1
|
Tao W, Zhang J, Meng X, Han X, Wang Q, Lin Y, Cheng L, Liu M, Da D, Zhang H, Fan J, Zhang L, Liu S, Li S, Gao F, Ren Y. Development and clinical evaluation of [ 68Ga]Ga-NODAGA-ADAPT6 as a novel HER2-targeted PET radiotracer for breast cancer imaging and treatment monitoring. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07286-z. [PMID: 40257612 DOI: 10.1007/s00259-025-07286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Accurate assessment of human epidermal growth factor receptor type 2 (HER2) expression is crucial for diagnosis, treatment planning, and monitoring of breast cancer patients. A 68Ga-labeled tracer based on the albumin-binding domain-derived affinity protein 6 (ADAPT6) was developed to evaluate HER2 expression in breast cancer. METHODS The gene encoding ADAPT6 was modified with N-terminal (GHEHEHEDANS) and C-terminal (GSSC) extensions to enhance its functionality. The precursor was synthesized, purified, and characterized, followed by radiolabeling with 68Ga to produce [68Ga]Ga-NODAGA-ADAPT6. In vivo metabolism and biodistribution studies were performed in HCC1954 (HER2-positive) and MDA-MB-468 (HER2-negative) tumor-bearing mice. Additionally, with ethical approval and informed consent, 22 breast cancer patients underwent [68Ga]Ga-NODAGA-ADAPT6 PET imaging to assess HER2 expression in primary and metastatic lesions. RESULTS The tracer was prepared with a radiochemical purity exceeding 99% and demonstrated high stability in vivo. Micro-PET/CT imaging revealed significant accumulation of the radiotracer in HCC1954 tumors, which was markedly reduced after HER2 blockade with trastuzumab. In contrast, MDA-MB-468 tumors showed minimal uptake. In the clinical study, [68Ga]Ga-NODAGA-ADAPT6 PET images displayed varying levels of radiotracer uptake in primary and metastatic lesions, which correlated well with the HER2 expression status determined by pathological analysis. CONCLUSION [68Ga]Ga-NODAGA-ADAPT6 exhibited excellent pharmacokinetic properties and high specificity for HER2-expressing lesions in PET imaging. These findings highlight its potential as a promising tool for distinguishing different levels of HER2 expression in breast cancer, aiding in personalized treatment strategies.
Collapse
Affiliation(s)
- Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Jinglin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Meng
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China
| | - Xuedong Han
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Qiuhu Wang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Minmin Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Dongzhu Da
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Huai Zhang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Junfu Fan
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Shuangyue Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Shuo Li
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yi Ren
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China.
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
2
|
Li N, Chen S, Cai X. Harnessing molecular probes for imaging of human epidermal growth factor receptor (HER) family. Bioorg Med Chem 2024; 113:117931. [PMID: 39362074 DOI: 10.1016/j.bmc.2024.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
The human epidermal growth factor receptor (HER) family plays a critical role in the development, migration, and invasion of various cancers. Currently, the FDA has approved numerous targeting therapies for the HER family consist of small molecule drugs, monoclonal antibodies and antibody-drug conjugates. To facilitate precision therapy using currently approved targeted agents, early detection and quantification of each HER receptor are essential for assessment, treatment, and prognostic purposes. This study provides a comprehensive review of the latest advancements in detection and quantification of HER receptors, including traditional biopsies, liquid biopsies, and non-invasive detection methods. Although traditional histological methods, such as immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), have yielded valuable insights, advancements in real-time and non-invasive detection technologies necessitate improved methods for the dynamic evaluation of HER status. This article also reviews several emerging real-time techniques for detecting and quantifying HER status in circulating tumor cells (CTCs) extracted from blood samples, as well as in vivo assessments using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This review emphasizes the importance of continuous innovation in the application of HER receptor imaging technologies, with the goal of enhancing treatment outcomes and prognoses for cancer patients.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe 85287, USA.
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China.
| |
Collapse
|
3
|
Gao F, Liu F, Wang J, Bi J, Zhai L, Li D. Molecular probes targeting HER2 PET/CT and their application in advanced breast cancer. J Cancer Res Clin Oncol 2024; 150:118. [PMID: 38466436 PMCID: PMC10927773 DOI: 10.1007/s00432-023-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-positive breast cancer cases are among the most aggressive breast tumor subtypes. Accurately assessing HER2 expression status is vital to determining whether patients will benefit from targeted anti-HER2 treatment. HER2-targeted positron emission tomography (PET/CT) is noninvasive, enabling the real-time evaluation of breast cancer patient HER2 status with accuracy. METHODS We summarize the research progress of PET/CT targeting HER2 in breast cancer, focusing on PET/CT molecular probes targeting HER2 and their clinical application in the management of advanced breast cancer. RESULTS At present, a variety of different HER2 targeted molecular probes for PET/CT imaging have been developed, including nucleolin-labeled antibodies, antibody fragments, nanobodies, and peptides of various affinities, among others. HER2-targeted PET/CT can relatively accurately evaluate HER2 expression status in advanced breast cancer patients. It has good performance in the early detection of small HER2-positive lesions, evaluation of HER2 status in lesions that cannot be readily biopsied, evaluation of the heterogeneity of multiple metastases, identification of lesions with altered HER2 status, and evaluation of the efficacy of anti-HER2 drugs. CONCLUSION HER2-targeted PET/CT offers a promising noninvasive approach for real-time assessment of HER2 status,which can be guide targeted treatment for HER2-positive breast cancer patients. Future prospective clinical studies will be invaluable for fully evaluating the importance of HER2-targeted molecular imaging in the management of breast cancer.
Collapse
Affiliation(s)
- Fang Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Fengxu Liu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Anesthesia, Armed Police Corps Hospital in Shanxi Province, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Junfang Bi
- Department of Combined Traditional Chinese Medicine and West Medicine, Traditional Chinese Medicine Hospital of Shijiazhuang City, 233 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Luoping Zhai
- Department of Nuclear Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Dong Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Radiometals—Chemistry and radiolabeling. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Tolmachev VM, Chernov VI, Deyev SM. Targeted nuclear medicine. Seek and destroy. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Garousi J, Ding H, von Witting E, Xu T, Vorobyeva A, Oroujeni M, Orlova A, Hober S, Gräslund T, Tolmachev V. Targeting HER2 Expressing Tumors with a Potent Drug Conjugate Based on an Albumin Binding Domain-Derived Affinity Protein. Pharmaceutics 2021; 13:pharmaceutics13111847. [PMID: 34834262 PMCID: PMC8619933 DOI: 10.3390/pharmaceutics13111847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Albumin binding domain derived affinity proteins (ADAPTs) are a class of small and folded engineered scaffold proteins that holds great promise for targeting cancer tumors. Here, we have extended the in vivo half-life of an ADAPT, targeting the human epidermal growth factor receptor 2 (HER2) by fusion with an albumin binding domain (ABD), and armed it with the highly cytotoxic payload mertansine (DM1) for an investigation of its properties in vitro and in vivo. The resulting drug conjugate, ADAPT6-ABD-mcDM1, retained binding to its intended targets, namely HER2 and serum albumins. Further, it was able to specifically bind to cells with high HER2 expression, get internalized, and showed potent toxicity, with IC50 values ranging from 5 to 80 nM. Conversely, no toxic effect was found for cells with low HER2 expression. In vivo, ADAPT6-ABD-mcDM1, radiolabeled with 99mTc, was characterized by low uptake in most normal organs, and the main excretion route was shown to be through the kidneys. The tumor uptake was 5.5% ID/g after 24 h, which was higher than the uptake in all normal organs at this time point except for the kidneys. The uptake in the tumors was blockable by pre-injection of an excess of the monoclonal antibody trastuzumab (having an overlapping epitope on the HER2 receptor). In conclusion, half-life extended drug conjugates based on the ADAPT platform of affinity proteins holds promise for further development towards targeted cancer therapy.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Protein Science, KTH—Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (J.G.); (H.D.); (E.v.W.); (S.H.)
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (T.X.); (A.V.); (M.O.); (V.T.)
| | - Haozhong Ding
- Department of Protein Science, KTH—Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (J.G.); (H.D.); (E.v.W.); (S.H.)
| | - Emma von Witting
- Department of Protein Science, KTH—Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (J.G.); (H.D.); (E.v.W.); (S.H.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (T.X.); (A.V.); (M.O.); (V.T.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (T.X.); (A.V.); (M.O.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, RU-634 050 Tomsk, Russia;
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (T.X.); (A.V.); (M.O.); (V.T.)
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, RU-634 050 Tomsk, Russia;
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH—Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (J.G.); (H.D.); (E.v.W.); (S.H.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH—Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (J.G.); (H.D.); (E.v.W.); (S.H.)
- Correspondence:
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (T.X.); (A.V.); (M.O.); (V.T.)
| |
Collapse
|
7
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
8
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Abstract
The concept of engineering robust protein scaffolds for novel binding functions emerged 20 years ago, one decade after the advent of recombinant antibody technology. Early examples were the Affibody, Monobody (Adnectin), and Anticalin proteins, which were derived from fragments of streptococcal protein A, from the tenth type III domain of human fibronectin, and from natural lipocalin proteins, respectively. Since then, this concept has expanded considerably, including many other protein templates. In fact, engineered protein scaffolds with useful binding specificities, mostly directed against targets of biomedical relevance, constitute an area of active research today, which has yielded versatile reagents as laboratory tools. However, despite strong interest from basic science, only a handful of those protein scaffolds have undergone biopharmaceutical development up to the clinical stage. This includes the abovementioned pioneering examples as well as designed ankyrin repeat proteins (DARPins). Here we review the current state and clinical validation of these next-generation therapeutics.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany;
| |
Collapse
|
10
|
Garousi J, von Witting E, Borin J, Vorobyeva A, Altai M, Vorontsova O, Konijnenberg MW, Oroujeni M, Orlova A, Tolmachev V, Hober S. Radionuclide therapy using ABD-fused ADAPT scaffold protein: Proof of Principle. Biomaterials 2020; 266:120381. [PMID: 33120197 DOI: 10.1016/j.biomaterials.2020.120381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023]
Abstract
Molecular recognition in targeted therapeutics is typically based on immunoglobulins. Development of engineered scaffold proteins (ESPs) has provided additional opportunities for the development of targeted therapies. ESPs offer inexpensive production in prokaryotic hosts, high stability and convenient approaches to modify their biodistribution. In this study, we demonstrated successful modification of the biodistribution of an ESP known as ADAPT (Albumin-binding domain Derived Affinity ProTein). ADAPTs are selected from a library based on the scaffold of ABD (Albumin Binding Domain) of protein G. A particular ADAPT, the ADAPT6, binds to human epidermal growth factor receptor type 2 (HER2) with high affinity. Preclinical and early clinical studies have demonstrated that radiolabeled ADAPT6 can image HER2-expression in tumors with high contrast. However, its rapid glomerular filtration and high renal reabsorption have prevented its use in radionuclide therapy. To modify the biodistribution, ADAPT6 was genetically fused to an ABD. The non-covalent binding to the host's albumin resulted in a 14-fold reduction of renal uptake and appreciable increase of tumor uptake for the best variant, 177Lu-DOTA-ADAPT6-ABD035. Experimental therapy in mice bearing HER2-expressing xenografts demonstrated more than two-fold increase of median survival even after a single injection of 18 MBq 177Lu-DOTA-ADAPT6-ABD035. Thus, a fusion with ABD and optimization of the molecular design provides ADAPT derivatives with attractive targeting properties for radionuclide therapy.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden
| | - Emma von Witting
- Department of Protein Technology, KTH-Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Jesper Borin
- Department of Protein Technology, KTH-Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia.
| | - Sophia Hober
- Department of Protein Technology, KTH-Royal Institute of Technology, SE-10691, Stockholm, Sweden
| |
Collapse
|
11
|
Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules 2020; 25:molecules25194448. [PMID: 32998229 PMCID: PMC7583817 DOI: 10.3390/molecules25194448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [99mTc]Tc(CO)3-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [99mTc]Tc(CO)3-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [99mTc]Tc(CO)3-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [99mTc]Tc(CO)3-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [99mTc]Tc(CO)3-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6.
Collapse
|
12
|
Imaging using radiolabelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharm Chem 2020; 5:16. [PMID: 32577943 PMCID: PMC7311618 DOI: 10.1186/s41181-020-00094-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
The use of radiolabelled antibodies was proposed in 1970s for staging of malignant tumours. Intensive research established chemistry for radiolabelling of proteins and understanding of factors determining biodistribution and targeting properties. The use of radioimmunodetection for staging of cancer was not established as common practice due to approval and widespread use of [18F]-FDG, which provided a more general diagnostic use than antibodies or their fragments. Expanded application of antibody-based therapeutics renewed the interest in radiolabelled antibodies. RadioimmunoPET emerged as a powerful tool for evaluation of pharmacokinetics of and target engagement by biotherapeutics. In addition to monoclonal antibodies, new radiolabelled engineered proteins have recently appeared, offering high-contrast imaging of expression of therapeutic molecular targets in tumours shortly after injection. This creates preconditions for noninvasive determination of a target expression level and stratification of patients for targeted therapies. Radiolabelled proteins hold great promise to play an important role in development and implementation of personalised targeted treatment of malignant tumours. This article provides an overview of biodistribution and tumour-seeking features of major classes of targeting proteins currently utilized for molecular imaging. Such information might be useful for researchers entering the field of the protein-based radionuclide molecular imaging.
Collapse
|
13
|
Gebauer M, Skerra A. Engineering of binding functions into proteins. Curr Opin Biotechnol 2019; 60:230-241. [DOI: 10.1016/j.copbio.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
|
14
|
Vorobyeva A, Schulga A, Konovalova E, Güler R, Löfblom J, Sandström M, Garousi J, Chernov V, Bragina O, Orlova A, Tolmachev V, Deyev SM. Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Sci Rep 2019; 9:9405. [PMID: 31253840 PMCID: PMC6599047 DOI: 10.1038/s41598-019-45795-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Radionuclide molecular imaging of HER2 expression in disseminated cancer enables stratification of patients for HER2-targeted therapies. DARPin G3, a small (14 kDa) engineered scaffold protein, is a promising probe for imaging of HER2. We hypothesized that position (C- or N-terminus) and composition (hexahistidine or (HE)3) of histidine-containing tags would influence the biodistribution of [99mTc]Tc(CO)3-labeled DARPin G3. To test the hypothesis, G3 variants containing tags at N-terminus (H6-G3 and (HE)3-G3) or at C-terminus (G3-H6 and G3-(HE)3) were labeled with [99mTc]Tc(CO)3. Labeling yield, label stability, specificity and affinity of the binding to HER2, biodistribution and tumor targeting properties of these variants were compared side-by-side. There was no substantial influence of position and composition of the tags on binding of [99mTc]Tc(CO)3-labeled variants to HER2. The specificity of HER2 targeting in vivo was confirmed. The tumor uptake in BALB/c nu/nu mice bearing SKOV3 xenografts was similar for all variants. On the opposite, there was a strong influence of the tags on uptake in normal tissues. The tumor-to-liver ratio for [99mTc]Tc(CO)3-(HE)3-G3 was three-fold higher compared to the hexahistidine-tag containing variants. Overall, [99mTc]Tc(CO)3-(HE)3-G3 variant provided the highest tumor-to-lung, tumor-to-liver, tumor-to-bone and tumor-to-muscle ratios, which should improve sensitivity of HER2 imaging in these common metastatic sites.
Collapse
Affiliation(s)
- Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rezan Güler
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mattias Sandström
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Vladimir Chernov
- Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Olga Bragina
- Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Sergey M Deyev
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia.,Bio-Nanophotonic Lab, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University "MEPhI", Moscow, Russia
| |
Collapse
|
15
|
von Witting E, Garousi J, Lindbo S, Vorobyeva A, Altai M, Oroujeni M, Mitran B, Orlova A, Hober S, Tolmachev V. Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. Eur J Pharm Biopharm 2019; 140:109-120. [PMID: 31082509 DOI: 10.1016/j.ejpb.2019.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Radionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice. ADAPTs, a novel type of small protein scaffold, have been utilized to select and develop high affinity binders to different proteinaceous targets. One of these binders, ADAPT6 selectively interacts with human epidermal growth factor 2 (HER2) with low nanomolar affinity and can therefore be used for its in vivo visualization. Molecular design and optimization of labeled anti-HER2 ADAPT has been explored in several earlier studies, showing that small changes in the scaffold affect the biodistribution of the domain. In this study, we evaluate how the biodistribution properties of ADAPT6 is affected by the commonly used maleimido derivatives of the macrocyclic chelators NOTA, NODAGA, DOTA and DOTAGA with the aim to select the best variants for SPECT and PET imaging. The different conjugates were labeled with 111In for SPECT and 68Ga for PET. The acquired data show that the combination of a radionuclide and a chelator for its conjugation has a strong influence on the uptake of ADAPT6 in normal tissues and thereby gives a significant variation in tumor-to-organ ratios. Hence, it was concluded that the best variant for SPECT imaging is 111In-(HE)3DANS-ADAPT6-GSSC-DOTA while the best variant for PET imaging is 68Ga-(HE)3DANS-ADAPT6-GSSC-NODAGA.
Collapse
Affiliation(s)
- Emma von Witting
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| |
Collapse
|
16
|
Garousi J, Lindbo S, Borin J, von Witting E, Vorobyeva A, Oroujeni M, Mitran B, Orlova A, Buijs J, Tolmachev V, Hober S. Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours. Eur J Pharm Biopharm 2018; 134:37-48. [PMID: 30408518 DOI: 10.1016/j.ejpb.2018.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/23/2022]
Abstract
ADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours. In this study we tested the hypothesis that dimerization of ADAPT6 would increase the apparent affinity to HER2 and accordingly improve tumour targeting. To find an optimal molecular design of dimers, a series of ADAPT dimers with different linkers, -SSSG- (DiADAPT6L1), -(SSSG)2- (DiADAPT6L2), and -(SSSG)3- (DiADAPT6L3) was evaluated. Dimers in combination with optimal linker lengths demonstrated increased apparent affinity to HER2. The best variants, DiADAPT6L2 and DiADAPT6L3 were site-specifically labelled with 111In and 125I, and compared with a monomeric ADAPT6 in mice bearing HER2-expressing tumours. Despite higher affinity, both dimers had lower tumour uptake and lower tumour-to-organ ratios compared to the monomer. We conclude that improved affinity of a dimeric form of ADAPT does not compensate the disadvantage of increased size. Therefore, increase of affinity should be obtained by affinity maturation and not by dimerization.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Technology, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Jesper Borin
- Department of Protein Technology, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Emma von Witting
- Department of Protein Technology, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden.
| | - Sophia Hober
- Department of Protein Technology, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| |
Collapse
|