA mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.
Collapse
Affiliation(s)
- Shuai Ye
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Dinara Sharipova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Marya Kozinova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Lilli Klug
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Jimson D'Souza
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Martin G Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Samuel Litwin
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Michael C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Ronald DeMatteo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Li XL, Li SZ, Wu CX, Xing XH. miR-188-5p inhibits proliferation, migration, and invasion in gallbladder carcinoma by targeting Wnt2b and Smad2. Kaohsiung J Med Sci 2020; 37:294-304. [PMID: 33236530 DOI: 10.1002/kjm2.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Gallbladder carcinoma (GBC) commonly occurs in gastrointestinal malignancy and has the fifth highest mortality rate among gastrointestinal malignancy. Recently, miR-188-5p, a small noncoding RNA, has been implicated in various types of cancer such as nasopharyngeal carcinoma, oral squamous cell carcinoma, liver cancer, and prostate cancer. However, the effect of miR-188-5p on GBC remains unclear. Here, we demonstrated that miR-188-5p was downregulated in GBC tissues, and downregulation of miR-188-5p correlated with larger tumor size, lymph node metastasis, and extensive metastasis. In addition, the overall survival time of patients with higher miR-188-5p expression was significantly longer than that of patients with low-miR-188-5p expression. Moreover, downregulation of miR-188-5p promoted the proliferation, migration, and invasion of GBC cells, while its overexpression inhibited cell invasion and induced cell apoptosis, and arrested GBC growth in vivo. Importantly, miR-188-5p-dependent tumorigenesis was correlated with Wnt/β-catenin signaling and p-38/JNK signaling. In conclusion, miR-188-5p plays a direct role in GBC tumorigenesis. Our study suggests that miR-188-5p could serve as a novel diagnosis marker and therapeutic target in GBC.
Collapse
Affiliation(s)
- Xiang-Lu Li
- Department of Ward 1 of Oncology, Hainan General Hospital, Haikou City, China
| | - Shi-Zong Li
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Haikou City, China
| | - Chang-Xiong Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Haikou City, China
| | - Xue-Hua Xing
- Department of Ward 1 of Oncology, Hainan General Hospital, Haikou City, China
| |
Collapse
|
17
|
Gao F, Han J, Wang Y, Jia L, Luo W, Zeng Y. Circ_0109291 Promotes the Cisplatin Resistance of Oral Squamous Cell Carcinoma by Sponging miR-188-3p to Increase ABCB1 Expression. Cancer Biother Radiopharm 2020; 37:233-245. [PMID: 32758011 DOI: 10.1089/cbr.2020.3928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Fei Gao
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Yun Wang
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Lin Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Wenjuan Luo
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Yan Zeng
- Department of Radiology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
18
|
Liu S, Zang H, Zheng H, Wang W, Wen Q, Zhan Y, Yang Y, Ning Y, Wang H, Fan S. miR-4634 augments the anti-tumor effects of RAD001 and associates well with clinical prognosis of non-small cell lung cancer. Sci Rep 2020; 10:13079. [PMID: 32753611 PMCID: PMC7403585 DOI: 10.1038/s41598-020-70157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) is involved in the physiological and pathological processes of various malignancies. In this study, miRNA microarray analysis showed that miR-4634 levels in A549 cells increased significantly after everolimus (RAD001) treatment. Decreased expression of miR-4634 was also found in non-small-cell lung carcinoma (NSCLC) cell lines and patients’ tumors by qPCR. Additionally, a combination of miR-4634 and RAD001 exerted synergistic antitumor efficacy by inhibiting cell proliferation, migration, and colony formation. High expression of miR-4634 was significantly more common in non-cancerous lung tissue than adenocarcinoma or squamous cell carcinoma tissue (72.8%, 45.7%, and 50.9%, respectively; P < 0.001). Furthermore, high expression of miR-4634 was found to be more frequent in patients without lymph node metastasis (P = 0.037) by in-situ hybridization. Importantly, through univariate and multivariate analysis, high miR-4634 expression was associated with better prognosis of NSCLC patients. In conclusion, miR-4634 may act as a tumor suppressor in NSCLC, and to augment the efficacy of RAD001, co-treatment of miR-4634 and RAD001 might be a potential mTOR-targeted cancer therapy strategy for NSCLC patients. High expression of miR-4634 could be an independent good prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
19
|
Yang X, Wang B, Chen W, Man X. MicroRNA-188 inhibits biological activity of lung cancer stem cells through targeting MDK and mediating the Hippo pathway. Exp Physiol 2020; 105:1360-1372. [PMID: 32592428 PMCID: PMC7496401 DOI: 10.1113/ep088704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? The aim was to investigate the function of microRNA‐188 in the biological characteristics of lung cancer stem cells and the molecular mechanisms involved. What is the main finding and its importance? This study highlights a new molecular mechanism involving microRNA‐188, MDK and the Hippo signalling pathway that plays a suppressive role in biological activity of lung cancer stem cells. This finding might offer new insights into gene‐based therapy for lung cancer.
Abstract MicroRNAs (miRNAs) have been implicated in lung cancer and reported as new promising diagnostic and therapeutic tools for cancer control. Here, we investigated the action of microRNA‐188 (miR‐188) in lung cancer stem cells. We first tested miR‐188 expression in clinical samples of lung cancer patients, and a low expression profile of miR‐188 was found. Next, we analysed the role of miR‐188 in lung cancer stem cells with cell growth assays. To verify the in vitro results, we used a xenograft model to validate the capability of miR‐188 in tumorigenesis. Overexpression of miR‐188 reduced viability and metastasis of cancer stem cells. Similar results were reproduced in vivo, where overexpression of miR‐188 retarded tumour growth in mice. We also identified MDK as a target of miR‐188, and overexpression of MDK was found in lung cancer samples. Overexpressed MDK promoted the malignant behaviours of lung cancer stem cells. In addition, the Hippo pathway was found to be inactivated in lung cancer tissues, presenting as increased levels of YAP and TAZ. Suppression of the Hippo pathway also enhanced lung cancer stem cell activity and promoted the growth of xenograft tumours. To sum up, our results reveal that miR‐188 inhibits the malignant behaviours of lung cancer stem cells and the growth of xenograft tumours. This study might offer new insights into gene‐based therapies for cancer.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Baogang Wang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Wenbo Chen
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaxia Man
- Department of Oncological Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| |
Collapse
|
20
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250:117547. [PMID: 32173311 DOI: 10.1016/j.lfs.2020.117547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is responsible for high morbidity and mortality worldwide. This cancer claims fifth place among other cancers. There are a number of factors associated with GC development such as alcohol consumption and tobacco smoking. It seems that genetic factors play significant role in GC malignancy and progression. MicroRNAs (miRs) are short non-coding RNA molecules with negative impact on the expression of target genes. A variety of studies have elucidated the potential role of miRs in GC growth. Investigation of molecular pathways has revealed that miRs function as upstream modulators of Wnt signaling pathway. This signaling pathway involves in important biological processes such as cell proliferation and differentiation, and its dysregulation is associated with GC invasion. At the present review, we demonstrate that how miRs regulate Wnt signaling pathway in GC malignancy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
Long non-coding RNA CDKN2B-AS1 promotes osteosarcoma by increasing the expression of MAP3K3 via sponging miR-4458. In Vitro Cell Dev Biol Anim 2020; 56:24-33. [PMID: 31950433 DOI: 10.1007/s11626-019-00415-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor worldwide. Recently, several studies have shown that the long non-coding RNA (lncRNA) CDKN2B-AS1 plays a critical role in several cancers. However, the function and underlying mechanism of CDKN2B-AS1 in OS development remains elusive. In this study, we firstly assessed the expression of CDKN2B-AS1 in OS tissues and cells, showing that CDKN2B-AS1 expression were remarkably upregulated in OS tissues and cells. Moreover, CDKN2B-AS1 knockdown suppressed cell proliferation, migration, and EMT progress in OS. Interestingly, we found and proved that CDKN2B-AS1 could sponge miR-4458 in OS cells. Moreover, MAP3K3 was certified as a downstream target of miR-4458 in OS. Besides, MAP3K3 was negatively regulated by miR-4458 and positively regulated by CDKN2B-AS1. More importantly, overexpression of MAP3K3 could partly counteract the effect of CDKN2B-AS1 suppression on the biological behavior of OS cells. Also, the in vivo experiments further testified that CDKN2B-AS1 accelerated tumor growth in OS. Our results suggested that CDKN2B-AS1 facilitated OS progression by sponging miR-4458 to enhance MAP3K3 expression, which provides a novel insight into improving diagnostic and therapeutic strategies for patients with OS.
Collapse
|
22
|
Dong R, Liu J, Sun W, Ping W. Comprehensive Analysis of Aberrantly Expressed Profiles of lncRNAs and miRNAs with Associated ceRNA Network in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Pathol Oncol Res 2020; 26:1935-1945. [PMID: 31898160 DOI: 10.1007/s12253-019-00780-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) continues to be the leading cause of cancer-related deaths worldwide and the prognosis remains poor worldwide. At present, the long non-coding RNAs (lncRNAs) was considered as a part of competing endogenous RNA (ceRNA) network act as natural microRNA (miRNA) sponges to regulate protein-coding gene expression. However, functional roles of lncRNA-mediated ceRNAs in LC are insufficiently understood. To classify the specific mechanism of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), we comprehensively compared the expression profiles of mRNAs, lncRNAs and miRNAs obtained from 509 LUAD, 473 LUSC tissues and 49 adjacent non-cancerous lung tissues, based on The Cancer Genome Atlas (TCGA). After screening for differently expressed (DE) mRNAs, DEmiRNAs, DElncRNAs and weighted gene co-expression network analysis (WGCNA) (|log2FC| > 2.0 and an adjusted p value <0.05), a total of 4478 DEmRNAs, 526 DElncRNAs and 75 DEmiRNAs in LUAD, while 6237 DEmRNAs, 843 DElncRNAs and 117 DEmiRNAs in LUSC were discovered. Interaction (PPI) network analysis was performed to identify 656 nodes and 2987 edges (minimum required interaction score > 0.9), as well as 8 different protein-protein interactions. Gene ontology (GO) analysis mainly associated with cell proliferation. KEGG pathway enrichment analyses most partly associated with metabolism pathway and cytokine-cytokine receptor interaction. Finally, the dysregulated lncRNA-miRNA-ceRNA network was constructed based on correlation analyses and a total of 62 dysregulated lncRNAs, 28 DEmRNAs and 18 DEmiRNAs were involved. The most significant lncRNAs included DElncRNAs, LINC00641 and AC004947.2, miRNAs included miR-6860, miR-1285-3p, miR-767-3p and miR-7974, mRNAs included MAP3K3, FGD3 and ATP1B2. Then we analyzed and described the potential characteristics of biological function and pathological roles of the LUAD and LUSC ceRNA co-regulatory network. Our findings revealed ceRNA network will be beneficial for promoting the understanding of lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of LUAD and LUSC.
Collapse
Affiliation(s)
- Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
23
|
Wang M, Zhang H, Yang F, Qiu R, Zhao X, Gong Z, Yu W, Zhou B, Shen B, Zhu W. miR-188-5p suppresses cellular proliferation and migration via IL6ST: A potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol 2019; 235:4890-4901. [PMID: 31650530 DOI: 10.1002/jcp.29367] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022]
Abstract
Previously, serum miR-188-5p is differentially expressed in breast cancer, but the diagnostic potential of circulating miR-188-5p as well as its regulatory mechanism in breast cancer remain uncertain. Herein, serum miR-188-5p was detected by real-time polymerase chain reaction in patients with breast cancer, breast fibroadenoma, and healthy subjects. Circulating miR-188-5p was abnormally elevated in patients with breast cancer as compared with these other two groups, and was reduced in patients with breast cancer following surgical treatment. Increased serum miR-188-5p corresponded to lymph node metastasis status and TNM stages of breast cancer. A receiver operating characteristic curve analysis of the ability to circulate miR-188-5p to distinguish between patients with breast cancer and either noncancerous patients or patients with breast fibroadenoma yielded corresponding areas under the curve of 0.894 and 8.814. miR-188-5p was downregulated in the highly malignant cancer line MDA-MB-231 relative to the less malignant MCF-7 cells. In vitro, functional analyses conducted via transfecting cells with mimics and inhibitors revealed miR-188-5p to suppress breast cancer cell proliferation and migration, which was mediated by its downstream target IL6ST. Comparison of intracellular and exosomal miR-188-5p levels indicated that miR-188-5p was selectively sorted into exosomes derived from MDA-MB-231 cells rather than those from MCF-7 cells. However, exosomal miR-188-5p levels in the serum of patients with breast cancer were reduced compared to healthy controls and did not differ relative to patients with breast fibroadenoma. In summary, miR-188-5p acts in a tumor-suppressive manner in breast cancer progression and may serve as a noninvasive early diagnostic biomarker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huiling Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Clinical Laboratory Medicine, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu, China
| | - Fang Yang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Rong Qiu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Zhu X, Qiu J, Zhang T, Yang Y, Guo S, Li T, Jiang K, Zahoor A, Deng G, Qiu C. MicroRNA-188-5p promotes apoptosis and inhibits cell proliferation of breast cancer cells via the MAPK signaling pathway by targeting Rap2c. J Cell Physiol 2019; 235:2389-2402. [PMID: 31541458 DOI: 10.1002/jcp.29144] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022]
Abstract
Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.
Collapse
Affiliation(s)
- Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxia Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianshun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Wang Z, Bao W, Zou X, Tan P, Chen H, Lai C, Liu D, Luo Z, Huang M. Co-expression analysis reveals dysregulated miRNAs and miRNA-mRNA interactions in the development of contrast-induced acute kidney injury. PLoS One 2019; 14:e0218574. [PMID: 31306435 PMCID: PMC6629072 DOI: 10.1371/journal.pone.0218574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of contrast-induced acute kidney injury (CI-AKI) is incompletely understood. MicroRNAs (miRNAs) are important mediators that normally function via post-transcriptional degradation of target mRNAs. Emerging evidence indicates the appearance of differentially expressed (DE) miRNAs in CI-AKI following the injection of intravenous contrast medium. However, there are differences in the pathological mechanism and incidence of CI-AKI between intravenous and intra-arterial contrast administration. The present study aimed to investigate the critical roles of dysregulated miRNAs and their associated mRNAs in kidney injury following intra-arterial contrast medium exposure. Based on a reliable CI-AKI rat model, we conducted genome-wide miRNA and mRNA expression profiling analysis using deep sequencing. In the study, 36 DE mature miRNAs were identified (fold change > 1.5 and p value < 0.05) in the kidneys of CI-AKI rats (n = 3) compared with that in the controls (n = 3), consisting of 23 up-regulated and 13 down-regulated DE miRNAs. Bioinformatic analysis revealed that wingnut (Wnt), transforming growth factor beta (TGF-β), and 5'-AMP-activated protein kinase (AMPK) signaling pathways were most likely to be modulated by these dysregulated miRNAs. Around 453 dysregulated genes (fold change > 2.0 and p value < 0.05) were identified. Integrated analysis revealed 2037 putative miRNA-mRNA pairs with negative correlations. Among them, 6 DE miRNAs and 13 genes were selected for further quantitative real-time reverse transcription polymerase chain reaction validation (n = 6 for each group), and a good correspondence between the two techniques was observed. In conclusion, the present study provided evidence of miRNA-mRNA interactions in the development of kidney injury following an intra-arterial contrast injection. These findings provide insights into the underlying mechanisms of CI-AKI.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Cardiology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
| | - Weiwei Bao
- Department of Cardiology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
| | - Xiaobiao Zou
- Faculty of Graduate Studies, Bengbu Medical College, Bengbu, China
| | - Ping Tan
- Department of Cadre Health Care, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
| | - Hao Chen
- Department of Cardiology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
| | - Cancan Lai
- Faculty of Graduate Studies, Bengbu Medical College, Bengbu, China
| | - Donglin Liu
- Department of Cardiology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
| | - Zhurong Luo
- Department of Cardiology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
- * E-mail: (ZRL); (MFH)
| | - Mingfang Huang
- Department of Cardiology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, China
- * E-mail: (ZRL); (MFH)
| |
Collapse
|
26
|
Yan S, Yue Y, Wang J, Li W, Sun M, Gu C, Zeng L. LINC00668 promotes tumorigenesis and progression through sponging miR-188-5p and regulating USP47 in colorectal cancer. Eur J Pharmacol 2019; 858:172464. [PMID: 31233752 DOI: 10.1016/j.ejphar.2019.172464] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023]
Abstract
Long intergenic non-coding RNA No.668 (LINC00668) is implicated in the development of various malignancies. However, the role of LINC00668 and underlying mechanism in colorectal cancer (CRC) remains totally unknown. The expression pattern of LINC00668 in CRC cells were determined by qRT-PCR. CCK-8, EdU incorporation, flow cytometry, Transwell, and wound-healing assays were run to evaluate the functions of LINC00668 in CRC cells. Bioinformatics analyses were used to identify the LINC00668-specific binding with miRNAs that were screened by RNA pull-down. RNA immunoprecipitation and luciferase gene report assay were performed to confirm the interaction between miR-188-5p and LINC00668 in CRC cells. LINC00668 was significantly upregulated in CRC tissues and cells. Knockdown of LINC00668 suppressed cell proliferation and migration potential and induced cell apoptosis, but inhibition of miR-188-5p which was predicted to bind with LINC00668 reversed these effects. Furthermore, USP47 was a direct target of miR-188-5p, and overexpression of USP47 attenuated LINC00668 knockdown-induced tumor suppressive effects in CRC cells. Conclusively, our findings demonstrated that lncRNA LINC00668 acted as an oncogenic role in CRC cells by sponging miR-188-5p and upregulating USP47 and may represent a potential marker for CRC patients.
Collapse
Affiliation(s)
- Shuai Yan
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yinzi Yue
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Jinbang Wang
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Wenting Li
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Mingming Sun
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Chao Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, 215000, Jiangsu, China.
| | - Li Zeng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
27
|
Zhang Y, Wang SS, Tao L, Pang LJ, Zou H, Liang WH, Liu Z, Guo SL, Jiang JF, Zhang WJ, Jia W, Li F. Overexpression of MAP3K3 promotes tumour growth through activation of the NF-κB signalling pathway in ovarian carcinoma. Sci Rep 2019; 9:8401. [PMID: 31182739 PMCID: PMC6558032 DOI: 10.1038/s41598-019-44835-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinase kinase kinase 3 (MAP3K3), a member of the serine/threonine protein kinase family, is ubiquitously expressed and acts as an oncogene. However, the expression and exact molecular mechanism of MAP3K3 in ovarian carcinoma (OC) remain unclear. Here, we found that MAP3K3 protein was highly expressed in 70.5% of high-grade serous ovarian carcinoma (HGSOC) samples. MAP3K3 overexpression was significantly associated with the FIGO stage and chemotherapy response. Additionally, MAP3K3 overexpression was associated with reduced disease-free survival and overall survival. In vitro experiments showed that MAP3K3 overexpression promoted cell proliferation, inhibited apoptosis, and enhanced the migration and invasion of OC cells. Moreover, in vivo tumourigenesis experiments confirmed that silencing MAP3K3 significantly reduced the growth rate and volume of transplanted tumours in nude mice. Drug sensitivity experiments demonstrated that differential expression of MAP3K3 in OC cell lines correlates with chemotherapy resistance. Functionally, the MAP3K3 gene regulated the malignant biological behaviour of OC cells by mediating NF-κB signalling pathways, affecting the downstream epithelial-mesenchymal transition and cytoskeletal protein expression. Our results unveiled the role of MAP3K3 in mediating NF-κB signalling to promote the proliferation, invasion, migration, and chemotherapeutic resistance of OC cells, highlighting a potential new therapeutic and prognostic target.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Sha-Sha Wang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Lin Tao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li-Juan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Hong Zou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Su-Liang Guo
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Wen-Jie Zhang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Wei Jia
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
28
|
Li Y, Yan X, Shi J, He Y, Xu J, Lin L, Chen W, Lin X, Lin X. Aberrantly expressed miR-188-5p promotes gastric cancer metastasis by activating Wnt/β-catenin signaling. BMC Cancer 2019; 19:505. [PMID: 31138169 PMCID: PMC6537442 DOI: 10.1186/s12885-019-5731-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common human cancers with the high rate of recurrence, metastasis and mortality. Aberrantly expressed microRNAs (miRNAs) are associated with invasion and metastasis in various human cancers. Recently, miR-188-5p has been indicated as an oncogene in GC since it promotes GC cell growth and metastasis. However, the underlying molecular mechanism remains to be fully defined. Methods Using Significance Analysis of Microarrays (SAM) screening, we identified that miR-188-5p is associated with overall survival and lymph node metastasis in patients with GC. The functional impact of miR-188-5p on GC metastasis was validated using in vitro and in vivo assays. The regulatory function of miR-188-5p on Wnt/β-catenin signaling activation through directly targeting PTEN was proven using quantitative real-time PCR, western blot analysis, a dual-luciferase assay, a Transwell assay, and immunofluorescence. Immunohistochemical analyses further confirmed the clinical significance of miR-188-5p in GC. Results MiR-188-5p diminishes tumor suppressor PTEN expression, and further increases phospho-Ser9 of GSK3β to activate Wnt/β-catenin signaling in GC. Consequently, miR-188-5p enhanced the migration and invasion of GC cells in vitro and tumor metastasis in vivo, whereas inhibition of miR-188-5p had the opposite effects. Moreover, miR-188-5p was negatively correlated with PTEN expression but positively correlated with nuclear β-catenin staining in GC samples. Conclusions Our findings revealed a model of the miR-188-5p-PTEN-β-catenin axis in GC, which mediates the constitutive activation of Wnt/β-catenin signaling and promotes tumor metastasis, inferring that miR-188-5p is a potential therapeutic target to treat GC. Electronic supplementary material The online version of this article (10.1186/s12885-019-5731-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Institute of Tissue Transplantation and Immunology and Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoli Yan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jiajian Shi
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yun He
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jie Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Liying Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wannan Chen
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China. .,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
29
|
Wang M, Qiu R, Gong Z, Zhao X, Wang T, Zhou L, Lu W, Shen B, Zhu W, Xu W. miR-188-5p emerges as an oncomiRNA to promote gastric cancer cell proliferation and migration via upregulation of SALL4. J Cell Biochem 2019; 120:15027-15037. [PMID: 31009138 DOI: 10.1002/jcb.28764] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) play pivotal roles in modulating key biological processes in gastric cancer (GC). As a newly identified miRNA, the function and potential mechanism of miR-188-5p in GC has not been thoroughly elucidated. Here, quantitative real-time polymerase chain reaction detection showed abnormally higher expression of miR-188-5p in GC cells and tissues. Gain-of-function analysis in vitro showed that miR-188-5p promoted GC cell proliferation and migration, while loss-of-function studies showed the reverse. Targetscan has predicted that phosphatase and tensin homolog (PTEN) was a potential target gene of miR-188-5p. miR-188-5p suppressed PTEN messenger RNA and protein expression and activated downstream AKT/mTOR signaling in GC cells, but luciferase reporter analysis showed that PTEN was not regulated by miR-188-5p via the 3' untranslated region. Furthermore, we observed that miR-188-5p overexpression promoted Sal-like protein 4 (SALL4) protein expression, cellular nuclear translocation, and transcription. Knockdown of SALL4 eliminated the effect of miR-188-5p in GC cells as well as suppression of PTEN. Taken together, our results demonstrate that miR-188-5p promotes GC cell proliferation and migration while suppressing tumor suppressor gene PTEN expression via transcriptional upregulation of oncogene SALL4. We conclude that miR-188-5p acts as an oncomiRNA in GC and may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qiu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingting Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lulu Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Lu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
30
|
Zhu W, Wu X, Yang B, Yao X, Cui X, Xu P, Chen X. miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids. Acta Biochim Biophys Sin (Shanghai) 2019; 51:185-196. [PMID: 30668826 DOI: 10.1093/abbs/gmy165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/30/2018] [Indexed: 12/25/2022] Open
Abstract
Keloids (KDs) and hypertrophic scars (HSs), two forms of pathological scars, seriously affect the physical and psychological health of patients. Despite many similarities with HSs, KDs are characterized by invasion and a high rate of recurrence after surgery, features they share in common with tumors. The underlying molecular mechanisms of this phenomenon have not been fully elucidated. In this study, we used microRNA (miRNA) array analysis to search for invasion-associated miRNAs in KDs. The expression of miR-188-5p in KDs, HSs, normal skin (NS) tissues, and cell lines was measured by quantitative real-time polymerase chain reaction. Furthermore, cell proliferation, migration, and invasion were detected in KD fibroblasts (KFs) and HS fibroblasts (HSFs), and interrelated proteins were ascertained by western blot analysis. It was found that miR-188-5p was significantly decreased in KD tissue compared with HS and NS tissues. Upregulated expression of miR-188-5p suppressed KF proliferation, migration, and invasion; and decreased expression of miR-188-5p also promoted HSF proliferation, migration, and invasion. The protein levels of MMP-2, MMP-9, PI3K, and p-Akt in miR-188-5p mimic-transfected KFs were repressed. In contrast, after transfection with miR-188-5p inhibitor, the protein levels of MMP-2, MMP-9, PI3K, and p-Akt were higher than the control in HSFs. Treatment with PI3K/Akt inhibitor LY294002 in KFs with miR-188-5p inhibitor did not further reduce their proliferation, migration, and invasion. The upregulation of MMP-2 and MMP-9 by miR-188-5p inhibitor could be abolished by LY294002. These findings together demonstrate a tumor-suppressive role of miR-188-5p in KD proliferation and invasion via PI3K/Akt/MMP-2/9 signaling, indicating that miR-188-5p may be a potential prognostic marker and therapeutic target for KDs.
Collapse
Affiliation(s)
- Wenyan Zhu
- Department of Medical Cosmetology & Dermatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyan Wu
- Department of Medical Cosmetology & Dermatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Bo Yang
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Yao
- Department of Medical Cosmetology & Dermatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaomei Cui
- Department of Medical Cosmetology & Dermatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Pan Xu
- Department of Medical Cosmetology & Dermatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodong Chen
- Department of Medical Cosmetology & Dermatology, The Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
31
|
Tang H, Lv W, Sun W, Bi Q, Hao Y. miR‑505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT‑NFκB pathway in NSCLC cells. Int J Mol Med 2018; 43:1203-1216. [PMID: 30628663 PMCID: PMC6365022 DOI: 10.3892/ijmm.2018.4041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, which generally regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been reported in numerous cancer types, including lung cancer. In the present study, the role of miR-505 in non-small cell lung cancer (NSCLC) cells was investigated. miR-505 served a tumor suppressor role in NSCLC cells. By reverse transcriptase-quantitative polymerase chain reaction detection, it was demonstrated that miR-505 was downregulated in NSCLC tissues and cell lines, which is negatively associated with large tumor size, Tumor-Node-Metastasis stage and distant metastasis in patients with NSCLC. Functional studies revealed that miR-505 inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition progress in vitro and tumor growth in vivo. Mechanically, mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was identified as a direct target of miR-505 by binding to its 3′untranslated region and demonstrated to mediate the tumor suppressor roles of miR-505 in NSCLC cells. The effect of miR-505 on the activation of AKT/nuclear factor-κB (NFκB) pathway, which was downstream targets of MAP3K3, was further analyzed by western blot analysis and immunofluorescence analyses. The data demonstrated the inhibition of the AKT/NFκB pathway upon overexpressing miR-505 and the activation of AKT/NFκB pathway upon silencing miR-505. Collectively, the data revealed the novel role and target of miR-505 in NSCLC cells, which may provide novel insights regarding its role in the carcinogenesis of NSCLC and its potential values for clinical applications.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Weihong Lv
- Department of Medical, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Wenxin Sun
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Qiaojie Bi
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yueqin Hao
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
32
|
Yin W, Shi L, Mao Y. MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression. FEBS Open Bio 2018; 9:43-52. [PMID: 30652073 PMCID: PMC6325580 DOI: 10.1002/2211-5463.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Despite the recent development of treatment strategies for nasopharyngeal carcinoma, the effective management of this disease remains a challenging clinical problem. A better understanding of the regulatory roles of miR‐194 and mitogen‐activated protein kinase kinase kinase 3 (MAP3K3) in the nasopharyngeal‐carcinoma‐related gene network is required to address this issue. Here, we measured relative expression of miR‐194 in human nasopharyngeal carcinoma tissues and normal epithelial tissues by quantitative real time PCR. We transfected cultured CNE‐1 and C666‐1 cells with miR‐194 mimics, and then examined the effects on cell proliferation, cell migration and invasion. Luciferase reporter assay was used to validate the putative binding between miR‐194 and MAP3K3. We then examined the effect of knockdown and overexpression of MAP3K3 on cell tumorigenesis. Expression of miR‐194 is significantly down‐regulated in nasopharyngeal carcinoma specimens and tumor cell lines when compared with normal controls. In addition, miR‐194 suppressed tumor cell proliferation and viability, as well as migration and invasion of carcinoma cells. We found that miR‐194 binds the 3′ untranslated region of MAP3K3, and knockdown of miR‐194 inhibited nasopharyngeal carcinoma cell proliferation, migration and invasion. In accordance, overexpression of MAP3K3 reversed the inhibitory effects of miR‐194 in carcinoma cells. This study suggests that expression of miR‐194 is down‐regulated in nasopharyngeal carcinoma, and that miR‐194 can directly target MAP3K3 to regulate tumor progression. Given the pivotal involvement of MAP3K3 in nasopharyngeal carcinoma development, targeting miR‐194 may be a novel strategy for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wei Yin
- Hangzhou Cancer Hospital China
| | - Lei Shi
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | | |
Collapse
|
33
|
Liu Z, Lin Y, Kang S, Xu Q, Xiong W, Cai L, He F. miR-300 rs12894467 polymorphism may be associated with susceptibility to primary lung cancer in the Chinese Han population. Cancer Manag Res 2018; 10:3579-3588. [PMID: 30271206 PMCID: PMC6152596 DOI: 10.2147/cmar.s172514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective The etiology of lung cancer has been attributed to both environmental and genetic factors. In this study, we investigated the association between five miRNA gene single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, and explored the interaction between genetic and environmental factors in the Han people of China, the ethnic group that represents >90% of the population of the country. Methods This case–control study included 1,067 cases and 1,085 controls. Epidemiological data were collected by in-person interviews using a standard questionnaire. Matrix-assisted laser desorption/ionization time of flight mass spectrometry was applied to genotype the selected miRNA gene SNPs. Unconditional logistic regression and stratified analysis were used to analyze the associations between these SNPs and lung cancer, and to calculate the adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Crossover analysis, logistic regression, and the Excel table made by Andersson were used to analyze the combined and interaction effects of gene–environment. Results The rs12894467 CC/CT genotype was associated with a significantly increased risk for lung cancer in women (adjusted OR =1.46, 95% CI=1.01–2.10). Smokers carrying the CC/ CT genotype were associated with a significantly decreased risk of lung cancer, the adjusted OR was 0.75 (95% CI: 0.57–0.98). In the dominant model, rs12894467 and gender were associated with a positive multiplicative interaction; rs12894467 and smoking were associated with a negative multiplicative interaction. Conclusion The rs12894467 polymorphism was potentially associated with primary lung cancer in the Han Chinese population and had an interactive relationship with environmental factors.
Collapse
Affiliation(s)
- Zhiqiang Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China, ;
| | - Yong Lin
- Clinical Laboratory, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Shuling Kang
- Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Qiuping Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China, ;
| | - Weimin Xiong
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China, ;
| | - Lin Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China, ;
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China, ; .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China,
| |
Collapse
|