1
|
Muliaditan M, van Steeg TJ, Avery LB, Sun W, Hammond TR, Hijdra D, Choi SL, Pillai N, Leksa NC, Mavroudis PD. Translational minimal physiologically based pharmacokinetic model for transferrin receptor-mediated brain delivery of antibodies. MAbs 2025; 17:2515414. [PMID: 40568753 DOI: 10.1080/19420862.2025.2515414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/29/2025] [Accepted: 05/30/2025] [Indexed: 06/28/2025] Open
Abstract
Successful development of monoclonal antibodies (mAbs) for the treatment of central nervous system disorders has been challenging due to their minimal ability to cross the blood-brain barrier (BBB), resulting in poor brain exposure. Bispecific antibodies (bsAb) that bind to transmembrane protein expressed at the BBB, such as the transferrin receptor (TfR), have shown enhanced brain exposure in rodents and non-human primate (NHP) due to receptor-mediated transcytosis. However, it remains unclear how preclinical findings translate to humans. Moreover, optimal TfR binding affinity remains a subject of debate. Model-informed drug discovery and development is a powerful approach that has been successfully used to support research and development. The goal of this analysis was to expand a published brain minimal physiologically based pharmacokinetic (mPBPK) model to investigate the optimal TfR binding affinity for maximal brain delivery in NHP and to facilitate prediction of the PK of anti-TfR bsAbs in humans from NHP data. Literature data for plasma, cerebrospinal fluid (CSF), and brain exposure after administration of non-TfR mAbs and monovalent bsAbs with respect to TfR in NHP were used to develop the TfR mPBPK model. Clinical validation using human PK data from plasma and CSF for the monovalent anti-TfR bsAb trontinemab demonstrated good predictive performance without major model recalibration. The availability of the TfR mPBPK model is envisaged to provide better understanding of the relationship between TfR binding affinity, dose, and brain exposure, which would lead to more robust selection of lead candidates and efficacious dosing regimens.
Collapse
Affiliation(s)
- Morris Muliaditan
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Tamara J van Steeg
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Lindsay B Avery
- Sanofi, Quantitative Pharmacology-Innovation, Cambridge, MA, USA
| | - Wei Sun
- Sanofi, Quantitative Pharmacology-Innovation, Cambridge, MA, USA
| | | | - Diana Hijdra
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Siak-Leng Choi
- Sanofi, Quantitative Pharmacology-Pharmacometrics, Vitry-Sur-Seine, France
| | - Nikhil Pillai
- Sanofi, Quantitative Pharmacology-Pharmacometrics, Cambridge, MA, USA
| | - Nina C Leksa
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | | |
Collapse
|
2
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Koenig L, Juglair L, Tao TP, Fischer S, Clausen I, Imhof-Jung S, Janssen N, Mader R, Marbach D, Niewoehner J, Winter A, Schubert D. A microfluidic bone marrow chip for the safety profiling of biologics in pre-clinical drug development. Commun Biol 2025; 8:754. [PMID: 40374778 PMCID: PMC12081850 DOI: 10.1038/s42003-025-08137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/27/2025] [Indexed: 05/18/2025] Open
Abstract
Hematologic adverse events are common dose-limiting toxicities in drug development. Classical animal models for preclinical safety assessment of immunotherapies are often limited due to insufficient cross-reactivity with non-human homologous proteins, immune system differences, and ethical considerations. Therefore, we evaluate a human bone marrow (BM) microphysiological system (MPS) for its ability to predict expected hematopoietic liabilities of immunotherapeutics. The BM-MPS consists of a closed microfluidic circuit containing a ceramic scaffold covered with human mesenchymal stromal cells and populated with human BM-derived CD34+ cells in chemically defined growth factor-enriched media. The model supports on-chip differentiation of erythroid, myeloid and NK cells from CD34+ cells over 31 days. The hematopoietic lineage balance and output is responsive to pro-inflammatory factors and cytokines. Treatment with a transferrin receptor-targeting IgG1 antibody results in inhibition of on-chip erythropoiesis. The immunocompetence of the chip is established by the addition of peripheral blood T cells in a fully autologous setup. Treatment with T cell bispecific antibodies induces T cell activation and target cell killing consistent with expected on-target off-tumor toxicities. In conclusion, this study provides a proof-of-concept that this BM-MPS is applicable for in vitro hematopoietic safety profiling of immunotherapeutics.
Collapse
Affiliation(s)
| | - Laurent Juglair
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Susanne Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Inga Clausen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sabine Imhof-Jung
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Penzberg, Germany
| | - Niels Janssen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Robert Mader
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jens Niewoehner
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Penzberg, Germany
| | | | - Desirée Schubert
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
4
|
Østergaard ME, Carrer M, Anderson BA, Afetian M, Bakooshli M, Santos JA, Klein SK, Capitanio J, Freestone G, Tanowitz M, Galindo-Murillo R, Gaus HJ, Dwyer C, Jackson M, Jafar-nejad P, Rigo F, Seth PP, Gaynor KU, Stanway SJ, Urbonas L, St. Denis MA, Pellegrino S, Bezerra G, Rigby M, Gowans E, Van Rietschoten K, Beswick P, Chen L, Skynner MJ, Swayze EE. Conjugation to a transferrin receptor 1-binding Bicycle peptide enhances ASO and siRNA potency in skeletal and cardiac muscles. Nucleic Acids Res 2025; 53:gkaf270. [PMID: 40207629 PMCID: PMC11983102 DOI: 10.1093/nar/gkaf270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/29/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Improving the delivery of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) to skeletal and cardiac muscles remains a pivotal task toward the broader application of oligonucleotide therapeutics. The targeting of myofibers and cardiomyocytes via conjugation of ASOs and siRNAs to ligands that bind the human transferrin receptor 1 (TfR1) has gathered significant interest in recent years. However, the selection of ligands with low molecular weight and optimal biophysical and binding properties is crucial to maximize the potential of the TfR1 ligand-conjugated antisense (LICA) technology. Here, through effective combination of phage display and peptide medicinal chemistry, we identified and characterized a bicyclic peptide (Bicycle® molecule BCY17901), with a molecular weight of ∼2 kDa, that binds human TfR1 with high affinity and specificity. Conjugation to BCY17901 improved ASO and siRNA potency in skeletal and cardiac muscles of human TfR1 knock-in mice, after either intravenous or subcutaneous administration. Furthermore, single-nucleus RNA sequencing showed that conjugation to BCY17901 enhanced ASO activity in myonuclei of different muscle fiber types. Importantly, we demonstrated good translatability of our TfR1-targeting platform in skeletal and cardiac muscles of nonhuman primates. Our results offer great promise toward potential future applications of low-molecular-weight Bicycle LICA therapeutics for the treatment of diseases affecting skeletal muscle and heart.
Collapse
Affiliation(s)
- Michael E Østergaard
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Michele Carrer
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Brooke A Anderson
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Megan Afetian
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Mohsen A Bakooshli
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Jinro A Santos
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Stephanie K Klein
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Juliana Capitanio
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Graeme C Freestone
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Michael Tanowitz
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | | | - Hans J Gaus
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Chrissa A Dwyer
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Michaela Jackson
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Paymaan Jafar-nejad
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Punit P Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Katherine U Gaynor
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Steven J Stanway
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Liudvikas Urbonas
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Megan A St. Denis
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Simone Pellegrino
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Gustavo A Bezerra
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Michael Rigby
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Ellen Gowans
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | | | - Paul Beswick
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Liuhong Chen
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Michael J Skynner
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Eric E Swayze
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, United States
| |
Collapse
|
5
|
Schumacher VL, Pichereau S, Bessa J, Bachl J, Herter S, Weber FC, Auer J, Kipar A, Winter M, Stirn M, Otteneder MB, Brady K, Eichinger‐Chapelon A, Roth A, Stokar‐Regenscheit N, Clemann N, Seger S, Senn C, Hönig J, Jany C, Lenarda ED, Tissot AC, Klein C, von Büdingen H, Mader R, Ullah M, Janssen N, Urich E. Preclinical B cell depletion and safety profile of a brain-shuttled crystallizable fragment-silenced CD20 antibody. Clin Transl Med 2025; 15:e70178. [PMID: 40118783 PMCID: PMC11928292 DOI: 10.1002/ctm2.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/30/2024] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a major challenge for the development of monoclonal antibody (mAb)-based therapies for brain disorders. To improve the likelihood of success of such therapies, Roche Brainshuttle technology utilizes a single anti-transferrin receptor 1 (TfR1)-antigen-binding antibody fragment linked to a therapeutic antibody, allowing engagement with TfR1 to transport the therapeutic antibody into the brain via receptor-mediated transcytosis. METHODS We compared Fc-silenced and Fc-competent variants of the Brainshuttle and the parental (non-shuttled) type II CD20 mAb, obinutuzumab in in vitro and in vivo (mouse and cynomolgus macaque) models. Endpoints assessed included B cell binding, B cell killing, tolerability, and ability to cross the BBB. RESULTS The Fc-silenced Brainshuttle construct showed a superior safety profile compared with the Fc-competent construct while maintaining the ability to cross the BBB and to deplete B cells in head-to-head comparisons in human and mouse in vitro and in mouse and cynomolgus macaque in vivo models. CONCLUSION Together, our data provide a path forward for the future development of safe and efficacious brain-targeted B-cell-depleting therapies. KEY POINTS The BBB hinders mAb-based brain disorder therapies A brain-targeted B-cell-depleting mAb for MS that efficiently crosses the BBB via hTfR1 was developed using Brainshuttle™ technology (1a and 1b) The Brainshuttle™-CD20 mAb was well tolerated (2a and 2b) and displayed B-cell-killing properties (1c), paving the way for future development and clinical translation of TfR1-targetingtherapies for increased brain penetration.
Collapse
Affiliation(s)
| | - Solen Pichereau
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
- Present address:
DebiopharmLausanneVaudSwitzerland
| | - Juliana Bessa
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Juergen Bachl
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Sylvia Herter
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterZurichSwitzerland
| | - Felix C. Weber
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Johannes Auer
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterMunichGermany
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary PathologyVetsuisse Faculty, University of ZurichZürichSwitzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Michael Winter
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Martina Stirn
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Michael B. Otteneder
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Kevin Brady
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
- Present address:
KB NBE Consulting, Charfield, Wotton‐under‐EdgeUK
| | | | - Adrian Roth
- Personalized Healthcare Safety, Product DevelopmentF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | | | - Nicole Clemann
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Shanon Seger
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Claudia Senn
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Juliane Hönig
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Cordula Jany
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterMunichGermany
| | - Elisa Di Lenarda
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Alain C. Tissot
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterMunichGermany
- Present address:
Bayer AGLeverkusen51373Germany
| | - Christian Klein
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterZurichSwitzerland
- Present address:
Curie.Bio, LLCBostonMA02115USA
| | | | - Robert Mader
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Mohammed Ullah
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
- Present address:
Ridgeline Discovery GmbHTechnologieparkHochbergerstrasse 60F, CH‐4057BaselSwitzerland
| | - Niels Janssen
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Eduard Urich
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
- Present address:
Novartis NeuroscienceBaselSwitzerland
| |
Collapse
|
6
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
7
|
Masloh S, Chevrel A, Culot M, Perrocheau A, Kalia YN, Frehel S, Gaussin R, Gosselet F, Huet S, Zeisser Labouebe M, Scapozza L. Enhancing Oral Delivery of Biologics: A Non-Competitive and Cross-Reactive Anti-Leptin Receptor Nanofitin Demonstrates a Gut-Crossing Capacity in an Ex Vivo Porcine Intestinal Model. Pharmaceutics 2024; 16:116. [PMID: 38258126 PMCID: PMC10820293 DOI: 10.3390/pharmaceutics16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Biotherapeutics exhibit high efficacy in targeted therapy, but their oral delivery is impeded by the harsh conditions of the gastrointestinal (GI) tract and limited intestinal absorption. This article presents a strategy to overcome the challenges of poor intestinal permeability by using a protein shuttle that specifically binds to an intestinal target, the leptin receptor (LepR), and exploiting its capacity to perform a receptor-mediated transport. Our proof-of-concept study focuses on the characterization and transport of robust affinity proteins, known as Nanofitins, across an ex vivo porcine intestinal model. We describe the potential to deliver biologically active molecules across the mucosa by fusing them with the Nanofitin 1-F08 targeting the LepR. This particular Nanofitin was selected for its absence of competition with leptin, its cross-reactivity with LepR from human, mouse, and pig hosts, and its shuttle capability associated with its ability to induce a receptor-mediated transport. This study paves the way for future in vivo demonstration of a safe and efficient oral-to-systemic delivery of targeted therapies.
Collapse
Affiliation(s)
- Solene Masloh
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Maxime Culot
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
| | | | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Samuel Frehel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Rémi Gaussin
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
| | - Simon Huet
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
8
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
9
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
10
|
Choi ES, Shusta EV. Strategies to identify, engineer, and validate antibodies targeting blood-brain barrier receptor-mediated transcytosis systems for CNS drug delivery. Expert Opin Drug Deliv 2023; 20:1789-1800. [PMID: 38007619 PMCID: PMC10842915 DOI: 10.1080/17425247.2023.2286371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION Numerous therapeutics for neurological diseases have been developed, but many have failed in clinical trials in part due to limited brain bioavailability, mainly stemming from inefficient transport through the blood-brain barrier (BBB). One potential approach to noninvasive, BBB-targeted drug delivery to the brain is the use of engineered antibodies as delivery vehicles that can transport conjugated drug cargo across the BBB and into the brain via receptor-mediated transcytosis (RMT). Effective development of these RMT targeting systems includes novel target discovery, along with antibody engineering and subsequent validation. AREAS COVERED This review focuses on both known and emerging RMT systems, targeting antibody properties in relation to BBB trafficking, and antibody validation strategies. EXPERT OPINION Clinical development of known RMT targeting systems and identification of novel BBB RMT targets will be complementary strategies for overcoming the BBB in central nervous system (CNS) disease treatment. The search for new RMT targets with higher brain specificity and enriched expression in the brain has given rise to some new targets which may offer unique benefits. It is our opinion that the expansion of BBB RMT system identification, along with targeting molecule engineering and validation strategies, will substantially contribute to the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Eun Seo Choi
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, USA
| |
Collapse
|
11
|
Pakula RJ, Scott PJH. Applications of radiolabeled antibodies in neuroscience and neuro-oncology. J Labelled Comp Radiopharm 2023; 66:269-285. [PMID: 37322805 DOI: 10.1002/jlcr.4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Positron emission tomography (PET) is a powerful tool in medicine and drug development, allowing for non-invasive imaging and quantitation of biological processes in live organisms. Targets are often probed with small molecules, but antibody-based PET is expanding because of many benefits, including ease of design of new antibodies toward targets, as well as the very strong affinities that can be expected. Application of antibodies to PET imaging of targets in the central nervous system (CNS) is a particularly nascent field, but one with tremendous potential. In this review, we discuss the growth of PET in imaging of CNS targets, present the promises and progress in antibody-based CNS PET, explore challenges faced by the field, and discuss questions that this promising approach will need to answer moving forward for imaging and perhaps even radiotherapy.
Collapse
Affiliation(s)
- Ryan J Pakula
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Kaur T, Upadhyay J, Pukale S, Mathur A, Ansari MN. Investigation of Trends in the Research on Transferrin Receptor-Mediated Drug Delivery via a Bibliometric and Thematic Analysis. Pharmaceutics 2022; 14:pharmaceutics14122574. [PMID: 36559067 PMCID: PMC9788388 DOI: 10.3390/pharmaceutics14122574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
This study systematically reviews and characterizes the existing literature on transferrin/transferrin receptor-mediated drug delivery. Transferrin is an iron-binding protein. It can be used as a ligand to deliver various proteins, genes, ions, and drugs to the target site via transferrin receptors for therapeutic or diagnostic purposes via transferrin receptors. This study is based on a cross-sectional bibliometric analysis of 583 papers limited to the subject areas of pharmacology, toxicology, and pharmaceutics as extracted from the Scopus database in mid-September 2022. The data were analyzed, and we carried out a performance analysis and science mapping. There was a significant increase in research from 2018 onward. The countries that contributed the most were the USA and China, and most of the existing research was found to be from single-country publications. Research studies on transferrin/transferrin receptor-mediated drug delivery focus on drug delivery across the blood-brain barrier in the form of nanoparticles. The thematic analysis revealed four themes: transferrin/transferrin receptor-mediated drug delivery to the brain, cancer cells, gene therapy, nanoparticles, and liposomes as drug delivery systems. This study is relevant to academics, practitioners, and decision makers interested in targeted and site-specific drug delivery.
Collapse
Affiliation(s)
- Tarnjot Kaur
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, India
- Correspondence: (J.U.); (M.N.A.)
| | | | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
- Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (J.U.); (M.N.A.)
| |
Collapse
|
13
|
Shin JW, An S, Kim D, Kim H, Ahn J, Eom J, You WK, Yun H, Lee B, Sung B, Jung J, Kim S, Son Y, Sung E, Lee H, Lee S, Song D, Pak Y, Sandhu JK, Haqqani AS, Stanimirovic DB, Yoo J, Kim D, Maeng S, Lee J, Lee SH. Grabody B, an IGF1 receptor-based shuttle, mediates efficient delivery of biologics across the blood-brain barrier. CELL REPORTS METHODS 2022; 2:100338. [PMID: 36452865 PMCID: PMC9701613 DOI: 10.1016/j.crmeth.2022.100338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/26/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Effective delivery of therapeutics to the brain is challenging. Molecular shuttles use receptors expressed on brain endothelial cells to deliver therapeutics. Antibodies targeting transferrin receptor (TfR) have been widely developed as molecular shuttles. However, the TfR-based approach raises concerns about safety and developmental burden. Here, we report insulin-like growth factor 1 receptor (IGF1R) as an ideal target for the molecular shuttle. We also describe Grabody B, an antibody against IGF1R, as a molecular shuttle. Grabody B has broad cross-species reactivity and does not interfere with IGF1R-mediated signaling. We demonstrate that administration of Grabody B-fused anti-alpha-synuclein (α-Syn) antibody induces better improvement in neuropathology and behavior in a Parkinson's disease animal model than the therapeutic antibody alone due to its superior serum pharmacokinetics and enhanced brain exposure. The results indicate that IGF1R is an ideal shuttle target and Grabody B is a safe and efficient molecular shuttle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyesu Yun
- ABL Bio, Inc., Seongnam-si, South Korea
| | - Bora Lee
- ABL Bio, Inc., Seongnam-si, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sungho Maeng
- Department of Comprehensive Health Science, Kyung Hee University, Yongin-si, South Korea
| | - Jeonghun Lee
- Department of Comprehensive Health Science, Kyung Hee University, Yongin-si, South Korea
| | | |
Collapse
|
14
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
15
|
Boado RJ. IgG Fusion Proteins for Brain Delivery of Biologics via Blood-Brain Barrier Receptor-Mediated Transport. Pharmaceutics 2022; 14:pharmaceutics14071476. [PMID: 35890374 PMCID: PMC9322584 DOI: 10.3390/pharmaceutics14071476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023] Open
Abstract
The treatment of neurological disorders with large-molecule biotherapeutics requires that the therapeutic drug be transported across the blood–brain barrier (BBB). However, recombinant biotherapeutics, such as neurotrophins, enzymes, decoy receptors, and monoclonal antibodies (MAb), do not cross the BBB. These biotherapeutics can be re-engineered as brain-penetrating bifunctional IgG fusion proteins. These recombinant proteins comprise two domains, the transport domain and the therapeutic domain, respectively. The transport domain is an MAb that acts as a molecular Trojan horse by targeting a BBB-specific endogenous receptor that induces receptor-mediated transcytosis into the brain, such as the human insulin receptor (HIR) or the transferrin receptor (TfR). The therapeutic domain of the IgG fusion protein exerts its pharmacological effect in the brain once across the BBB. A generation of bifunctional IgG fusion proteins has been engineered using genetically engineered MAbs directed to either the BBB HIR or TfR as the transport domain. These IgG fusion proteins were validated in animal models of lysosomal storage disorders; acute brain conditions, such as stroke; or chronic neurodegeneration, such as Parkinson’s disease and Alzheimer’s disease. Human phase I–III clinical trials were also completed for Hurler MPSI and Hunter MPSII using brain-penetrating IgG-iduronidase and -iduronate-2-sulfatase fusion protein, respectively.
Collapse
Affiliation(s)
- Ruben J Boado
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Clarke E, Stocki P, Sinclair EH, Gauhar A, Fletcher EJR, Krawczun-Rygmaczewska A, Duty S, Walsh FS, Doherty P, Rutkowski JL. A Single Domain Shark Antibody Targeting the Transferrin Receptor 1 Delivers a TrkB Agonist Antibody to the Brain and Provides Full Neuroprotection in a Mouse Model of Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071335. [PMID: 35890231 PMCID: PMC9318160 DOI: 10.3390/pharmaceutics14071335] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Single domain shark antibodies that bind to the transferrin receptor 1 (TfR1) on brain endothelial cells have been used to shuttle antibodies and other cargos across the blood brain barrier (BBB) to the brain. For these studies the TXB4 brain shuttle was fused to a TrkB neurotrophin receptor agonist antibody. The TXB4-TrkB fusion retained potent agonist activity at its cognate receptor and after systemic administration showed a 12-fold increase in brain levels over the unmodified antibody. Only the TXB4-TrkB antibody fusion was detected within the brain and localized to TrkB positive cells in the cortex and tyrosine hydroxylase (TH) positive dopaminergic neurons in the substantia nigra pars compacta (SNc), where it was associated with activated ERK1/2 signaling. When tested in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson’s disease (PD), TXB4-TrkB, but not the unmodified antibody, completely prevented the 6-OHDA induced death of TH positive neurons in the SNc. In conclusion, the fusion of the TXB4 brain shuttle allows a TrkB agonist antibody to reach neuroprotective concentrations in the brain parenchyma following systemic administration.
Collapse
Affiliation(s)
- Emily Clarke
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Pawel Stocki
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Elizabeth H. Sinclair
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Aziz Gauhar
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Edward J. R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Alicja Krawczun-Rygmaczewska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Frank S. Walsh
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Patrick Doherty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Julia Lynn Rutkowski
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
- Correspondence: ; Tel.: +1-(610)-291-1724
| |
Collapse
|
17
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
19
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
20
|
Chang HY, Wu S, Chowdhury EA, Shah DK. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. J Pharmacokinet Pharmacodyn 2022; 49:337-362. [DOI: 10.1007/s10928-021-09800-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
21
|
Pardridge WM. Kinetics of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals (Basel) 2021; 15:3. [PMID: 35056060 PMCID: PMC8778919 DOI: 10.3390/ph15010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Biologic drugs are large molecule pharmaceuticals that do not cross the blood-brain barrier (BBB), which is formed by the brain capillary endothelium. Biologics can be re-engineered for BBB transport as IgG fusion proteins, where the IgG domain is a monoclonal antibody (MAb) that targets an endogenous BBB transporter, such as the insulin receptor (IR) or transferrin receptor (TfR). The IR and TfR at the BBB transport the receptor-specific MAb in parallel with the transport of the endogenous ligand, insulin or transferrin. The kinetics of BBB transport of insulin or transferrin, or an IRMAb or TfRMAb, can be quantified with separate mathematical models. Mathematical models to estimate the half-time of receptor endocytosis, MAb or ligand exocytosis into brain extracellular space, or receptor recycling back to the endothelial luminal membrane were fit to the brain uptake of a TfRMAb or a IRMAb fusion protein in the Rhesus monkey. Model fits to the data also allow for estimates of the rates of association of the MAb in plasma with the IR or TfR that is embedded within the endothelial luminal membrane in vivo. The parameters generated from the model fits can be used to estimate the brain concentration profile of the MAb over time, and this brain exposure is shown to be a function of the rate of clearance of the antibody fusion protein from the plasma compartment.
Collapse
|
22
|
Hanafy AS, Dietrich D, Fricker G, Lamprecht A. Blood-brain barrier models: Rationale for selection. Adv Drug Deliv Rev 2021; 176:113859. [PMID: 34246710 DOI: 10.1016/j.addr.2021.113859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
Brain delivery is a broad research area, the outcomes of which are far hindered by the limited permeability of the blood-brain barrier (BBB). Over the last century, research has been revealing the BBB complexity and the crosstalk between its cellular and molecular components. Pathologically, BBB alterations may precede as well as be concomitant or lead to brain diseases. To simulate the BBB and investigate options for drug delivery, several in vitro, in vivo, ex vivo, in situ and in silico models are used. Hundreds of drug delivery vehicles successfully pass preclinical trials but fail in clinical settings. Inadequate selection of BBB models is believed to remarkably impact the data reliability leading to unsatisfactory results in clinical trials. In this review, we suggest a rationale for BBB model selection with respect to the addressed research question and downstream applications. The essential considerations of an optimal BBB model are discussed.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights. Cells 2021; 10:cells10071605. [PMID: 34206848 PMCID: PMC8305155 DOI: 10.3390/cells10071605] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the role of B cells in neurological disorders has substantially expanded our perspectives on mechanisms of neuroinflammation. The success of B cell-depleting therapies in patients with CNS diseases such as neuromyelitis optica and multiple sclerosis has highlighted the importance of neuroimmune crosstalk in inflammatory processes. While B cells are essential for the adaptive immune system and antibody production, they are also major contributors of pro- and anti-inflammatory cytokine responses in a number of inflammatory diseases. B cells can contribute to neurological diseases through peripheral immune mechanisms, including production of cytokines and antibodies, or through CNS mechanisms following compartmentalization. Emerging evidence suggests that aberrant pro- or anti-inflammatory B cell populations contribute to neurological processes, including glial activation, which has been implicated in the pathogenesis of several neurodegenerative diseases. In this review, we summarize recent findings on B cell involvement in neuroinflammatory diseases and discuss evidence to support pathogenic immunomodulatory functions of B cells in neurological disorders, highlighting the importance of B cell-directed therapies.
Collapse
|
24
|
Pardridge WM, Chou T. Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals (Basel) 2021; 14:535. [PMID: 34205013 PMCID: PMC8226686 DOI: 10.3390/ph14060535] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
We develop and analyze mathematical models for receptor-mediated transcytosis of monoclonal antibodies (MAb) targeting the transferrin receptor (TfR) or the insulin receptor (IR), which are expressed at the blood-brain barrier (BBB). The mass-action kinetic model for both the TfR and IR antibodies were solved numerically to generate predictions for the concentrations of all species in all compartments considered. Using these models, we estimated the rates of MAb endocytosis into brain capillary endothelium, which forms the BBB in vivo, the rates of MAb exocytosis from the intra-endothelial compartment into brain extracellular space, and the rates of receptor recycling from the endothelial space back to the luminal endothelial plasma membrane. Our analysis highlights the optimal rates of MAb association with the targeted receptor. An important role of the endogenous ligand, transferrin (Tf) or insulin, in receptor-mediated-transport (RMT) of the associated MAb was found and was attributed to the five order magnitude difference between plasma concentrations of Tf (25,000 nM) and insulin (0.3 nM). Our modeling shows that the very high plasma concentration of Tf leads to only 5% of the endothelial TfR expressed on the luminal endothelial membrane.
Collapse
Affiliation(s)
| | - Tom Chou
- Departments of Computational Medicine and Mathematics, UCLA, Los Angeles, CA 90095, USA;
| |
Collapse
|
25
|
Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021; 30:61-81. [PMID: 33983096 DOI: 10.1080/1061186x.2021.1927055] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and its incidence is increasing due to the ageing population. Currently, the main limitations of AD treatment are low blood-brain barrier permeability, severe off-target of drugs, and immune abnormality. In this review, four hypotheses for Alzheimer's pathogenesis and three challenges for Alzheimer's drug delivery are discussed. In addition, this article summarises the different strategies of brain targeting nano-drug delivery systems (NDDSs) developed in the last 10 years. These strategies include receptor-mediated (transferrin receptor, low-density lipoprotein receptor-related protein, lactoferrin receptor, etc.), adsorption-mediated (cationic, alkaline polypeptide, cell-penetrating peptides, etc.), and transporter-mediated (P-gp, GLUT1, etc.). Moreover, it provides insights into novel strategies used in AD, such as exosomes, virus-like particles, and cell membrane coating particles. Hence, this review will help researchers to understand the current progress in the field of NDDSs for the central nervous system and find new directions for AD therapy.HighlightsCharacteristics and challenges based on the pathogenesis of AD were discussed.Recent advances in novel brain-targeting NDDSs for AD over the past 10 years were summarised.
Collapse
Affiliation(s)
- Qin Ouyang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Jianbin Tong
- Department of Anaesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 569] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Yamamoto R, Yoden E, Tanaka N, Kinoshita M, Imakiire A, Hirato T, Minami K. Nonclinical safety evaluation of pabinafusp alfa, an anti-human transferrin receptor antibody and iduronate-2-sulfatase fusion protein, for the treatment of neuronopathic mucopolysaccharidosis type II. Mol Genet Metab Rep 2021; 27:100758. [PMID: 33981582 PMCID: PMC8081988 DOI: 10.1016/j.ymgmr.2021.100758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pabinafusp alfa is a fusion protein comprising a humanized anti-human transferrin receptor (TfR) antibody and human iduronate-2-sulfatase. It was developed as a novel modality to target central nervous system-related symptoms observed in patients with mucopolysaccharidosis type II (MPS II, also known as Hunter syndrome). As the fusion protein contains an entire IgG1 molecule that binds TfR, there may be specific safety concerns, such as unexpected cellular toxicity due to its effector functions or its ability to inhibit iron metabolism, in addition to general safety concerns. Here, we present the comprehensive results of a nonclinical safety assessment of pabinafusp alfa. Pabinafusp alfa did not exhibit effector functions, as assessed by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity studies in TfR-expressing hematopoietic cells. Repeat-dose toxicity studies in cynomolgus monkeys showed that pabinafusp alfa did not induce any significant toxicological changes at doses up to 30 mg/kg/week upon intravenous administration for up to 26 weeks. Interaction of transferrin with TfR was not inhibited by pabinafusp alfa, suggesting that the effect of pabinafusp alfa on the physiological iron transport system is minimal, which was confirmed by toxicity studies in cynomolgus monkeys. These findings suggest that pabinafusp alfa is expected to be safe for long-term use in individuals with MPS II.
Collapse
Key Words
- ADA, anti-drug antibody
- ADCC, antibody-dependent cellular cytotoxicity
- Anti-transferrin receptor antibody
- Antibody-dependent cellular cytotoxicity
- BBB, blood-brain barrier
- CDC, complement-dependent cytotoxicity
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Complement-dependent cytotoxicity
- ERT, enzyme-replacement therapy
- Effector function
- FOB, functional observational battery
- Fc, fragment crystalizable
- GAG, glycosaminoglycan
- Hb, hemoglobin
- Ht, hematocrit
- IDS, iduronate-2-sulfatase
- MCH, mean corpuscular hemoglobin
- MCHC, mean corpuscular hemoglobin concentration
- MPS II, mucopolysaccharidosis type II
- Mucopolysaccharidosis type II
- NOAEL, no observed adverse effect level
- QWBA, quantitative whole-body autoradioluminography
- RBC, red blood cell
- Ret, reticulocyte
- TK, toxicokinetics
- Tf, transferrin
- TfR, transferrin receptor
- Toxicity
- mAb, monoclonal antibody
- pAb, polyclonal antibody
Collapse
Affiliation(s)
- Ryuji Yamamoto
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Eiji Yoden
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Noboru Tanaka
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Masafumi Kinoshita
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Atsushi Imakiire
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tohru Hirato
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kohtaro Minami
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| |
Collapse
|
28
|
Synthesis and pharmacokinetic characterisation of a fluorine-18 labelled brain shuttle peptide fusion dimeric affibody. Sci Rep 2021; 11:2588. [PMID: 33510301 PMCID: PMC7844286 DOI: 10.1038/s41598-021-82037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/14/2021] [Indexed: 11/08/2022] Open
Abstract
Brain positron emission tomography (PET) imaging with radiolabelled proteins is an emerging concept that potentially enables visualization of unique molecular targets in the brain. However, the pharmacokinetics and protein radiolabelling methods remain challenging. Here, we report the performance of an engineered, blood-brain barrier (BBB)-permeable affibody molecule that exhibits rapid clearance from the brain, which was radiolabelled using a unique fluorine-18 labelling method, a cell-free protein radiosynthesis (CFPRS) system. AS69, a small (14 kDa) dimeric affibody molecule that binds to the monomeric and oligomeric states of α-synuclein, was newly designed for brain delivery with an apolipoprotein E (ApoE)-derived brain shuttle peptide as AS69-ApoE (22 kDa). The radiolabelled products 18F-AS69 and 18F-AS69-ApoE were successfully synthesised using the CFPRS system. Notably, 18F-AS69-ApoE showed higher BBB permeability than 18F-AS69 in an ex vivo study at 10 and 30 min post injection and was partially cleared from the brain at 120 min post injection. These results suggest that small, a brain shuttle peptide-fused fluorine-18 labelled protein binders can potentially be utilised for brain molecular imaging.
Collapse
|
29
|
Stocki P, Szary J, Rasmussen CLM, Demydchuk M, Northall L, Logan DB, Gauhar A, Thei L, Moos T, Walsh FS, Rutkowski JL. Blood-brain barrier transport using a high affinity, brain-selective VNAR antibody targeting transferrin receptor 1. FASEB J 2020; 35:e21172. [PMID: 33241587 DOI: 10.1096/fj.202001787r] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Transfer across the blood-brain barrier (BBB) remains a significant hurdle for the development of biopharmaceuticals with therapeutic effects within the central nervous system. We established a functional selection method to identify high affinity single domain antibodies to the transferrin receptor 1 (TfR1) with efficient biotherapeutic delivery across the BBB. A synthetic phage display library based on the variable domain of new antigen receptor (VNAR) was used for in vitro selection against recombinant human TfR1 ectodomain (rh-TfR1-ECD) followed by in vivo selection in mouse for brain parenchyma penetrating antibodies. TXB2 VNAR was identified as a high affinity, species cross-reactive VNAR antibody against TfR1-ECD that does not compete with transferrin or ferritin for receptor binding. IV dosing of TXB2 when fused to human Fc domain (TXB2-hFc) at 25 nmol/kg (1.875 mg/kg) in mice resulted in rapid binding to brain capillaries with subsequent transport into the brain parenchyma and specific uptake into TfR1-positive neurons. Likewise, IV dosing of TXB2-hFc fused with neurotensin (TXB2-hFc-NT) at 25 nmol/kg resulted in a rapid and reversible pharmacological response as measured by body temperature reduction. TXB2-hFc did not elicit any acute adverse reactions, bind, or deplete circulating reticulocytes or reduce BBB-expressed endogenous TfR1 in mice. There was no evidence of target-mediated clearance or accumulation in peripheral organs except lung. In conclusion, TXB2 is a high affinity, species cross-reactive, and brain-selective VNAR antibody to TfR1 that rapidly crosses the BBB and exhibits a favorable pharmacokinetic and safety profile and can be readily adapted to carry a wide variety of biotherapeutics from blood to brain.
Collapse
Affiliation(s)
- Pawel Stocki
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Jaroslaw Szary
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Charlotte L M Rasmussen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mykhaylo Demydchuk
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Leandra Northall
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Diana Bahu Logan
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Aziz Gauhar
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Laura Thei
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frank S Walsh
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - J Lynn Rutkowski
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| |
Collapse
|
30
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Pardridge WM. Treatment of Alzheimer's Disease and Blood-Brain Barrier Drug Delivery. Pharmaceuticals (Basel) 2020; 13:E394. [PMID: 33207605 PMCID: PMC7697739 DOI: 10.3390/ph13110394] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the enormity of the societal and health burdens caused by Alzheimer's disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood-brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
32
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
33
|
Castellanos DM, Sun J, Yang J, Ou W, Zambon AC, Pardridge WM, Sumbria RK. Acute and Chronic Dosing of a High-Affinity Rat/Mouse Chimeric Transferrin Receptor Antibody in Mice. Pharmaceutics 2020; 12:pharmaceutics12090852. [PMID: 32911688 PMCID: PMC7558337 DOI: 10.3390/pharmaceutics12090852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Non-invasive brain delivery of neurotherapeutics is challenging due to the blood-brain barrier. The revived interest in transferrin receptor antibodies (TfRMAbs) as brain drug-delivery vectors has revealed the effect of dosing regimen, valency, and affinity on brain uptake, TfR expression, and Fc-effector function side effects. These studies have primarily used monovalent TfRMAbs with a human constant region following acute intravenous dosing in mice. The effects of a high-affinity bivalent TfRMAb with a murine constant region, without a fusion partner, following extravascular dosing in mice are, however, not well characterized. Here we elucidate the plasma pharmacokinetics and safety of a high-affinity bivalent TfRMAb with a murine constant region following acute and chronic subcutaneous dosing in adult C57BL/6J male mice. Mice received a single (acute dosing) 3 mg/kg dose, or were treated for four weeks (chronic dosing). TfRMAb and control IgG1 significantly altered reticulocyte counts following acute and chronic dosing, while other hematologic parameters showed minimal change. Chronic TfRMAb dosing did not alter plasma- and brain-iron measurements, nor brain TfR levels, however, it significantly increased splenic-TfR and -iron. Plasma concentrations of TfRMAb were significantly lower in mice chronically treated with IgG1 or TfRMAb. Overall, no injection related reactions were observed in mice.
Collapse
Affiliation(s)
- Demi M. Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (D.M.C.); (J.Y.)
| | - Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (D.M.C.); (J.Y.)
| | - Weijun Ou
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | - Alexander C. Zambon
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | | | - Rachita K. Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
- Department of Neurology, University of California, Irvine, CA 92868, USA
- Correspondence: ; Tel.: +1-(909)-607-0319; Fax: +1-(909)-607-9826
| |
Collapse
|
34
|
Christensen SC, Krogh BO, Jensen A, Andersen CBF, Christensen S, Nielsen MS. Characterization of basigin monoclonal antibodies for receptor-mediated drug delivery to the brain. Sci Rep 2020; 10:14582. [PMID: 32884039 PMCID: PMC7471916 DOI: 10.1038/s41598-020-71286-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The brain uptake of biotherapeutics for brain diseases is hindered by the blood–brain barrier (BBB). The BBB selectively regulates the transport of large molecules into the brain and thereby maintains brain homeostasis. Receptor-mediated transcytosis (RMT) is one mechanism to deliver essential proteins into the brain parenchyma. Receptors expressed in the brain endothelial cells have been explored to ferry therapeutic antibodies across the BBB in bifunctional antibody formats. In this study, we generated and characterized monoclonal antibodies (mAbs) binding to the basigin receptor, which recently has been proposed as a target for RMT across the BBB. Antibody binding properties such as affinity have been demonstrated to be important factors for transcytosis capability and efficiency. Nevertheless, studies of basigin mAb properties' effect on RMT are limited. Here we characterize different basigin mAbs for their ability to associate with and subsequently internalize human brain endothelial cells. The mAbs were profiled to determine whether receptor binding epitope and affinity affected receptor-mediated uptake efficiency. By competitive epitope binning studies, basigin mAbs were categorized into five epitope bins. mAbs from three of the epitope bins demonstrated properties required for RMT candidates judged by binding characteristics and their superior level of internalization in human brain endothelial cells.
Collapse
Affiliation(s)
- Sarah Christine Christensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.,Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Berit Olsen Krogh
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Jensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Søren Christensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Morten Schallburg Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.
| |
Collapse
|
35
|
Yang J, Sun J, Castellanos DM, Pardridge WM, Sumbria RK. Eliminating Fc N-Linked Glycosylation and Its Impact on Dosing Consideration for a Transferrin Receptor Antibody-Erythropoietin Fusion Protein in Mice. Mol Pharm 2020; 17:2831-2839. [PMID: 32579360 DOI: 10.1021/acs.molpharmaceut.0c00231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythropoietin (EPO), a hematopoietic growth factor and a promising therapy for Alzheimer's disease, has low permeability across the blood-brain barrier. The transferrin receptor antibody fused to EPO (TfRMAb-EPO) is a chimeric monoclonal antibody that ferries EPO into the brain via the transvascular route. However, TfRMAbs have Fc-effector function-related adverse effects including reticulocyte suppression. To overcome this, we recently developed an effectorless TfRMAb-EPO fusion protein, designated TfRMAb-N292G-EPO, by eliminating the Fc N-linked glycosylation site at position 292 of the antibody heavy chain. The mutant fusion protein showed enhanced plasma clearance and dramatically reduced plasma concentrations compared with the wild-type (WT) nonmutant fusion protein. This increased clearance of the aglycosylated TfRMAb is expected to increase the injection dose of the mutant fusion protein. To provide a basis for future therapeutic uses of this IgG-neurotrophin fusion protein, the current study aimed to characterize the pharmacokinetic profile of this effectorless TfRMAb-N292G-EPO at different doses following different routes of administration in the mouse. Adult C57BL/6J male mice were injected with a single dose (3, 6, 9, or 20 mg/kg; n = 3-6 per dose) of TfRMAb-N292G-EPO through either the subcutaneous (SQ) or intraperitoneal (IP) route. TfRMAb-N292G-EPO plasma concentrations were determined using an enzyme-linked immunosorbent assay. Mice were sacrificed 24 h after injection, and terminal blood was used for a complete blood count. Brain concentrations in the WT- and mutant fusion protein-treated mice were compared. We observed stark differences in the plasma pharmacokinetics of TfRMAb-N292G-EPO between the IP and SQ routes of administration. Dose escalation from 3 to 20 mg/kg increased the plasma Cmax only 3.5-fold for the SQ route, compared with a 35-fold increase for the IP route. The plasma Cmax was 15.0 ± 2.0, 21.3 ± 4.1, 21.3 ± 6.4, and 52.8 ± 27.9 ng/mL following SQ injection and 288 ± 47, 389 ± 154, 633 ± 194, and 10,066 ± 7059 ng/mL following IP injection for 3, 6, 9, and 20 mg/kg doses, respectively. The plasma Cmax following the SQ route was therefore 19- to 190-fold lower than that following the IP route. This finding is consistent with a 31-fold higher apparent clearance following the SQ route compared with the IP route at the highest dose administered. The brain concentrations in the mice treated with a 3 mg/kg dose of the mutant fusion protein were lower than those in the nonmutant WT-treated mice. No reticulocyte suppression was observed at the 3 mg/kg SQ dose of TfRMAb-N292G-EPO. However, reticulocyte suppression increased with an increase in dose and area under the plasma concentration-time curve (AUC) for both the IP and SQ routes. Overall, elimination of Fc N-linked glycosylation, to mitigate TfRMAb effector function side effects, has a profound effect on the plasma exposure of TfRMAb-N292G-EPO at therapeutic as well as high doses (3-20 mg/kg). This effect is more pronounced following SQ injection. The low plasma concentrations of the mutant fusion protein following a 3 mg/kg dose resulted in negligible brain uptake. The beneficial rescue of reticulocyte reduction by the N292G mutation is a function of AUC and is negated at high doses of the N292G mutant.
Collapse
Affiliation(s)
- Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, California 91711, United States
| | - Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California 91711, United States
| | - Demi M Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, California 91711, United States
| | - William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California 91711, United States.,Departments of Neurology, University of California, Irvine, Irvine, California 92868, United States
| |
Collapse
|
36
|
Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, Baumann E, Delaney CE, Ly D, Star AT, Brunette E, Sodja C, Hewitt M, Sandhu JK, Stanimirovic DB. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 2020; 17:47. [PMID: 32698806 PMCID: PMC7376922 DOI: 10.1186/s12987-020-00209-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Receptor-mediated transcytosis (RMT) is a principal pathway for transport of macromolecules essential for brain function across the blood–brain barrier (BBB). Antibodies or peptide ligands which bind RMT receptors are often co-opted for brain delivery of biotherapeutics. Constitutively recycling transferrin receptor (TfR) is a prototype receptor utilized to shuttle therapeutic cargos across the BBB. Several other BBB-expressed receptors have been shown to mediate transcytosis of antibodies or protein ligands including insulin receptor (INSR) and insulin-like growth factor-1 receptor (IGF1R), lipid transporters LRP1, LDLR, LRP8 and TMEM30A, solute carrier family transporter SLC3A2/CD98hc and leptin receptor (LEPR). In this study, we analyzed expression patterns of genes encoding RMT receptors in isolated brain microvessels, brain parenchyma and peripheral organs of the mouse and the human using RNA-seq approach. IGF1R, INSR and LRP8 were highly enriched in mouse brain microvessels compared to peripheral tissues. In human brain microvessels only INSR was enriched compared to either the brain or the lung. The expression levels of SLC2A1, LRP1, IGF1R, LRP8 and TFRC were significantly higher in the mouse compared to human brain microvessels. The protein expression of these receptors analyzed by Western blot and immunofluorescent staining of the brain microvessels correlated with their transcript abundance. This study provides a molecular transcriptomics map of key RMT receptors in mouse and human brain microvessels and peripheral tissues, important to translational studies of biodistribution, efficacy and safety of antibodies developed against these receptors.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada.
| | - Qing Yan Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Ziying Liu
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, Canada
| | - François Fauteux
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Dao Ly
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada.
| |
Collapse
|
37
|
Pardridge WM. The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Front Physiol 2020; 11:398. [PMID: 32457645 PMCID: PMC7221163 DOI: 10.3389/fphys.2020.00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an “in vitro” preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Pardridge WM. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front Aging Neurosci 2020; 11:373. [PMID: 31998120 PMCID: PMC6966240 DOI: 10.3389/fnagi.2019.00373] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) and treatment of the brain in aging require the development of new biologic drugs, such as recombinant proteins or gene therapies. Biologics are large molecule therapeutics that do not cross the blood-brain barrier (BBB). BBB drug delivery is the limiting factor in the future development of new therapeutics for the brain. The delivery of recombinant protein or gene medicines to the brain is a binary process: either the brain drug developer re-engineers the biologic with BBB drug delivery technology, or goes forward with brain drug development in the absence of a BBB delivery platform. The presence of BBB delivery technology allows for engineering the therapeutic to enable entry into the brain across the BBB from blood. Brain drug development may still take place in the absence of BBB delivery technology, but with a reliance on approaches that have rarely led to FDA approval, e.g., CSF injection, stem cells, small molecules, and others. CSF injection of drug is the most widely practiced approach to brain delivery that bypasses the BBB. However, drug injection into the CSF results in limited drug penetration to the brain parenchyma, owing to the rapid export of CSF from the brain to blood. A CSF injection of a drug is equivalent to a slow intravenous (IV) infusion of the pharmaceutical. Given the profound effect the existence of the BBB has on brain drug development, future drug or gene development for the brain will be accelerated by future advances in BBB delivery technology in parallel with new drug discovery.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
39
|
Lafaye P, Lesuisse D, Declèves X. [New formats for improving brain drug delivery of antibodies: the blood-brain barrier case]. Med Sci (Paris) 2020; 35:1106-1112. [PMID: 31903924 DOI: 10.1051/medsci/2019223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many neurodegenerative or tumor brain pathologies should be able to benefit from the impressive medicinal advances that represent therapeutic antibodies. Unfortunately, many failures have been observed with antibodies whose targets are in the brain parenchyma due to their very low brain distribution. The blood-brain barrier (BBB) that exhibits extremely selective and restrictive properties is responsible for the low brain penetration of high-molecular mass molecules including therapeutic antibodies. The objective of this article is to present the properties of the BBB and the latest advances in the engineering of new antibody formats to possibly improve their brain distribution.
Collapse
Affiliation(s)
- Pierre Lafaye
- Institut Pasteur, Plateforme d'ingénierie des anticorps, Paris, France
| | - Dominique Lesuisse
- Sanofi, Département des Maladies Rares et Neurologiques, Groupe Barrières Cérébrales, Paris, France
| | - Xavier Declèves
- Université Paris Descartes, Faculté de Pharmacie de Paris et Inserm UMRS-1144, Barrière hémato-encéphalique: Physiopathologie et Thérapie, Paris, France
| |
Collapse
|
40
|
Sumbria RK. Targeting the transferrin receptor to develop erythropoietin for Alzheimer's disease. Neural Regen Res 2020; 15:2251-2252. [PMID: 32594042 PMCID: PMC7749478 DOI: 10.4103/1673-5374.284994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont; Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
41
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
42
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
43
|
Engineered antibodies: new possibilities for brain PET? Eur J Nucl Med Mol Imaging 2019; 46:2848-2858. [PMID: 31342134 PMCID: PMC6879437 DOI: 10.1007/s00259-019-04426-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Almost 50 million people worldwide are affected by Alzheimer’s disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood–brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand’s pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands.
Collapse
|
44
|
Sun J, Boado RJ, Pardridge WM, Sumbria RK. Plasma Pharmacokinetics of High-Affinity Transferrin Receptor Antibody-Erythropoietin Fusion Protein is a Function of Effector Attenuation in Mice. Mol Pharm 2019; 16:3534-3543. [PMID: 31199881 DOI: 10.1021/acs.molpharmaceut.9b00369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Erythropoietin (EPO) is a potential therapeutic for Alzheimer's disease (AD); however, limited blood-brain barrier (BBB) penetration reduces its applicability as a CNS therapeutic. Antibodies against the BBB transferrin receptor (TfRMAbs) act as molecular Trojan horses for brain drug delivery, and a fusion protein of EPO and TfRMAb, designated TfRMAb-EPO, is protective in a mouse model of AD. TfRMAbs have Fc effector function side effects, and removal of the Fc N-linked glycosylation site by substituting Asn with Gly reduces the Fc effector function. However, the effect of such Fc mutations on the pharmacokinetics (PK) of plasma clearance of TfRMAb-based fusion proteins, such as TfRMAb-EPO, is unknown. To examine this, the plasma PK of TfRMAb-EPO (wild-type), which expresses the mouse IgG1 constant heavy chain region and includes the Asn residue at position 292, was compared to the mutant TfRMAb-N292G-EPO, in which the Asn residue at position 292 is mutated to Gly. Plasma PK was compared following IV, IP, and SQ administration for doses between 0.3 and 3 mg/kg in adult male C57 mice. The results show a profound increase in clearance (6- to 8-fold) of the TfRMAb-N292G-EPO compared with the wild-type TfRMAb-EPO following IV administration. The clearance of both the wild-type and mutant TfRMAb-EPO fusion proteins followed nonlinear PK, and a 10-fold increase in dose resulted in a 7- to 11-fold decrease in plasma clearance. Following IP and SQ administration, the Cmax values of the TfRMAb-N292G-EPO mutant were profoundly (37- to 114-fold) reduced compared with the wild-type TfRMAb-EPO, owing to comparable increases in plasma clearance of the mutant fusion protein. The wild-type TfRMAb fusion protein was associated with reticulocyte suppression, and the N292G mutation mitigated this suppression of reticulocytes. Overall, the beneficial suppression of effector function via the N292G mutation may be offset by the deleterious effect this mutation has on the plasma levels of the TfRMAb-EPO fusion protein, especially following SQ administration, which is the preferred route of administration in humans for chronic neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences , Keck Graduate Institute , Claremont , California 91711 , United States
| | - Ruben J Boado
- ArmaGen, Incorporation , Agoura Hills , California 91301 , United States
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences , Keck Graduate Institute , Claremont , California 91711 , United States.,Departments of Neurology , University of California, Irvine , Irvine , California 92868 , United States
| |
Collapse
|
45
|
Bélanger K, Iqbal U, Tanha J, MacKenzie R, Moreno M, Stanimirovic D. Single-Domain Antibodies as Therapeutic and Imaging Agents for the Treatment of CNS Diseases. Antibodies (Basel) 2019; 8:antib8020027. [PMID: 31544833 PMCID: PMC6640712 DOI: 10.3390/antib8020027] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Antibodies have become one of the most successful therapeutics for a number of oncology and inflammatory diseases. So far, central nervous system (CNS) indications have missed out on the antibody revolution, while they remain 'hidden' behind several hard to breach barriers. Among the various antibody modalities, single-domain antibodies (sdAbs) may hold the 'key' to unlocking the access of antibody therapies to CNS diseases. The unique structural features of sdAbs make them the smallest monomeric antibody fragments suitable for molecular targeting. These features are of particular importance when developing antibodies as modular building blocks for engineering CNS-targeting therapeutics and imaging agents. In this review, we first introduce the characteristic properties of sdAbs compared to traditional antibodies. We then present recent advances in the development of sdAbs as potential therapeutics across brain barriers, including their use for the delivery of biologics across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, treatment of neurodegenerative diseases and molecular imaging of brain targets.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Maria Moreno
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
46
|
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The Promises and Challenges of Erythropoietin for Treatment of Alzheimer's Disease. Neuromolecular Med 2019; 21:12-24. [PMID: 30656553 DOI: 10.1007/s12017-019-08524-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood-brain barrier (BBB) and negative hematopoietic effects are the two major challenges for the therapeutic development of EPO for chronic neurodegenerative diseases like AD. The transferrin receptors at the BBB, which are responsible for transporting transferrin-bound iron from the blood into the brain parenchyma, can be used to shuttle therapeutic molecules across the BBB. In this review, we discuss the role of EPO as a potential neurotherapeutic for AD, challenges associated with EPO development for AD, and targeting the BBB transferrin receptor for EPO brain delivery.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA
| | - Jan Michelle Martin
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|