1
|
Figueiredo J, Mendes M, Pais A, Sousa J, Vitorino C. Microfluidics-on-a-chip for designing celecoxib-based amorphous solid dispersions: when the process shapes the product. Drug Deliv Transl Res 2025; 15:732-752. [PMID: 38861140 PMCID: PMC11683022 DOI: 10.1007/s13346-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
The fundamental idea underlying the use of amorphous solid dispersions (ASDs) is to make the most of the solubility advantage of the amorphous form of a drug. However, the drug stability becomes compromised due to the higher free energy and disorder of molecular packing in the amorphous phase, leading to crystallization. Polymers are used as a matrix to form a stable homogeneous amorphous system to overcome the stability concern. The present work aims to design ASD-based formulations under the umbrella of quality by design principles for improving oral drug bioavailability, using celecoxib (CXB) as a model drug. ASDs were prepared from selected polymers and tested both individually and in combinations, using various manufacturing techniques: high-shear homogenization, high-pressure homogenization, microfluidics-on-a-chip, and spray drying. The resulting dispersions were further optimized, resorting to a 32 full-factorial design, considering the drug:polymers ratio and the total solid content as variables. The formulated products were evaluated regarding analytical centrifugation and the influence of the different polymers on the intrinsic dissolution rate of the CXB-ASDs. Microfluidics-on-a-chip led to the amorphous status of the formulation. The in vitro evaluation demonstrated a remarkable 26-fold enhancement in the intrinsic dissolution rate, and the translation of this formulation into tablets as the final dosage form is consistent with the observed performance enhancement. These findings are supported by ex vivo assays, which exhibited a two-fold increase in permeability compared to pure CXB. This study tackles the bioavailability hurdles encountered with diverse active compounds, offering insights into the development of more effective drug delivery platforms.
Collapse
Affiliation(s)
- Joana Figueiredo
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
2
|
Chen T, Li Q, Ai G, Huang Z, Liu J, Zeng L, Su Z, Dou Y. Enhancing hepatoprotective action: oxyberberine amorphous solid dispersion system targeting TLR4. Sci Rep 2024; 14:14924. [PMID: 38942824 PMCID: PMC11213902 DOI: 10.1038/s41598-024-65190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Oxyberberine (OBB) is a significant natural compound, with excellent hepatoprotective properties. However, the poor water solubility of OBB hinders its release and absorption thus resulting in low bioavailability. To overcome these drawbacks of OBB, amorphous spray-dried powders (ASDs) of OBB were formulated. The dissolution, characterizations, and pharmacokinetics of OBB-ASDs formulation were investigated, and its hepatoprotective action was disquisitive in the D-GalN/LPS-induced acute liver injury (ALI) mouse model. The characterizations of OBB-ASDs indicated that the crystalline form of OBB active pharmaceutical ingredients (API) was changed into an amorphous form in OBB-ASDs. More importantly, OBB-ASDs showed a higher bioavailability than OBB API. In addition, OBB-ASDs treatment restored abnormal histopathological changes, improved liver functions, and relieved hepatic inflammatory mediators and oxidative stress in ALI mice. The spray drying techniques produced an amorphous form of OBB, which could significantly enhance the bioavailability and exhibit excellent hepatoprotective effects, indicating that the OBB-ASDs can exhibit further potential in hepatoprotective drug delivery systems. Our results provide guidance for improving the bioavailability and pharmacological activities of other compounds, especially insoluble natural compounds. Meanwhile, the successful development of OBB-ASDs could shed new light on the research process of poorly soluble medicine.
Collapse
Affiliation(s)
- Tingting Chen
- Meizhou Hospital of Guangzhou University of Chinese Medicine (Meizhou Hospital of Traditional Chinese Medicine), 3 Huanan Avenue, Meijiang District, Meizhou, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaoxiang Ai
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural sciences, Nanchang, China
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Liu
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Lingfeng Zeng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- Meizhou Hospital of Guangzhou University of Chinese Medicine (Meizhou Hospital of Traditional Chinese Medicine), 3 Huanan Avenue, Meijiang District, Meizhou, Guangdong, China.
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Di R, Bansal KK, Rosenholm JM, Grohganz H, Rades T. Utilizing the allyl-terminated copolymer methoxy(poly(ethylene glycol))-block-poly(jasmine lactone) in the development of amorphous solid dispersions: A comparative study of functionalized and non-functionalized polymer. Int J Pharm 2024; 657:124175. [PMID: 38685442 DOI: 10.1016/j.ijpharm.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Molecular interactions are crucial to stabilize amorphous drugs in amorphous solid dispersions (ASDs). Most polymers, however, have only a limited ability to form strong molecular interactions with drugs. Polymers tailored to fit the physicochemical properties of the drug molecule to be incorporated, for instance by allowing the incorporation of specific functional groups, would be highly sought-for in this regard. For this purpose, the novel allyl-terminated polymer methoxy(polyethylene glycol)-block-poly(jasmine lactone) (mPEG-b-PJL) has been synthesized and functionalized to potentially enhance specific drug-polymer interactions. This study investigated the use of mPEG-b-PJL in ASDs, using carvedilol (CAR), a weakly basic model drug. The findings revealed that the acidic functionalized form of the polymer (mPEG-b-PJL-COOH) indeed established stronger molecular interactions with CAR compared to its non-functionalized counterpart mPEG-b-PJL. Evaluations on polymer effectiveness in forming ASDs demonstrated that mPEG-b-PJL-COOH outperformed its non-functionalized counterpart in miscibility, drug loading ability, and stability, inferred from reduced molecular mobility. However, dissolution tests indicated that ASDs with mPEG-b-PJL-COOH did not significantly improve the dissolution behaviour compared to amorphous CAR alone, despite potential solubility enhancement through micelle formation. Overall, this study confirms the potential of functionalized polymers in ASD formulations, while the challenge of improving dissolution performance in these ASDs remains an area of further development.
Collapse
Affiliation(s)
- Rong Di
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| | - Kuldeep K Bansal
- Åbo Akademi University, Faculty of Science and Engineering, Pharmaceutical Sciences Laboratory, Turku, Finland.
| | - Jessica M Rosenholm
- Åbo Akademi University, Faculty of Science and Engineering, Pharmaceutical Sciences Laboratory, Turku, Finland.
| | - Holger Grohganz
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| |
Collapse
|
4
|
Liu YS, Della Rocca J, Schenck L, Koynov A, Sifri RJ, Winston MS, Frank DS. Poly(vinylpyridine- co-vinylpyridine N-oxide) Excipients Mediate Rapid Dissolution and Sustained Supersaturation of Posaconazole Amorphous Solid Dispersions. Mol Pharm 2024; 21:1182-1191. [PMID: 38323546 DOI: 10.1021/acs.molpharmaceut.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The chemical structure of excipients molecularly mixed in an amorphous solid dispersion (ASD) has a significant impact on properties of the ASD including dissolution behavior, physical stability, and bioavailability. Polymers used in ASDs require a balance between hydrophobic and hydrophilic functionalities to ensure rapid dissolution of the amorphous dispersion as well as sustained supersaturation of the drug in solution. This work demonstrates the use of postpolymerization functionalization of poly(vinylpyridine) excipients to elucidate the impact of polymer properties on the dissolution behavior of amorphous dispersions containing posaconazole. It was found that N-oxidation of pyridine functionalities increased the solubility of poly(vinylpyridine) derivatives in neutral aqueous conditions and allowed for nanoparticle formation which supplied posaconazole into solution at concentrations exceeding those achieved by more conventional excipients such as hydroxypropyl methylcellulose acetate succinate (HPMCAS) or Eudragit E PO. By leveraging these functional modifications of the parent poly(vinylpyridine) excipient to increase polymer hydrophilicity and minimize the effect of polymer on pH, a new polymeric excipient was optimized for rapid dissolution and supersaturation maintenance for a model compound.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Joseph Della Rocca
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Athanas Koynov
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Renee J Sifri
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew S Winston
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Derek S Frank
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Orszulak L, Lamrani T, Tarnacka M, Hachuła B, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Kamińska E, Kamiński K. The Impact of Various Poly(vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole. Pharmaceutics 2024; 16:136. [PMID: 38276506 PMCID: PMC10820696 DOI: 10.3390/pharmaceutics16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer's topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland;
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland;
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland;
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| |
Collapse
|
6
|
Bookwala M, Wildfong PLD. The Implications of Drug-Polymer Interactions on the Physical Stability of Amorphous Solid Dispersions. Pharm Res 2023; 40:2963-2981. [PMID: 37389801 DOI: 10.1007/s11095-023-03547-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023]
Abstract
Amorphous solid dispersions (ASDs) are a formulation and development strategy that can be used to increase the apparent aqueous solubility of poorly water-soluble drugs. Their implementation, however, can be hindered by destabilization of the amorphous form, as the drug recrystallizes from its metastable state. Factors such as the drug-polymer solubility, miscibility, mobility, and nucleation/crystal growth rates are all known to impact the physical stability of an ASD. Non-covalent interactions (NCI) between the drug and polymer have also been widely reported to influence product shelf-life. In this review, the relationship between thermodynamic/kinetic factors and adhesive NCI is assessed. Various types of NCIs reported to stabilize ASDs are described, and their role in affecting physical stability is examined. Finally, NCIs that have not yet been widely explored in ASD formulations, but may potentially impact their physical stability are also briefly described. This review aims to stimulate further theoretical and practical exploration of various NCIs and their applications in ASD formulations in the future.
Collapse
Affiliation(s)
- Mustafa Bookwala
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA
| | - Peter L D Wildfong
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
7
|
Choi MJ, Woo MR, Baek K, Park JH, Joung S, Choi YS, Choi HG, Jin SG. Enhanced Oral Bioavailability of Rivaroxaban-Loaded Microspheres by Optimizing the Polymer and Surfactant Based on Molecular Interaction Mechanisms. Mol Pharm 2023; 20:4153-4164. [PMID: 37433746 DOI: 10.1021/acs.molpharmaceut.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study aimed to develop microspheres using water-soluble carriers and surfactants to improve the solubility, dissolution, and oral bioavailability of rivaroxaban (RXB). RXB-loaded microspheres with optimal carrier (poly(vinylpyrrolidone) K30, PVP) and surfactant (sodium lauryl sulfate (SLS)) ratios were prepared. 1H NMR and Fourier transform infrared (FTIR) analyses showed that drug-excipient and excipient-excipient interactions affected RXB solubility, dissolution, and oral absorption. Therefore, molecular interactions between RXB, PVP, and SLS played an important role in improving RXB solubility, dissolution, and oral bioavailability. Formulations IV and VIII, containing optimized RXB/PVP/SLS ratios (1:0.25:2 and 1:1:2, w/w/w), had significantly improved solubility by approximately 160- and 86-fold, respectively, compared to RXB powder, with the final dissolution rates improved by approximately 4.5- and 3.4-fold, respectively, compared to those of RXB powder at 120 min. Moreover, the oral bioavailability of RXB was improved by 2.4- and 1.7-fold, respectively, compared to that of RXB powder. Formulation IV showed the highest improvement in oral bioavailability compared to RXB powder (AUC, 2400.8 ± 237.1 vs 1002.0 ± 82.3 h·ng/mL). Finally, the microspheres developed in this study successfully improved the solubility, dissolution rate, and bioavailability of RXB, suggesting that formulation optimization with the optimal drug-to-excipient ratio can lead to successful formulation development.
Collapse
Affiliation(s)
- Min-Jong Choi
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, South Korea
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| |
Collapse
|
8
|
Budiman A, Nurani NV, Laelasari E, Muchtaridi M, Sriwidodo S, Aulifa DL. Effect of Drug-Polymer Interaction in Amorphous Solid Dispersion on the Physical Stability and Dissolution of Drugs: The Case of Alpha-Mangostin. Polymers (Basel) 2023; 15:3034. [PMID: 37514423 PMCID: PMC10384849 DOI: 10.3390/polym15143034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Improving drug solubility is necessary for formulations of poorly water-soluble drugs, especially for oral administration. Amorphous solid dispersions (ASDs) are widely used in the pharmaceutical industry to improve the physical stability and solubility of drugs. Therefore, this study aims to characterize interaction between a drug and polymer in ASD, as well as evaluate the impact on the physical stability and dissolution of alpha-mangostin (AM). AM was used as a model of a poorly water-soluble drug, while polyvinylpyrrolidone (PVP) and eudragit were used as polymers. The amorphization of AM-eudragit and AM-PVP was confirmed as having a halo pattern with powder X-ray diffraction measurements and the absence of an AM melting peak in the differential scanning calorimetry (DSC) curve. The solubility of amorphous AM increased in the presence of either eudragit or PVP due to amorphization and interactions of AM-polymer. Furthermore, FT-IR spectroscopy and in silico studies revealed hydrogen bond interactions between the carbonyl group of AM and the proton of eudragit as well as PVP. AM-eudragit with a ratio of 1:1 recrystallized after 7 days of storage at 25 °C and 90% RH, while the AM-PVP 1:4 and 1:10 samples retained the X-ray halo patterns, even under humid conditions. In a dissolution test, the presence of polymer in ASD significantly improved the dissolution profile due to the intermolecular interaction of AM-polymer. AM-eudragit 1:4 maintained AM supersaturation for a longer time compared to the 1:1 sample. However, a high supersaturation was not achieved in AM-PVP 1:10 due to the formation of large agglomerations, leading to a slow dissolution rate. Based on the results, interaction of AM-polymer in ASD can significantly improve the pharmaceutical properties of AM including the physical stability and dissolution.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| |
Collapse
|
9
|
Kim P, Lee IS, Kim JY, Lee MJ, Choi GJ. Amorphous solid dispersions of tegoprazan and three different polymers: In vitro/in vivo evaluation of physicochemical properties. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Shi F, Li R, Wang W, Yu X, Zhu F, Huang Y, Wang J, Zhang Z. Carboxymethyl starch as a solid dispersion carrier to enhance the dissolution and bioavailability of piperine and 18 β-glycyrrhetinic acid. Drug Dev Ind Pharm 2023; 49:30-41. [PMID: 36803327 DOI: 10.1080/03639045.2023.2182120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE To investigate the applicability of carboxymethyl starch (CMS) as a carrier to prepare solid dispersions (SDs) of piperine (PIP) and 18β-glycyrrhetinic acid (β-GA) (PIP-CMS and β-GA-CMS SDs) and to explore the influence of drug properties on carrier selection. SIGNIFICANCE The low oral bioavailability of natural therapeutic molecules, including PIP and β-GA, severely restricts their pharmaceutical applications. Moreover, CMS, a natural polymer, is rarely reported as a carrier for SDs. METHODS PIP-CMS and β-GA-CMS SDs were prepared using the solvent evaporation method. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) were used for formulation characterization. Additionally, drug release characteristics were investigated. RESULTS In vitro dissolution studies showed that the dissolutions of PIP-CMS and β-GA-CMS SDs were 1.90-2.04 and 1.97-2.22 times higher than pure PIP and β-GA, respectively, at a drug:polymer ratio of 1:6. DSC, XRPD, FT-IR, and SEM analyses confirmed the formation of SDs in their amorphous states. Significant improvements in Cmax and AUC0-24 h of PIP-CMS and β-GA-CMS SDs (17.51 ± 8.15 μg/mL and 210.28 ± 117.13 μg·h/mL, respectively) and (32.17 ± 9.45 μg/mL and 165.36 ± 38.75 μg·h/mL, respectively) were observed in the pharmacokinetic study. Compared with weakly acidic β-GA, loading weakly basic PIP seemed to have a profound effect on stability through intermolecular forces. CONCLUSIONS Our findings showed CMS could be a promising carrier for SDs, and loading weakly basic drug may be more suitable, especially in binary SDs system.
Collapse
Affiliation(s)
- Fanli Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruilong Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Wenjing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Xiangyu Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Yiping Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| |
Collapse
|
11
|
Improvement of Oral Absorption of Poorly Water-Soluble Drugs by Solid Dispersions with Amphiphilic Phospholipid Polymer. J Pharm Sci 2022; 111:3141-3148. [PMID: 36028136 DOI: 10.1016/j.xphs.2022.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Solid dispersions are one of methods for solubilizing water-insoluble drugs. To enhance the bioavailability, maintenance of the supersaturated state and absorption of the dissolved drug in the gastrointestinal tract are important. We designed and synthesized amphiphilic 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers as carriers for solid dispersions and evaluated the dissolution behavior in test solutions with different pH and additives. Solid dispersion of troglitazone with amphiphilic MPC copolymers having both aromatic rings and urethane bonds in the side chains showed rapid dissolution and excellent supersaturation maintenance. It was indicated that the balance between the interactions with drug molecules and the water affinity of the polymer should be considered when carriers for solid dispersions are designed. In addition, cell membrane permeability of the solid dispersion with the amphiphilic MPC copolymer was evaluated by the Dissolution / Permeation system, which consists of two liquid chambers and a monolayer of epithelial cells that mimics the intestinal dissolution and permeation process. Further, blood concentration of the drug when solid dispersions were orally administered in mice was also evaluated. The cell membrane permeability and oral absorbability were significantly improved, compared to the solid dispersions with poly(N-vinylpyrrolidone) and suspension or solution of crystalline troglitazone.
Collapse
|
12
|
Designing synergistic crystallization inhibitors: Bile salt derivatives of cellulose with enhanced hydrophilicity. Carbohydr Polym 2022; 292:119680. [PMID: 35725174 DOI: 10.1016/j.carbpol.2022.119680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Crystallization inhibitors in amorphous solid dispersions (ASD) enable metastable supersaturated drug solutions that persist for a physiologically relevant time. Olefin cross-metathesis (CM) has successfully provided multifunctional cellulose-based derivatives as candidate ASD matrix polymers. In proof of concept studies, we prepared hydrophobic bile salt/cellulose adducts by CM with naturally occurring bile salts. We hypothesized that increased hydrophilicity would enhance the ability of these conjugates to maximize bioactive supersaturation. Their selective preparation presents a significant synthetic challenge, given polysaccharide reactivity and polysaccharide and bile salt complexity. We prepared such derivatives using a more hydrophilic hydroxypropyl cellulose (HPC) backbone, employing a pent-4-enyl tether (Pen) for appending bile acids. We probed structure-property relationships by varying the nature and degree of substitution of the bile acid substituent (lithocholic or deoxycholic acid). These conjugates are indeed synergistic inhibitors, as demonstrated with the fast-crystallizing prostate cancer drug, enzalutamide. The lithocholic acid methyl ester derivative, AcrMLC-PenHHPCPen (0.64), increased induction time 68 fold vs. drug alone.
Collapse
|
13
|
Effects of Polymers on the Drug Solubility and Dissolution Enhancement of Poorly Water-Soluble Rivaroxaban. Int J Mol Sci 2022; 23:ijms23169491. [PMID: 36012748 PMCID: PMC9409000 DOI: 10.3390/ijms23169491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of hydrophilic polymers in a solid dispersion formulation in improving the solubility and dissolution rate of rivaroxaban (RXB), a poorly soluble drug. The developed solid dispersion consisted of two components, a drug and a polymer, and the drug was dispersed as amorphous particles in a polymer matrix using the spray drying method. Polymeric solid dispersions were evaluated using solubility tests, in vitro dissolution tests, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and particle size distribution analysis. To maximize physical stability against crystallization and improve the solubility and dissolution of RXB, it is important to select the appropriate polymer type and the optimal ratio of the polymer to the drug. The optimized polyvinyl alcohol (PVA)-based (1/0.5, w/w) and gelatin-based (1/5, w/w) solid dispersion formulations showed 6.3 and 3.6 times higher drug solubilities than pure RXB powder, respectively, and the final dissolution rate was improved by approximately 1.5 times. Scanning electron microscopy and particle size distribution analyses confirmed that the gelatin-based solid dispersion was smaller and more spherical than the PVA-based solid dispersion, suggesting that the gelatin-based solid dispersion had a faster initial dissolution rate. Differential scanning calorimetry and powder X-ray diffraction analyses confirmed that RXB had successfully changed from a crystalline form to an amorphous form, contributing to the improvement in its solubility and dissolution rate. This study provides a strategy for selecting suitable polymers for the development of amorphous polymer solid dispersions that can overcome precipitation during dissolution and stabilization of the amorphous state. In addition, the selected polymer solid dispersion improved the drug solubility and dissolution rate of RXB, a poorly soluble drug, and may be used as a promising drug delivery system.
Collapse
|
14
|
Heczko D, Hachuła B, Maksym P, Kamiński K, Zięba A, Orszulak L, Paluch M, Kamińska E. The Effect of Various Poly ( N-vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals (Basel) 2022; 15:971. [PMID: 36015118 PMCID: PMC9414356 DOI: 10.3390/ph15080971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, several experimental techniques were applied to probe thermal properties, molecular dynamics, crystallization kinetics and intermolecular interactions in binary mixtures (BMs) composed of flutamide (FL) and various poly(N-vinylpyrrolidone) (PVP) polymers, including a commercial product and, importantly, samples obtained from high-pressure syntheses, which differ in microstructure (defined by the tacticity of the macromolecule) from the commercial PVP. Differential Scanning Calorimetry (DSC) studies revealed a particularly large difference between the glass transition temperature (Tg) of FL+PVPsynth. mixtures with 10 and 30 wt% of the excipient. In the case of the FL+PVPcomm. system, this effect was significantly lower. Such unexpected findings for the former mixtures were strictly connected to the variation of the microstructure of the polymer. Moreover, combined DSC and dielectric measurements showed that the onset of FL crystallization is significantly suppressed in the BM composed of the synthesized polymers. Further non-isothermal DSC investigations carried out on various FL+10 wt% PVP mixtures revealed a slowing down of FL crystallization in all FL-based systems (the best inhibitor of this process was PVP Mn = 190 kg/mol). Our research indicated a significant contribution of the microstructure of the polymer on the physical stability of the pharmaceutical-an issue completely overlooked in the literature.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Paulina Maksym
- Institute of Material Science, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
15
|
Zhang Q, Durig T, Blass B, Fassihi R. Development of an amorphous based sustained release system for apremilast a selective phosphodiesterase 4 (PDE4) inhibitor. Int J Pharm 2022; 615:121516. [DOI: 10.1016/j.ijpharm.2022.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
16
|
Edueng K, Kabedev A, Ekdahl A, Mahlin D, Baumann J, Mudie D, Bergström CAS. Pharmaceutical profiling and molecular dynamics simulations reveal crystallization effects in amorphous formulations. Int J Pharm 2021; 613:121360. [PMID: 34896563 DOI: 10.1016/j.ijpharm.2021.121360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Robust and reliable in vivo performance of medicines based on amorphous solid dispersions (ASDs) depend on maintenance of physical stability and efficient supersaturation. However, molecular drivers of these two kinetic processes are poorly understood. Here we used molecular dynamics (MD) simulations coupled with experimental assessments to explore supersaturation, nucleation, and crystal growth. The effect of drug loading on physical stability and supersaturation potential was highly drug specific. Storage under humid conditions influenced crystallization, but also resulted in morphological changes and particle fusion. This led to increased particle size, which significantly reduced dissolution rate. MD simulations identified the importance of nano-compartmentalization in the crystallization rate of the ASDs. Nucleation during storage did not inherently compromise the ASD. Rather, the poorer performance resulted from a combination of properties of the compound, nanostructures formed in the formulation, and crystallization.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden
| | - Alyssa Ekdahl
- Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden; AstraZeneca Operations, Forskargatan 18, 151 85 Södertälje, Sweden
| | - John Baumann
- Global Research and Development, Lonza, Bend, OR 97703, USA
| | - Deanna Mudie
- Global Research and Development, Lonza, Bend, OR 97703, USA
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden.
| |
Collapse
|
17
|
Ao H, Li HW, Lu LK, Fu JX, Han MH, Guo YF, Wang XT. Sensitive Tumor Cell Line for Annonaceous Acetogenins and High Therapeutic Efficacy at a Low Dose for Choriocarcinoma Therapy. J Biomed Nanotechnol 2021; 17:2062-2070. [PMID: 34706806 DOI: 10.1166/jbn.2021.3175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Annonaceous acetogenins (ACGs) have attracted much attention because of excellent antitumor activity. However, the lack of selectivity and the accompanying serious toxicity have eventually prevented ACGs from entering clinical application. To decrease the side effects of ACGs, the cytotoxicity of ACGs on 10 types of tumor cell lines was investigated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test to identify one that was very sensitive to ACGs. Meanwhile, ACGs nanoparticles (ACGs-NPs) were prepared using poloxamer 188 (P188) as an excipient so as to solve the problem of poor solubility and the in vivo delivery of ACGs. ACG-NPs were 163.9±2.5 nm in diameter, negatively charged, and spherical with a high drug loading content (DLC) of 44.9±1.2%. MTS assays demonstrated that ACGs had strong cytotoxicity against JEG-3, HeLa, SiHa, MCF-7, A375, A2058, A875, U-118MG, LN- 229, and A431 cells, among which JEG-3 cell line was extremely sensitive to ACGs with a 50% inhibitory concentration (IC50) value of 0.26 ng/mL, a very encouraging discovery. ACGs-NPs demonstrated very good dose-dependent antitumor efficacy in a broad range of 45?1200 μg/kg on JEG-3 tumor-bearing mice. At a very low dose (1200 μg/kg), ACGs-NPs achieved a high tumor inhibition rate (TIR) of 77.6% through oral administration, displaying a significant advantage over paclitaxel (PTX) injections that are currently used as first-line anti-choriocarcinoma drugs. In the acute toxicity study, the half lethal dose (LD50) of ACGs-NPs was 135.5 mg/kg, which was over 100 times as of the effective antitumor dose, indicating good safety of ACGs-NPs. ACGs-NPs show promise as a new type of and potent anti-choriocarcinoma drug in the future.
Collapse
Affiliation(s)
- Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Hao-Wen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Li-Kang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Jing-Xin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Mei-Hua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Yi-Fei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Xiang-Tao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| |
Collapse
|
18
|
Tsiaxerli A, Karagianni A, Ouranidis A, Kachrimanis K. Polyelectrolyte Matrices in the Modulation of Intermolecular Electrostatic Interactions for Amorphous Solid Dispersions: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13091467. [PMID: 34575543 PMCID: PMC8468962 DOI: 10.3390/pharmaceutics13091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte polymers have been widely used in the pharmaceutical field as excipients to facilitate various drug delivery systems. Polyelectrolytes have been used to modulate the electrostatic environment and enhance favorable interactions between the drug and the polymer in amorphous solid dispersions (ASDs) prepared mainly by hot-melt extrusion. Polyelectrolytes have been used alone, or in combination with nonionic polymers as interpolyelectrolyte complexes, or after the addition of small molecular additives. They were found to enhance physical stability by favoring stabilizing intermolecular interactions, as well as to exert an antiplasticizing effect. Moreover, they not only enhance drug dissolution, but they have also been used for maintaining supersaturation, especially in the case of weakly basic drugs that tend to precipitate in the intestine. Additional uses include controlled and/or targeted drug release with enhanced physical stability and ease of preparation via novel continuous processes. Polyelectrolyte matrices, used along with scalable manufacturing methods in accordance with green chemistry principles, emerge as an attractive viable alternative for the preparation of ASDs with improved physical stability and biopharmaceutic performance.
Collapse
Affiliation(s)
- Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Correspondence: ; Tel.: +30-2310-997666
| |
Collapse
|
19
|
Atsukawa K, Amari S, Takiyama H. Solid dispersion melt crystallization (SDMC) concept using binary eutectic system for improvement of dissolution rate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Lemanowicz M, Mielańczyk A, Walica T, Kotek M, Gierczycki A. Application of Polymers as a Tool in Crystallization-A Review. Polymers (Basel) 2021; 13:polym13162695. [PMID: 34451235 PMCID: PMC8401169 DOI: 10.3390/polym13162695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
The application of polymers as a tool in the crystallization process is gaining more and more interest among the scientific community. According to Web of Science statistics the number of papers dealing with “Polymer induced crystallization” increased from 2 in 1990 to 436 in 2020, and for “Polymer controlled crystallization”—from 4 in 1990 to 344 in 2020. This is clear evidence that both topics are vivid, attractive and intensively investigated nowadays. Efficient control of crystallization and crystal properties still represents a bottleneck in the manufacturing of crystalline materials ranging from pigments, antiscalants, nanoporous materials and pharmaceuticals to semiconductor particles. However, a rapid development in precise and reliable measuring methods and techniques would enable one to better describe phenomena involved, to formulate theoretical models, and probably most importantly, to develop practical indications for how to appropriately lead many important processes in the industry. It is clearly visible at the first glance through a number of representative papers in the area, that many of them are preoccupied with the testing and production of pharmaceuticals, while the rest are addressed to new crystalline materials, renewable energy, water and wastewater technology and other branches of industry where the crystallization process takes place. In this work, authors gathered and briefly discuss over 100 papers, published in leading scientific periodicals, devoted to the influence of polymers on crystallizing solutions.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Tomasz Walica
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Andrzej Gierczycki
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| |
Collapse
|
21
|
Que C, Deac A, Zemlyanov DY, Qi Q, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Impact of Drug-Polymer Intermolecular Interactions on Dissolution Performance of Copovidone-Based Amorphous Solid Dispersions. Mol Pharm 2021; 18:3496-3508. [PMID: 34319746 DOI: 10.1021/acs.molpharmaceut.1c00419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For poorly soluble drugs formulated as amorphous solid dispersions (ASDs), fast and complete release with the generation of drug-rich colloidal particles is beneficial for optimizing drug absorption. However, this ideal dissolution profile can only be achieved when the drug releases at the same normalized rate as the polymer, also known as congruent release. This phenomenon only occurs when the drug loading (DL) is below a certain value. The maximal DL at which congruent release occurs is defined as the limit of congruency (LoC). The purpose of this study was to investigate the relationship between drug chemical structure and LoC for PVPVA-based ASDs. The compounds investigated shared a common scaffold substituted with different functional groups, capable of forming hydrogen bonds only, halogen bonds only, both hydrogen and halogen bonds, or nonspecific interactions only with the polymer. Intermolecular interactions were studied and confirmed by X-ray photoelectron spectroscopy and infrared spectroscopy. The release rates of ASDs with different DLs were investigated using surface area normalized dissolution. ASDs with hydrogen bond formation between the drug and polymer had lower LoCs, while compounds that were only able to form halogen bonds or nonspecific interactions with the polymer achieved considerably higher LoCs. This study highlights the impact of different types of drug-polymer interactions on ASD dissolution performance, providing insights into the role of drug and polymer chemical structures on the LoC and ASD performance in general.
Collapse
Affiliation(s)
- Chailu Que
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - QingQing Qi
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anura S Indulkar
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yi Gao
- Science and Technology, Operations, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Luo Z, Liu C, Quan P, Zhang Y, Fang L. Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal Patch: Mechanism Study Based on FT-IR Spectroscopy, 13C NMR Spectroscopy, and Molecular Simulation. AAPS PharmSciTech 2021; 22:198. [PMID: 34195881 DOI: 10.1208/s12249-021-02055-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/15/2021] [Indexed: 11/30/2022] Open
Abstract
Chemical penetration enhancers (CPEs) are commonly added into transdermal patches to impart improved skin permeation of drug. However, significant unexplained variability in drug release kinetics in transdermal patches is possible as a result of the addition of CPEs; investigations into the underlying mechanisms are still limited. In the present study, a diverse set of CPEs was employed to draw broad conclusions. Solubility parameters of CPEs and acrylate pressure-sensitive adhesive were calculated by molecular dynamics simulation and Fedors group contribution method to evaluate drug-adhesive miscibility. CPE-adhesive interaction was characterized by FT-IR study, 13C NMR spectroscopy, and molecular docking simulation. Results showed that release enhancement ratio (ERR) of CPEs for zolmitriptan was rank ordered as isopropyl myristate > azone > Plurol Oleique® CC497 > Span® 80 > N-methylpyrrolidone > Transcutol® P. It was found that solubility parameter difference (Δδ) between CPE and adhesive was negatively related with ERR. It was proved that hydrogen bonding between CPE and adhesive would increase drug release rate, but only if the CPE showed good miscibility with adhesive. CPE like isopropyl myristate, which had good miscibility with adhesive, could decrease drug-adhesive interaction leading to the release of drug from adhesive.
Collapse
|
23
|
Butreddy A, Sarabu S, Bandari S, Batra A, Lawal K, Chen NN, Bi V, Durig T, Repka MA. Influence of Plasdone ™ S630 Ultra-an Improved Copovidone on the Processability and Oxidative Degradation of Quetiapine Fumarate Amorphous Solid Dispersions Prepared via Hot-Melt Extrusion Technique. AAPS PharmSciTech 2021; 22:196. [PMID: 34184149 DOI: 10.1208/s12249-021-02069-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
In a formulation, traces of peroxides in copovidone can impact the stability of drug substances that are prone to oxidation. The present study aimed to investigate the impact of peroxides in novel Plasdone™ S630 Ultra and compare it with regular Plasdone™ S630 on the oxidative degradation of quetiapine fumarate amorphous solid dispersions prepared via hot-melt extrusion technique. The miscibility of copovidones with drug was determined using the Hansen solubility parameter, and the results indicated a miscible drug-polymer system. Melt viscosity as a function of temperature was determined for the drug-polymer physical mixture to identify the suitable hot-melt extrusion processing temperature. The binary drug and polymer (30:70 weight ratio) amorphous solid dispersions were prepared at a processing temperature of 160°C. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies of amorphous solid dispersions revealed the formation of a single-phase amorphous system with intermolecular hydrogen bonding between the drug and polymer. The milled extrudates were compressed into tablets by using extragranular components and evaluated for tabletability. Stability studies of the milled extrudates and tablet formulations were performed to monitor the oxidative degradation impurity (N-oxide). The N-oxide impurity levels in the quetiapine fumarate - Plasdone™ S630 Ultra milled extrudates and tablet formulations were reduced by 2- and 3-folds, respectively, compared to those in quetiapine fumarate - Plasdone™ S630. The reduced oxidative degradation and improved hot-melt extrusion processability of Plasdone™ S630 Ultra make it a better choice for oxidation-labile drugs over Plasdone™ S630 copovidone.
Collapse
|
24
|
Shi X, Zhou X, Shen S, Chen Q, Song S, Gu C, Wang C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur J Pharm Sci 2021; 161:105773. [PMID: 33640500 DOI: 10.1016/j.ejps.2021.105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of this study is to improve in vitro and in vivo properties of an antihypertensive poorly soluble drug Telmisartan (TEL) by co-amorphization with a pharmacologically relevant drug Hydrochlorothiazide (HCT), and to improve the stability of single amorphous drugs. Herein, TEL-HCT co-amorphous systems (CAMs) (1:1, 2:3, 1:2, 1:3) were prepared by solvent evaporation. The apparent solubility and the dissolution of TEL in the TEL-HCT CAM (1:3) were increased by 79 times and 10 times compared to crystalline TEL, which showed the optimal properties. Cmax and AUC0-48h value of TEL-HCT CAM (1:3) were 10-fold and 3-fold as the crystalline state. Moreover, TEL-HCT CAM (1:3) remained stable in 60 °C, 0 % RH (30 days), 40 °C, 75 % RH (90 days) and 25 °C, 0 % RH (180 days). Positive ΔTgs were observed in all CAMs, suggesting the existence of potential intermolecular force. Fourier Transform-Infrared and Raman spectra were used to further prove the drug-drug interaction and predict potential mechanisms. Therefore, in the strategy of combined medication, CAM provides a promising way to transfer drugs with poor properties into systems with enhanced dissolution, greater bioavailability, and stabilized amorphous state, which has been proven in this study.
Collapse
Affiliation(s)
- Xiangjun Shi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China.
| | - Xiyue Zhou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shuimei Shen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Qifeng Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shengjie Song
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chenru Gu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
25
|
Chemical Structural Effects of Amphipathic and Water-soluble Phospholipid Polymers on Formulation of Solid Dispersions. J Pharm Sci 2021; 110:2966-2973. [PMID: 33831441 DOI: 10.1016/j.xphs.2021.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022]
Abstract
For the polymeric carriers of solid dispersions, it is important that carriers themselves dissolve quickly and maintain the supersaturated state of amorphous drugs during their dissolution period to improve bioavailability. Amphipathic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers can be dissolved in water, owing to the extremely high hydrophilicity of the MPC units, and are used as an ideal feeder for drug molecules to form aggregates in aqueous conditions. We synthesized amphipathic MPC copolymers with different hydrophobic side chains and molar ratios of MPC units, and evaluated the effect of the polymers on dissolution rate and supersaturation maintenance of solid dispersions of indomethacin. In most of the water-soluble amphipathic MPC copolymers, "spring-parachute"-like dissolution behavior was observed, where the drug initially became supersaturated followed by slow precipitation. In particular, MPC copolymers with aromatic rings in their side chains or polymers with a high percentage of hydrophobic units remained in a supersaturated state for a longer period. In contrast, urethane groups, which form hydrogen bonds with drug molecules, could also interact with water and were not conducive to maintaining supersaturation. In addition, water solubility of the polymer is important for rapid dissolution.
Collapse
|
26
|
S'ari M, Blade H, Cosgrove S, Drummond-Brydson R, Hondow N, Hughes LP, Brown A. Characterization of Amorphous Solid Dispersions and Identification of Low Levels of Crystallinity by Transmission Electron Microscopy. Mol Pharm 2021; 18:1905-1919. [PMID: 33797925 DOI: 10.1021/acs.molpharmaceut.0c00918] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amorphous solid dispersions (ASDs) are used to increase the solubility of oral medicines by kinetically stabilizing the more soluble amorphous phase of an active pharmaceutical ingredient with a suitable amorphous polymer. Low levels of a crystalline material in an ASD can negatively impact the desired dissolution properties of the drug. Characterization techniques such as powder X-ray diffraction (pXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) are often used to detect and measure any crystallinity within ASDs. These techniques are unable to detect or quantify very low levels because they have limits of detection typically in the order of 1-5%. Herein, an ASD of felodipine (FEL) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) prepared via a hot melt extrusion (HME) in a mass ratio of 30:70 was characterized using a range of techniques. No signs of residual crystallinity were found by pXRD, DSC, or FTIR. However, transmission electron microscopy (TEM) did identify two areas containing crystals at the edges of milled particles from a total of 55 examined. Both crystalline areas contained Cl Kα X-ray peaks when measured by energy-dispersive X-ray spectroscopy, confirming the presence of FEL (due to the presence of Cl atoms in FEL and not in PVP/VA). Further analysis was carried out by TEM using conical dark field (DF) imaging of a HME ASD of 50:50 FEL-PVP/VA to provide insights into the recrystallization process that occurs at the edges of particles during accelerated ageing conditions in an atmosphere of 75% relative humidity. Multiple metastable polymorphs of recrystallized FEL could be identified by selected area electron diffraction (SAED), predominately form II and the more stable form I. Conical DF imaging was also successful in spatially resolving and sizing crystals. This work highlights the potential for TEM-based techniques to improve the limit of detection of crystallinity in ASDs, while also providing insights into transformation pathways by identifying the location, size, and form of any crystallization that might occur on storage. This opens up the possibility of providing an enhanced understanding of a drug product's stability and performance.
Collapse
Affiliation(s)
- Mark S'ari
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Blade
- Oral Product Development, Pharmaceutical Technology and Development Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Stephen Cosgrove
- New Modalities and Parenterals Development, Pharmaceutical Technology and Development Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Rik Drummond-Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology and Development Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andy Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
27
|
Pacułt J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci 2021; 159:105697. [PMID: 33568330 DOI: 10.1016/j.ejps.2020.105697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.
Collapse
Affiliation(s)
- Justyna Pacułt
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Kurek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
28
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Wrzalik R, Kamiński K, Paluch M, Kamińska E. Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Mol Pharm 2020; 18:347-358. [PMID: 33355470 PMCID: PMC7872431 DOI: 10.1021/acs.molpharmaceut.0c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The impact of the chain length or
dispersity of polymers in controlling
the crystallization of amorphous active pharmaceutical ingredients
(APIs) has been discussed for a long time. However, because of the
weak control of these parameters in the majority of macromolecules
used in pharmaceutical formulations, the abovementioned topic is poorly
understood. Herein, four acetylated oligosaccharides, maltose (acMAL),
raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD)
of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer,
were selected to probe the influence of these structural factors on
the crystallization of naproxen (NAP)—an API that does not
vitrify regardless of the cooling rate applied in our experiment.
It was found that in equimolar systems composed of NAP and linear
acetylated oligosaccharides, the progress and activation barrier for
crystallization are dependent on the molecular weight of the excipient
despite the fact that results of Fourier transform infrared studies
indicated that there is no difference in the interaction pattern between
measured samples. On the other hand, complementary dielectric, calorimetric,
and X-ray diffraction data clearly demonstrated that NAP mixed with
ac-α-CD (cyclic saccharide) does not tend to crystallize even
in the system with a much higher content of APIs. To explain this
interesting finding, we have carried out further density functional
theory computations, which revealed that incorporation of NAP into
the cavity of ac-α-CD is hardly possible because this state
is of much higher energy (up to 80 kJ/mol) with respect to the one
where the API is located outside of the saccharide torus. Hence, although
at the moment, it is very difficult to explain the much stronger impact
of the cyclic saccharide on the suppression of crystallization and
enhanced stability of NAP with respect to the linear carbohydrates,
our studies clearly showed that the chain length and the topology
of the excipient play a significant role in controlling the crystallization
of this API.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Roman Wrzalik
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
29
|
Davis DA, Thakkar R, Su Y, Williams RO, Maniruzzaman M. Selective Laser Sintering 3-Dimensional Printing as a Single Step Process to Prepare Amorphous Solid Dispersion Dosage Forms for Improved Solubility and Dissolution Rate. J Pharm Sci 2020; 110:1432-1443. [PMID: 33227241 DOI: 10.1016/j.xphs.2020.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
This study reports the development of ritonavir-copovidone amorphous solid dispersions (ASDs) and dosage forms thereof using selective laser sintering (SLS) 3-dimensional (3-D) printing in a single step, circumventing the post-processing steps required in common techniques employed to make ASDs. For this study, different drug loads of ritonavir with copovidone were processed at varying processing conditions to understand the impact, range, and correlation of these parameters for successful ASD formation. Further, ASDs characterized using conventional and advanced solid-state techniques including wide-angle X-ray scattering (WAXS), solid-state nuclear magnetic resonance (ssNMR), revealed the full conversion of the crystalline drug to its amorphous form as a function of laser-assisted selective fusion in a layer-by-layer manner. It was observed that an optimum combination of the powder flow properties, surface temperature, chamber temperature, laser speed, and hatch spacing was crucial for successful ASD formation, any deviations resulted in print failures or only partial amorphous conversion. Moreover, a 21-fold increase in solubility was demonstrated by the SLS 3-D printed tablets. The results confirmed that SLS 3-D printing can be used as a single-step platform for creating ASD-based pharmaceutical dosage forms with a solubility advantage.
Collapse
Affiliation(s)
- Daniel A Davis
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Rishi Thakkar
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co, Inc, Rahway, NJ 07065, USA
| | - Robert O Williams
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
30
|
Meng F, Ferreira R, Su Y, Zhang F. A novel amorphous solid dispersion based on drug-polymer complexation. Drug Deliv Transl Res 2020; 11:2072-2084. [PMID: 33151484 DOI: 10.1007/s13346-020-00869-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/27/2022]
Abstract
Rafoxanide (RAF) is a poorly water-soluble drug that forms a complex with povidone K25 (PVP) in a cosolvent system containing acetone and an alkaline aqueous medium. This study aims to investigate the impact of RAF-PVP complexation on in vitro and in vivo release of RAF. We prepared two RAF amorphous solid dispersions (ASDs) spray-dried from these two cosolvents. The first is a complexation-based spray-drying using a 70% 0.1 N NaOH solution with 30% acetone. The second is a traditional spray-dried formulation containing 80% acetone and 20% ethanol. Evidence from multiple solid-state characterization techniques indicated that ASDs spray-dried using both methods were amorphous. However, RAF ASDs based on drug-polymer complexation in the feed solution demonstrated not only faster drug release during dissolution testing but also higher in vivo absorption in an animal model. The improved RAF release in the complexation-based ASD is due to (1) high energy state of RAF owing to the amorphous form, (2) high pH in the microenvironment due to the ionized state of RAF and residual sodium hydroxide, (3) increased apparent solubility of RAF results from RAF-PVP complexation in dissolution media and biological media, and (4) improved wettability.
Collapse
Affiliation(s)
- Fan Meng
- College of Pharmacy, The University of Texas at Austin, 2409 University Ave, TX, 78712, Austin, USA
| | - Rui Ferreira
- Hovione LLC, 40 Lake Drive, East Windsor, NJ, USA
| | - Yongchao Su
- Merck Research Laboratories, 770 Sumneytown Pike, PA, 19486, West Point, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 2409 University Ave, TX, 78712, Austin, USA.
| |
Collapse
|
31
|
Chambers LI, Grohganz H, Palmelund H, Löbmann K, Rades T, Musa OM, Steed JW. Predictive identification of co-formers in co-amorphous systems. Eur J Pharm Sci 2020; 157:105636. [PMID: 33160046 DOI: 10.1016/j.ejps.2020.105636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
This work aims to understand the properties of co-formers that form co-amorphous pharmaceutical materials and to predict co-amorphous system formation. A partial least square - discriminant analysis (PLS-DA) was performed using known co-amorphous systems described by 36 variables based on the properties of the co-former and the binding energy of the system. The PLS-DA investigated the propensity to form co-amorphous material of the active pharmaceutical ingredients: mebendazole, carvedilol, indomethacin, simvastatin, carbamazepine and furosemide in combination with 20 amino acid co-formers. The variables that were found to favour the propensity to form co-amorphous systems appear to be a relatively large value for average molecular weight and the sum of the difference between hydrogen bond donors and hydrogen bond acceptors for both components, and a relatively small or negative value for excess enthalpy of mixing, excess enthalpy of hydrogen bonding and the difference in the Hansen parameter for hydrogen bonding of the coformer and the active pharmaceutical ingredient (API). To test the predictive power of this model, 29 potential co-formers were used to form either co-amorphous or crystalline two-component materials with mebendazole. Of these 29 two-component systems, the co-amorphous nature of a total of 26 materials was correctly predicted by the model, giving a predictive hit rate of 90 %.
Collapse
Affiliation(s)
- Luke I Chambers
- Durham University, Department of Chemistry, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Palmelund
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Osama M Musa
- Ashland LLC, 1005 Route 202/206, Bridgewater, NJ 08807, USA
| | - Jonathan W Steed
- Durham University, Department of Chemistry, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
32
|
Impact of nanoparticle size and solid state on dissolution rate by investigating modified drug powders. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
One-step preparation of sustained-release ASDs using mesoporous spherical silica. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Alhijjaj M, Belton P, Fabian L, Reading M, Qi S. Automation Potential of a New, Rapid, Microscopy-Based Method for Screening Drug-Polymer Solubility. ACS OMEGA 2020; 5:11402-11410. [PMID: 32478229 PMCID: PMC7254515 DOI: 10.1021/acsomega.0c00429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
For the pharmaceutical industry, the preformulation screening of the compatibility of drug and polymeric excipients can often be time-consuming because of the use of trial-and-error approaches. This is also the case for selecting highly effective polymeric excipients for forming molecular dispersions in order to improve the dissolution and subsequent bio-availability of a poorly soluble drug. Previously, we developed a new thermal imaging-based rapid screening method, thermal analysis by structure characterization (TASC), which can rapidly detect the melting point depression of a crystalline drug in the presence of a polymeric material. In this study, we used melting point depression as an indicator of drug solubility in a polymer and further explored the potential of using the TASC method to rapidly screen and identify polymers in which a drug is likely to have high solubility. Here, we used a data bank of 5 model drugs and 10 different pharmaceutical grade polymers to validate the screening potential of TASC. The data indicated that TASC could provide significant improvement in the screening speed and reduce the materials used without compromising the sensitivity of detection. It should be highlighted that the current method is a screening method rather than a method that provides absolute measurement of the degree of solubility of a drug in a polymer. The results of this study confirmed that the TASC results of each drug-polymer pair could be used in data matrices to indicate the presence of significant interaction and solubility of the drug in the polymer. This forms the foundation for automating the screening process using artificial intelligence.
Collapse
Affiliation(s)
- Muqdad Alhijjaj
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, Norfolk, U.K.
- Department of Pharmaceutics,
College of Pharmacy, University of Basrah, Basrah 61004, Iraq
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, Norfolk, U.K.
| | - Laszlo Fabian
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, Norfolk, U.K.
| | | | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, Norfolk, U.K.
| |
Collapse
|
35
|
Ueda K, Okada H, Zhao Z, Higashi K, Moribe K. Application of solid-state 13C relaxation time to prediction of the recrystallization inhibition strength of polymers on amorphous felodipine at low polymer loading. Int J Pharm 2020; 581:119300. [PMID: 32268185 DOI: 10.1016/j.ijpharm.2020.119300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The potential for inhibiting recrystallization with Eudragit® L (EUD-L), hypromellose acetate succinate (HPMC-AS), and polyvinylpyrrolidone-co-vinylacetate (PVP-VA) on amorphous felodipine (FLD) at low polymer loading was investigated in this study. The physical stabilities of the FLD/polymer amorphous solid dispersions (ASDs) were investigated through storage at 40 °C. The HPMC-AS and PVP-VA strongly inhibited FLD recrystallization, although EUD-L did not effectively inhibit the FLD recrystallization. The rotating frame 1H spin-lattice relaxation time (1H-T1ρ) measurement clarified that EUD-L was not well mixed with FLD in the ASD, which resulted in weak inhibition of recrystallization by EUD-L. In contrast, the HPMC-AS and PVP-VA were well mixed with the FLD in the ASDs. Solid-state 13C spin-lattice relaxation time (13C-T1) measurements at 40 °C showed that the molecular mobility of the FLD was strongly suppressed when mixed with polymer. The reduction in the molecular mobility of FLD was in the following order, starting with the least impact: FLD/EUD-L ASD, FLD/HPMC-AS ASD, and FLD/PVP-VA ASD. FLD mobility at the storage temperature, evaluated by 13C-T1, showed a good correlation with the physical stability of the amorphous FLD. The direct investigation of the molecular mobility of amorphous drugs at the storage temperature by solid-state NMR relaxation time measurement can be a useful tool in selecting the most effective crystallization inhibitor at low polymer loading.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Hitomi Okada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Zhijing Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
36
|
Wei MY, Lei XP, Fu JJ, Chen MY, Li JX, Yu XY, Lin YL, Liu JP, Du LR, Li X, Zhang Y, Miao YL, Huang YG, Liang L, Fu JJ. The use of amphiphilic copolymer in the solid dispersion formulation of nimodipine to inhibit drug crystallization in the release media: Combining nano-drug delivery system with solid preparations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110836. [PMID: 32279765 DOI: 10.1016/j.msec.2020.110836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Solid dispersion is a widely used method to improve the dissolution and oral bioavailability of water-insoluble drugs. However, due to the strong hydrophobicity, the drug crystallization in the release media after drug dissolution and the resulted decreased drug absorption retards the use of solid dispersions. It is widely known that the amphiphilic copolymer can encapsulate the hydrophobic compounds and help form stable nano-dispersions in water. Inspired by this, we tried to formulate the solid dispersion of nimodipine by using amphipathic copolymer as one of the carriers. Concerning the solid dispersions, there are many important points involved in these formulations, such as the miscibility between the drug and the carriers, the storage stability of solid dispersions, the dissolution enhancement and so on. In this study, a systemic method is proposed. In details, the supersaturation test and the glass transition temperature (Tg) measurement to predict the crystallization inhibition, the ratios of different components and the storage stability, the interactions among the components were investigated in detail by nuclear magnetic resonance (1H NMR) and isothermal titration calorimetry (ITC) and, the final dissolution and oral bioavailability enhancement. It was found that the amphiphilic copolymer used in the solid dispersion encouraged the formation the drug loading micelles in the release media and, finally, the problem of drug crystallization in the dissolution process was successfully solved.
Collapse
Affiliation(s)
- Min-Yan Wei
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue-Ping Lei
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing-Jing Fu
- Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou 221116, China
| | - Ming-Yue Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jie-Xia Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yin-Lei Lin
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Jing-Ping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ling-Ran Du
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Zhang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ying-Ling Miao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu-Gang Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lu Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ji-Jun Fu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China; The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
37
|
Pacult J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci 2019; 136:104947. [PMID: 31170526 DOI: 10.1016/j.ejps.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/24/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.
Collapse
Affiliation(s)
- Justyna Pacult
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Kurek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
38
|
Ishizuka Y, Ueda K, Okada H, Takeda J, Karashima M, Yazawa K, Higashi K, Kawakami K, Ikeda Y, Moribe K. Effect of Drug–Polymer Interactions through Hypromellose Acetate Succinate Substituents on the Physical Stability on Solid Dispersions Studied by Fourier-Transform Infrared and Solid-State Nuclear Magnetic Resonance. Mol Pharm 2019; 16:2785-2794. [DOI: 10.1021/acs.molpharmaceut.9b00301] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuya Ishizuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hitomi Okada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junpei Takeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| | - Masatoshi Karashima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| | - Koji Yazawa
- JEOL Resonance Incorpation, 3-1-2 Musashino, Akishima 196-8558, Tokyo, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kohsaku Kawakami
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yukihiro Ikeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
39
|
Tanaka R, Hattori Y, Horie Y, Kamada H, Nagato T, Otsuka M. Characterization of Amorphous Solid Dispersion of Pharmaceutical Compound with pH-Dependent Solubility Prepared by Continuous-Spray Granulator. Pharmaceutics 2019; 11:pharmaceutics11040159. [PMID: 30987131 PMCID: PMC6523299 DOI: 10.3390/pharmaceutics11040159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
A continuous-spray granulator (CTS-SGR) is a one-step granulation technology capable of using solutions or suspensions. The present research objectives were, (1) to reduce the manufacturing operations for solid dosage formulations, (2) to make amorphous solid dispersion (ASD) granules without pre-preparation of amorphous solids of active pharmaceutical ingredients (API), and (3) to characterize the obtained SGR granules by comprehensive pharmaceutical analysis. Rebamipide (RBM), a biopharmaceutical classification system class IV drug, that has low solubility or permeability in the stomach, was selected as a model compound. Five kind of granules with different concentrations of polyvinylpyrrolidone/vinyl acetate copolymer (PVP-VA) were prepared using a one-step SGR process. All of the SGR granules could be produced in amorphous or ASD form and their thermodynamic stability was very high because of high glass transition temperatures (>178 °C). They were unstable in 20 °C/75%RH; however, their stability was improved according to the proportion of polymer. The carboxy group of RBM was ionized in the granules and interactions appeared between RBM and PVP-VA, with the formation of an ASD confirmed and the solubility was enhanced compared with bulk RBM crystals. The SGR methodology has the possibility of contributing to process development in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ryoma Tanaka
- Graduate School of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yusuke Hattori
- Graduate School of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
| | - Yukun Horie
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
| | - Hitoshi Kamada
- Research & Development Department, Technical Division, Powrex Corporation, 5-5-5 Kitagawara, Itami, Hyogo 664-0837, Japan.
| | - Takuya Nagato
- Research & Development Department, Technical Division, Powrex Corporation, 5-5-5 Kitagawara, Itami, Hyogo 664-0837, Japan.
| | - Makoto Otsuka
- Graduate School of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
40
|
Shi X, Xu T, Huang W, Fan B, Sheng X. Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: the Synergistic Effect of Polymers and Drug-Polymer(s) Interactions. AAPS PharmSciTech 2019; 20:143. [PMID: 30887265 DOI: 10.1208/s12249-019-1358-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the synergistic effect of polymers and drug-polymer(s) interactions on the improved stability and bioavailability of telmisartan (TEL) ternary solid dispersions. As a water-insoluble drug, 40 and 160 mg doses of TEL tablets exhibited bioavailabilities of 42% and 58%, respectively. Through polymer screening, PVP K30 and/or Soluplus were selected and used at different concentrations to prepare TEL amorphous solid dispersions by solvent evaporation. Compared to pure TEL and TEL-PVP K30/Soluplus binary solid dispersions, TEL-PVP K30-Soluplus ternary solid dispersions demonstrated significant advantages, including higher dissolution (over 90% release at 60 min), better amorphous stability (physically stable in 90 days), and improved oral bioavailability (Cmax of 5535.819 ± 325.67 ng/mL and tmax of 1 h). These advantages were related to the complementarity of PVP K30 and Soluplus on TEL. PVP K30 had a better activity to solubilize TEL and achieved a high TEL initial concentration in dissolution media. Simultaneously, the ability of Soluplus to assist in the maintenance of supersaturation played an important role. PVP K30 and Soluplus together inhibited crystallization of the drug at different stages. The existence and intensity of drug-polymer interactions were also determined by DSC (Tg determination) and FT-IR. At the molecular level, a hypothesis was also proposed that the enhancements resulted from the contribution of the synergistic effect between PVP K30 and Soluplus. These results suggested that two polymers, in a combination and via a synergistic effect, could further enhance the bioavailability and amorphous stability of ternary solid dispersions.
Collapse
|
41
|
Frank DS, Matzger AJ. Effect of Polymer Hydrophobicity on the Stability of Amorphous Solid Dispersions and Supersaturated Solutions of a Hydrophobic Pharmaceutical. Mol Pharm 2019; 16:682-688. [PMID: 30645134 PMCID: PMC6545895 DOI: 10.1021/acs.molpharmaceut.8b00972] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amorphous solid dispersions of pharmaceuticals often show improved solubility over crystalline forms. However, the crystallization of amorphous solid dispersions during storage, or from elevated supersaturation once dissolved, compromise the solubility advantage of delivery in the amorphous phase. To combat this phenomenon, polymer additives are often included in solid dispersions to inhibit crystallization; however, the optimal properties for polymer to stabilize against crystallization are not fully understood, and furthermore, it is not known how inhibition of precipitation from solution is related to the propensity of a polymer to inhibit crystallization from the amorphous phase. Here, polymers of varied hydrophobicity are employed as crystallization inhibitors in supersaturated solutions and amorphous solid dispersions of the BCS Class II pharmaceutical ethenzamide to investigate the chemical features of polymer that lead to long-term stability for a hydrophobic pharmaceutical. A postpolymerization functionalization strategy was employed to alter the hydrophobicity of poly( N-hydroxyethyl acrylamide) without changing physical properties such as number-average chain length. It was found that supersaturation maintenance for ethenzamide is improved by increasing the hydrophobicity of dissolved polymer in aqueous solution. Furthermore, amorphous solid dispersions of ethenzamide containing a more hydrophobic polymer showed superior stability compared to those containing a less hydrophobic polymer. This trend of increasing polymer hydrophobicity leading to improved amorphous stability is interpreted by parsing the effects of water absorption in amorphous solid dispersions using intermolecular interaction strengths derived from global structural analysis. By comparing the structure-function relationships, which dictate stability in solution and amorphous solid dispersions, the effect of hydrophobicity can be broadly understood for the design of polymers to impart stability throughout the application of amorphous solid dispersions.
Collapse
Affiliation(s)
- Derek S. Frank
- Department of Chemistry and the Macromolecular Science & Engineering Program, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam J. Matzger
- Department of Chemistry and the Macromolecular Science & Engineering Program, The University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
How changes in molecular weight and PDI of a polymer in amorphous solid dispersions impact dissolution performance. Int J Pharm 2019; 556:372-382. [DOI: 10.1016/j.ijpharm.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023]
|