1
|
Gong C, Bertagnolli LN, Boulton DW, Coppola P. A Literature Review of Changes in Phase II Drug-Metabolizing Enzyme and Drug Transporter Expression during Pregnancy. Pharmaceutics 2023; 15:2624. [PMID: 38004602 PMCID: PMC10674389 DOI: 10.3390/pharmaceutics15112624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this literature review is to comprehensively summarize changes in the expression of phase II drug-metabolizing enzymes and drug transporters in both the pregnant woman and the placenta. Using PubMed®, a systematic search was conducted to identify literature relevant to drug metabolism and transport in pregnancy. PubMed was searched with pre-specified terms during the period of 26 May 2023 to 10 July 2023. The final dataset of 142 manuscripts was evaluated for evidence regarding the effect of gestational age and hormonal regulation on the expression of phase II enzymes (n = 16) and drug transporters (n = 38) in the pregnant woman and in the placenta. This comprehensive review exposes gaps in current knowledge of phase II enzyme and drug transporter localization, expression, and regulation during pregnancy, which emphasizes the need for further research. Moreover, the information collected in this review regarding phase II drug-metabolizing enzyme and drug transporter changes will aid in optimizing pregnancy physiologically based pharmacokinetic (PBPK) models to inform dose selection in the pregnant population.
Collapse
Affiliation(s)
- Christine Gong
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lynn N. Bertagnolli
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Gaithersburg, MD 20878, USA
| | - David W. Boulton
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Gaithersburg, MD 20878, USA
| | - Paola Coppola
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Cambridge CB2 0AA, UK
| |
Collapse
|
2
|
Chang CH, Peng WY, Lee WH, Lin TY, Yang MH, Dalley JW, Tsai TH. Transfer and biotransformation of the COVID-19 prodrug molnupiravir and its metabolite β-D-N4-hydroxycytidine across the blood-placenta barrier. EBioMedicine 2023; 95:104748. [PMID: 37544201 PMCID: PMC10427982 DOI: 10.1016/j.ebiom.2023.104748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Molnupiravir is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC) and is used to treat coronavirus disease 2019 (COVID-19). However, the pharmacokinetics and transplacental transfer of molnupiravir in pregnant women are still not well understood. In the present study, we investigated the hypothesis that molnupiravir and NHC cross the blood-placenta barrier into the fetus. METHODS A multisite microdialysis coupled with a validated ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC‒MS/MS) system was developed to monitor the dialysate levels of molnupiravir and NHC in maternal rat blood and conceptus (the collective term for the fetus, placenta, and amniotic fluid). Molnupiravir was administered intravenously (100 mg/kg, i.v.) on gestational day 16. To investigate the mechanism of transport of molnupiravir across the blood-placenta barrier, we coadministered nitrobenzylthioinosine (NBMPR, 10 mg/kg, i.v.) to inhibit equilibrative nucleoside transporter (ENT). FINDINGS We report that molnupiravir is rapidly metabolized to NHC and then rapidly transformed in the fetus, placenta, amniotic fluid, and maternal blood. Our pharmacokinetics analysis revealed that the area under the concentration curve (AUC) for the mother-to-fetus ratio (AUCfetus/AUCblood) of NHC was 0.29 ± 0.11. Further, we demonstrated that the transport of NHC in the placenta may not be subject to modulation by the ENT. INTERPRETATION Our results show that NHC is the predominant bioactive metabolite of molnupiravir and rapidly crosses the blood-placenta barrier in pregnant rats. The NHC concentration in maternal blood and conceptus was above the average median inhibitory concentration (IC50) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggesting a therapeutic effect. These findings support the use of molnupiravir in pregnant patients infected with COVID. FUNDING This study was supported in part by research grants from the National Science and Technology Council of Taiwan (NSTC 111-2113-M-A49-018 and NSTC 112-2321-B-A49-005).
Collapse
Affiliation(s)
- Chun-Hao Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Ya Peng
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wan-Hsin Lee
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Cerveny L, Karbanova S, Karahoda R, Horackova H, Jiraskova L, Ali MNH, Staud F. Assessment of the role of nucleoside transporters, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the placental transport of entecavir using in vitro, ex vivo, and in situ methods. Toxicol Appl Pharmacol 2023; 463:116427. [PMID: 36801311 DOI: 10.1016/j.taap.2023.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mohammed Naji Husaen Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Lintao RCV, Kammala AK, Vora N, Yaklic JL, Menon R. Fetal membranes exhibit similar nutrient transporter expression profiles to the placenta. Placenta 2023; 135:33-42. [PMID: 36913807 DOI: 10.1016/j.placenta.2023.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION During pregnancy, the growth of the fetus is supported by the exchange of nutrients, waste, and other molecules between maternal and fetal circulations in the utero-placental unit. Nutrient transfer, in particular, is mediated by solute transporters such as solute carrier (SLC) and adenosine triphosphate-binding cassette (ABC) proteins. While nutrient transport has been extensively studied in the placenta, the role of human fetal membranes (FM), which was recently reported to have a role in drug transport, in nutrient uptake remains unknown. OBJECTIVES This study determined nutrient transport expression in human FM and FM cells and compared expression with placental tissues and BeWo cells. METHODS RNA sequencing (RNA-Seq) of placental and FM tissues and cells was done. Genes of major solute transporter groups, such as SLC and ABC, were identified. Proteomic analysis of cell lysates was performed via nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to confirm expression at a protein level. RESULTS We determined that FM tissues and cells derived from the fetal membrane tissues express nutrient transporter genes, and their expression is similar to that seen in the placenta or BeWo cells. In particular, transporters involved in macronutrient and micronutrient transfer were identified in both placental and FM cells. Consistent with RNA-Seq findings, carbohydrate transporters (3), vitamin transport-related proteins (8), amino acid transporters (21), fatty acid transport-related proteins (9), cholesterol transport-related proteins (6) and nucleoside transporters (3) were identified in BeWo and FM cells, with both groups sharing similar nutrient transporter expression. CONCLUSION This study determined the expression of nutrient transporters in human FMs. This knowledge is the first step in improving our understanding of nutrient uptake kinetics during pregnancy. Functional studies are required to determine the properties of nutrient transporters in human FMs.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; College of Medicine, University of the Philippines Manila, 547 Pedro Gil St., Manila, 1000, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; John Sealy School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Jerome L Yaklic
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
5
|
Cerveny L, Murthi P, Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166206. [PMID: 34197912 DOI: 10.1016/j.bbadis.2021.166206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
An estimated 1.3 million pregnant women were living with HIV in 2018. HIV infection is associated with adverse pregnancy outcomes and all HIV-positive pregnant women, regardless of their clinical stage, should receive a combination of antiretroviral drugs to suppress maternal viral load and prevent vertical fetal infection. Although antiretroviral treatment in pregnant women has undoubtedly minimized mother-to-child transmission of HIV, several uncertainties remain. For example, while pregnancy is accompanied by changes in pharmacokinetic parameters, relevant data from clinical studies are lacking. Similarly, long-term adverse effects of exposure to antiretrovirals on fetuses have not been studied in detail. Here, we review current knowledge on HIV effects on the placenta and developing fetus, recommended antiretroviral regimens, and pharmacokinetic considerations with particular focus on placental transport. We also discuss recent advances in antiretroviral research and potential effects of antiretroviral treatment on placental/fetal development and programming.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Padma Murthi
- Department of Medicine, School of Clinical Sciences, and Department of Pharmacology, Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia; Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Gorczyca L, Du J, Bircsak KM, Wen X, Vetrano AM, Aleksunes LM. Low oxygen tension differentially regulates the expression of placental solute carriers and ABC transporters. FEBS Lett 2020; 595:811-827. [PMID: 32978975 DOI: 10.1002/1873-3468.13937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023]
Abstract
Low oxygen concentration, or hypoxia, is an important physiological regulator of placental function including chemical disposition. Here, we compared the ability of low oxygen tension to alter the expression of solute carriers (SLC) and ABC transporters in two human placental models, namely BeWo cells and term placental explants. We found that exposure to low oxygen concentration differentially regulates transporter expression in BeWo cells, including downregulation of ENT1, OATP4A1, OCTN2, BCRP, and MRP2/3/5, and upregulation of CNT1, OAT4, OATP2B1, SERT, SOAT, and MRP1. Similar upregulation of MRP1 and downregulation of MRP5 and BCRP were observed in explants, whereas uptake transporters were decreased or unchanged. Furthermore, a screening of transcriptional regulators of transporters revealed that hypoxia leads to a decrease in the mRNA levels of aryl hydrocarbon receptor, nuclear factor erythroid 2-related factor 2, and retinoid x receptor alpha in both human placental models. These data suggest that transporter expression is differentially regulated by oxygen concentration across experimental human placental models.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Jianyao Du
- China Pharmaceutical University, Nanjing, China
| | - Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anna M Vetrano
- Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.,Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
7
|
Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L, Kucera R, Albrecht C, Staud F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front Cell Dev Biol 2020; 8:574034. [PMID: 33072756 PMCID: PMC7530341 DOI: 10.3389/fcell.2020.574034] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
L-Tryptophan is an essential amino acid and a precursor of several physiologically active metabolites. In the placenta, the serotonin and kynurenine metabolic pathways of tryptophan metabolism have been identified, giving rise to various molecules of neuroactive or immunoprotective properties, such as serotonin, melatonin, kynurenine, kynurenic acid, or quinolinic acid. Current literature suggests that optimal levels of these molecules in the fetoplacental unit are crucial for proper placenta functions, fetal development and programming. Placenta is a unique endocrine organ that, being equipped with a battery of biotransformation enzymes and transporters, precisely orchestrates homeostasis of tryptophan metabolic pathways. However, because pregnancy is a dynamic process and placental/fetal needs are continuously changing throughout gestation, placenta must adapt to these changes and ensure proper communication in the feto-placental unit. Therefore, in this study we investigated alterations of placental tryptophan metabolic pathways throughout gestation. Quantitative polymerase chain reaction (PCR) analysis of 21 selected genes was carried out in first trimester (n = 13) and term (n = 32) placentas. Heatmap analysis with hierarchical clustering revealed differential gene expression of serotonin and kynurenine pathways across gestation. Subsequently, digital droplet PCR, Western blot, and functional analyses of the rate-limiting enzymes suggest preferential serotonin synthesis early in pregnancy with a switch to kynurenine production toward term. Correspondingly, increased function and/or protein expression of serotonin degrading enzyme and transporters at term indicates efficient placental uptake and metabolic degradation of serotonin. Lastly, gene expression analysis in choriocarcinoma-derived cell lines (BeWo, BeWo b30, JEG-3) revealed dissimilar expression patterns and divergent effect of syncytialization compared to primary trophoblast cells isolated from human term placentas; these findings show that the commonly used in vitro placental models are not suitable to study placental handling of tryptophan. Altogether, our data provide the first comprehensive evidence of changes in placental homeostasis of tryptophan and its metabolites as a function of gestational age, which is critical for proper placental function and fetal development.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
8
|
S-(4-Nitrobenzyl)-6-thioinosine (NBMPR) is Not a Selective Inhibitor of Equilibrative Nucleoside Transporters but Also Blocks Efflux Activity of Breast Cancer Resistance Protein. Pharm Res 2020; 37:58. [PMID: 32086630 DOI: 10.1007/s11095-020-2782-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE S-(4-Nitrobenzyl)-6-thioinosine (NBMPR) is routinely used at concentrations of 0.10 μM and 0.10 mM to specifically inhibit transport of nucleosides mediated by equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2), respectively. We recently showed that NBMPR (0.10 mM) might also inhibit placental active efflux of [3H]zidovudine and [3H]tenofovir disoproxil fumarate. Here we test the hypothesis that NBMPR abolishes the activity of P-glycoprotein (ABCB1) and/or breast cancer resistance protein (ABCG2). METHODS We performed accumulation assays with Hoechst 33342 (a model dual substrate of ABCB1 and ABCG2) and bi-directional transport studies with the ABCG2 substrate [3H]glyburide in transduced MDCKII cells, accumulation studies in choriocarcinoma-derived BeWo cells, and in situ dual perfusions of rat term placenta with glyburide. RESULTS NBMPR inhibited Hoechst 33342 accumulation in MDCKII-ABCG2 cells (IC50 = 53 μM) but not in MDCKII-ABCB1 and MDCKII-parental cells. NBMPR (0.10 mM) also inhibited bi-directional [3H]glyburide transport across monolayers of MDCKII-ABCG2 cells and blocked ABCG2-mediated [3H]glyburide efflux by rat term placenta in situ. CONCLUSION NBMPR at a concentration of 0.10 mM abolishes ABCG2 activity. Researchers using NBMPR to evaluate the effect of ENTs on pharmacokinetics must therefore interpret their results carefully if studying compounds that are substrates of both ENTs and ABCG2.
Collapse
|
9
|
Are ENT1/ENT1, NOTCH3, and miR-21 Reliable Prognostic Biomarkers in Patients with Resected Pancreatic Adenocarcinoma Treated with Adjuvant Gemcitabine Monotherapy? Cancers (Basel) 2019; 11:cancers11111621. [PMID: 31652721 PMCID: PMC6893654 DOI: 10.3390/cancers11111621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Evidence on equilibrative nucleoside transporter 1 (ENT1) and microRNA-21 (miR‑21) is not yet sufficiently convincing to consider them as prognostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the prognostic value of ENT1/ENT1, miR-21, and neurogenic locus homolog protein 3 gene (NOTCH3) in a well-defined cohort of resected patients treated with adjuvant gemcitabine chemotherapy (n = 69). Using a combination of gene expression quantification in microdissected tissue, immunohistochemistry, and univariate/multivariate statistical analyses we did not confirm association of ENT1/ENT1 and NOTCH3 with improved disease-specific survival (DSS). Low miR-21 was associated with longer DSS in patients with negative regional lymph nodes or primary tumor at stage 1 and 2. In addition, downregulation of ENT1 was observed in PDAC of patients with high ENT1 expression in normal pancreas, whereas NOTCH3 was upregulated in PDAC of patients with low NOTCH3 levels in normal pancreas. Tumor miR‑21 was upregulated irrespective of its expression in normal pancreas. Our data confirmed that patient stratification based on expression of ENT1/ENT1 or miR‑21 is not ready to be implemented into clinical decision-making processes. We also conclude that occurrence of ENT1 and NOTCH3 deregulation in PDAC is dependent on their expression in normal pancreas.
Collapse
|
10
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Transport of ribavirin across the rat and human placental barrier: Roles of nucleoside and ATP-binding cassette drug efflux transporters. Biochem Pharmacol 2019; 163:60-70. [DOI: 10.1016/j.bcp.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
|
12
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Cerveny L, Ptackova Z, Ceckova M, Karahoda R, Karbanova S, Jiraskova L, Greenwood SL, Glazier JD, Staud F. Equilibrative Nucleoside Transporter 1 (ENT1, SLC29A1) Facilitates Transfer of the Antiretroviral Drug Abacavir across the Placenta. Drug Metab Dispos 2018; 46:1817-1826. [PMID: 30097436 DOI: 10.1124/dmd.118.083329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
Abacavir is a preferred antiretroviral drug for preventing mother-to-child human immunodeficiency virus transmission; however, mechanisms of its placental transfer have not been satisfactorily described to date. Because abacavir is a nucleoside-derived drug, we hypothesized that the nucleoside transporters, equilibrative nucleoside transporters (ENTs, SLC29A) and/or Na+-dependent concentrative nucleoside transporters (CNTs, SLC28A), may play a role in its passage across the placenta. To test this hypothesis, we performed uptake experiments using the choriocarcinoma-derived BeWo cell line, human fresh villous fragments, and microvillous plasma membrane (MVM) vesicles. Using endogenous substrates of nucleoside transporters, [3H]-adenosine (ENTs, CNT2, and CNT3) and [3H]-thymidine (ENTs, CNT1, and CNT3), we showed significant activity of ENT1 and CNT2 in BeWo cells, whereas experiments in the villous fragments and MVM vesicles, representing a model of the apical membrane of a syncytiotrophoblast, revealed only ENT1 activity. When testing [3H]-abacavir uptakes, we showed that of the nucleoside transporters, ENT1 plays the dominant role in abacavir uptake into placental tissues, whereas contribution of Na+-dependent transport, most likely mediated by CNTs, was observed only in BeWo cells. Subsequent experiments with dually perfused rat term placentas showed that Ent1 contributes significantly to overall [3H]-abacavir placental transport. Finally, we quantified the expression of SLC29A in first- and third-trimester placentas, revealing that SLC29A1 is the dominant isoform. Neither SLC29A1 nor SLC29A2 expression changed over the course of placental development, but there was considerable interindividual variability in their expression. Therefore, drug-drug interactions and the effect of interindividual variability in placental ENT1 expression on abacavir disposition into fetal circulation should be further investigated to guarantee safe and effective abacavir-based combination therapies in pregnancy.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Zuzana Ptackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Susan L Greenwood
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Jocelyn D Glazier
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| |
Collapse
|
14
|
Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol 2018; 105:35-40. [PMID: 30266525 DOI: 10.1016/j.biocel.2018.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/12/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
Abstract
The placenta is the first organ to be created during mammalian development. As the main link between the mother and the fetus it has more diverse functions than any other organ, serving as a digestive, excretory, respiratory, endocrine, and immune system. The outer layer of the placenta, the trophoblast, plays a key role in fetal development by orchestrating all these functions. Recent research has associated perturbations of maternal conditions (such as malnutrition, stress or inflammation) with alterations of the trophoblasts' endocrine, transport and metabolic processes. As reviewed here, adaptations to these conditions enable the fetus to survive, but at the cost of permanently changing its physiology and structure. Moreover, these adaptations trigger fetal programming that increases predisposition to various pathological conditions in adult life, typically metabolic, cardiovascular or CNS diseases.
Collapse
|