1
|
Li Y, Sun J, Li X, Yu W, Ren J, Wang B, Han X, Ma L, Sun X, Teng W, Gu X, Ding Q, Li B. Donepezil-induced degradation of hERG potassium channel via lysosomal pathway is exacerbated by hypoxia. Eur J Pharmacol 2025; 996:177549. [PMID: 40157707 DOI: 10.1016/j.ejphar.2025.177549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Donepezil (DPZ), an acetylcholinesterase inhibitor for Alzheimer's disease, has drawn attention for causing prolonged QT interval and torsade de pointes (TdP). Acquired long QT syndrome (acLQTS) is usually caused by blockage of the cardiac potassium current IKr/hERG, which is essential for cardiac repolarization. This study aimed to investigate DPZ's effect on hERG channel and its cardiotoxic mechanism, particularly focusing on whether hypoxia increases the risk of DPZ-induced acLQTS. To explore these, we employed western blotting to analyze protein levels, the patch clamp technique to measure hERG current and the action potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Additionally, immunoprecipitation was utilized to detect protein-protein interactions. Finally, optical mapping monitored guinea pig ECGs and APD, providing in vivo insights. Our results indicate that 24-h incubation with DPZ inhibits hERG protein levels and current in the plasma membrane. Mechanistically, DPZ induces an imbalance in hERG protein acetylation/ubiquitination and decreases the stability of hERG by promoting HDAC6 expression, and the ubiquitinated hERG protein was degraded at lysosomes via K63-polyubiquitin chains. DPZ affects hERG membrane protein via two pathways: it accelerates endocytosis and directs degradation via CHMP3 (a sorting protein of ESCRT-III), while inhibiting recycling through Rab11. Hypoxia exacerbates DPZ-induced hERG degradation and APD prolongation in guinea pigs and hiPSC-CMs. Collectively, DPZ reduces hERG protein stability in the membrane, promoting its degradation in lysosomes. Hypoxia further exacerbates the risk of arrhythmia caused by DPZ. These findings remind us to pay attention to acLQTS induced by DPZ inhibition of hERG in clinical applications.
Collapse
Affiliation(s)
- Yuexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinyang Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoxu Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenting Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiacheng Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoqiang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoxia Han
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiang Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Teng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiwei Gu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qirui Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Chang G, Aroge FA, Venkateshappa R, Claydon TW, Sun B. Development of an Absolute Quantification Method for hERG Using PRM with Single Isotopologue in-Sample Calibration. ACS OMEGA 2024; 9:33972-33982. [PMID: 39130540 PMCID: PMC11308013 DOI: 10.1021/acsomega.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/13/2024]
Abstract
The human ether-à-go-go-related gene (KCNH2)-encoded protein hERG constitutes the α subunit of the Kv11.1 channel and contributes to the I kr current, which plays an important role in the cardiac action potential. Genetically and xenobiotically triggered malfunctions of hERG can cause arrhythmia. The expression of hERG in various study systems was assessed mainly as the fold change relative to the corresponding control. Here, we developed a simple and sensitive quantitation method using targeted mass spectrometry, i.e., the parallel reaction monitoring approach, to measure the absolute quantity of hERG in copy number. Such measurements do not require controls, and the obtained values can be compared with similar results for any other protein. To effectively avoid matrix effects, we used the heavy-match-light (HML) in-sample calibration approach that requires only a single isotopologue to achieve copy-number quantitation. No significant difference was observed in the results obtained by HML and by the classic standard addition in-sample calibration approach. Using four proteotypic peptides, we quantified the average number of copies of hERG in the HEK293T heterologous expression system as 3.6 ± 0.5 × 106 copies/cell, i.e., 1 million copies/cell for the fully assembled Kv11.1 channel.
Collapse
Affiliation(s)
- Ge Chang
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Fabusuyi A. Aroge
- School
of Mechatronic Systems Engineering, Simon
Fraser University, Surrey, British Columbia V3T0A3, Canada
| | - Ravichandra Venkateshappa
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Tom W. Claydon
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Bingyun Sun
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
4
|
Isaev D, Susan Yang KH, Oz M. Additive Effects of Citrus Juice Flavonoid Naringenin and Statins on HERG Channels Expressed in Xenopus Oocytes. Med Princ Pract 2024; 33:000538780. [PMID: 38593751 PMCID: PMC11324219 DOI: 10.1159/000538780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Naringenin, a major flavonoid found in citrus juice, has been shown to inhibit HERG channels and cause QT prolongation. Statins, the most commonly used class of cholesterol reducing drugs, have also been reported to inhibit HERG channels and prolong QT interval in patients using these drugs. However, the interaction between naringenin and statins on the function of HERG channels has not been studied. MATERIALS AND METHODS In the present study, we expressed HERG channels in Xenopus oocytes and tested the effects of naringenin and statins separately and combined on HERG channels. RESULTS When 30 µM naringenin was added to statins (1 µM rosuvastatin or 3 µM atorvastatin), significantly greater inhibition of HERG was demonstrated, compared to the inhibition caused by statins alone. CONCLUSIONS The results indicate that an additive interaction occurs between naringenin and statins; this could pose an increased risk of arrhythmias by decreasing repolarization reserve.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Koo Y, Hyun SA, Choi BJ, Kim Y, Kim TY, Lim HS, Seo JW, Yoon D. Evaluation of rosuvastatin-induced QT prolongation risk using real-world data, in vitro cardiomyocyte studies, and mortality assessment. Sci Rep 2023; 13:8108. [PMID: 37208484 DOI: 10.1038/s41598-023-35146-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/13/2023] [Indexed: 05/21/2023] Open
Abstract
Drug-induced QT prolongation is attributed to several mechanisms, including hERG channel blockage. However, the risks, mechanisms, and the effects of rosuvastatin-induced QT prolongation remain unclear. Therefore, this study assessed the risk of rosuvastatin-induced QT prolongation using (1) real-world data with two different settings, namely case-control and retrospective cohort study designs; (2) laboratory experiments using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM); (3) nationwide claim data for mortality risk evaluation. Real-world data showed an association between QT prolongation and the use of rosuvastatin (OR [95% CI], 1.30 [1.21-1.39]) but not for atorvastatin (OR [95% CI], 0.98 [0.89-1.07]). Rosuvastatin also affected the sodium and calcium channel activities of cardiomyocytes in vitro. However, rosuvastatin exposure was not associated with a high risk of all-cause mortality (HR [95% CI], 0.95 [0.89-1.01]). Overall, these results suggest that rosuvastatin use increased the risk of QT prolongation in real-world settings, significantly affecting the action potential of hiPSC-CMs in laboratory settings. Long-term rosuvastatin treatment was not associated with mortality. In conclusion, while our study links rosuvastatin use to potential QT prolongation and possible influence on the action potential of hiPSC-CMs, long-term use does not show increased mortality, necessitating further research for conclusive real-world applications.
Collapse
Affiliation(s)
- Yeryung Koo
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
- BUD.on Inc, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, Republic of Korea
| | - Byung Jin Choi
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yujeong Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Tae Young Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hong-Seok Lim
- Department of Cardiology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Joung-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, Republic of Korea.
| | - Dukyong Yoon
- BUD.on Inc, Jeonju, Jeollabuk-do, Republic of Korea.
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea.
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi-do, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea.
| |
Collapse
|
6
|
AlRawashdeh S, Chandrasekaran S, Barakat KH. Structural analysis of hERG channel blockers and the implications for drug design. J Mol Graph Model 2023; 120:108405. [PMID: 36680816 DOI: 10.1016/j.jmgm.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The repolarizing current (Ikr) produced by the hERG potassium channel forms a major component of the cardiac action potential and blocking this current by small molecule drugs can lead to life-threatening cardiotoxicity. Understanding the mechanisms of drug-mediated hERG inhibition is essential to develop a second generation of safe drugs, with minimal cardiotoxic effects. Although various computational tools and drug design guidelines have been developed to avoid binding of drugs to the hERG pore domain, there are many other aspects that are still open for investigation. This includes the use computational modelling to study the implications of hERG mutations on hERG structure and trafficking, the interactions of hERG with hERG chaperone proteins and with membrane-soluble molecules, the mechanisms of drugs that inhibit hERG trafficking and drugs that rescue hERG mutations. The plethora of available experimental data regarding all these aspects can guide the construction of much needed robust computational structural models to study these mechanisms for the rational design of safe drugs.
Collapse
Affiliation(s)
- Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Kovács ZM, Óvári J, Dienes C, Magyar J, Bányász T, Nánási PP, Horváth B, Feher A, Varga Z, Szentandrássy N. ABT-333 (Dasabuvir) Increases Action Potential Duration and Provokes Early Afterdepolarizations in Canine Left Ventricular Cells via Inhibition of I Kr. Pharmaceuticals (Basel) 2023; 16:488. [PMID: 37111245 PMCID: PMC10143825 DOI: 10.3390/ph16040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ABT-333 (dasabuvir) is an antiviral agent used in hepatitis C treatment. The molecule, similarly to some inhibitors of hERG channels, responsible for the delayed rectifier potassium current (IKr), contains the methanesulfonamide group. Reduced IKr current leads to long QT syndrome and early afterdepolarizations (EADs), therefore potentially causing life-threatening arrhythmias and sudden cardiac death. Our goal was to investigate the acute effects of ABT-333 in enzymatically isolated canine left ventricular myocardial cells. Action potentials (APs) and ion currents were recorded with a sharp microelectrode technique and whole-cell patch clamp, respectively. Application of 1 μM ABT-333 prolonged the AP in a reversible manner. The maximal rates of phases 0 and 1 were irreversibly decreased. Higher ABT-333 concentrations caused larger AP prolongation, elevation of the early plateau potential, and reduction of maximal rates of phases 0, 1, and 3. EADs occurred in some cells in 3-30 μM ABT-333 concentrations. The 10 μM ABT-333-sensitive current, recorded with AP voltage clamp, contained a late outward component corresponding to IKr and an early outward one corresponding to transient outward potassium current (Ito). ABT-333 reduced hERG-channel-mediated ion current in a concentration-dependent, partially reversible manner with a half-inhibitory concentration of 3.2 μM. As the therapeutic plasma concentration of ABT-333 can reach the low μM range, ABT-333 application carries a risk of cardiac side effects especially in case of coadministration with strong inhibitors of CYP2C8.
Collapse
Affiliation(s)
- Zsigmond Máté Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - József Óvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Dental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adam Feher
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Application of Chiral Piperidine Scaffolds in Drug Design. PHARMACEUTICAL FRONTS 2023. [DOI: 10.1055/s-0043-1764218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Chiral piperidine scaffolds are prevalent as the common cores of a large number of active pharmaceuticals in medical chemistry. This review outlined the diversity of chiral piperidine scaffolds in recently approved drugs, and also covers the scaffolds in leads and drug candidates. The significance of chiral piperidine scaffolds in drug design is also discussed in this article. With the introduction of chiral piperidine scaffolds into small molecules, the exploration of drug-like molecules can be benefitted from the following aspect: (1) modulating the physicochemical properties; (2) enhancing the biological activities and selectivity; (3) improving pharmacokinetic properties; and (4) reducing the cardiac hERG toxicity. Given above, chiral piperidine-based discovery of small molecules will be a promising strategy to enrich our molecules' library to fight against diseases.
Collapse
|
9
|
Luo Y, Lu J, Wang Z, Wang L, Wu G, Guo Y, Dong Z. Small ubiquitin-related modifier (SUMO)ylation of SIRT1 mediates (-)-epicatechin inhibited- differentiation of cardiac fibroblasts into myofibroblasts. PHARMACEUTICAL BIOLOGY 2022; 60:1762-1770. [PMID: 36086802 PMCID: PMC9467557 DOI: 10.1080/13880209.2022.2101672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT (-)-Epicatechin (EPI) is a crucial substance involved in the protective effects of flavanol-rich foods. Previous studies have indicated EPI has a cardioprotective effect, but the molecular mechanisms in inhibition of cardiac fibrosis are unclear. OBJECTIVE We evaluated the effect of EPI in preventing cardiac fibrosis and the underlying molecular mechanism related to the SIRT1-SUMO1/AKT/GSK3β pathway. MATERIALS AND METHODS Cardiac fibrosis mice model was established with transaortic constriction (TAC). Male C57BL/6 mice were randomly separated into 4 groups. Mice received 1 mg/kg/day of EPI or vehicle orally for 4 weeks. The acutely isolated cardiac fibroblasts were induced to myofibroblasts with 1 µM angiotensin II (Ang II). The cardiac function was measured with the ultrasonic instrument. Histological analysis of mice's hearts was determined with H&E or Masson method. The protein level of fibrosis markers, SUMOylation of SIRT1, and AKT/GSK3β pathway were quantified by immunofluorescence and western blot. RESULTS EPI treatment (1 mg/kg/day) could reverse the TAC-induced decline in LVEF (TAC, 61.28% ± 1.33% vs. TAC + EPI, 74.00% ± 1.64%), LVFS (TAC, 28.16% ± 0.89% vs. TAC + EPI, 37.18% ± 1.29%). Meantime, we found that 10 µM EPI blocks Ang II-induced transformation of cardiac fibroblasts into myofibroblasts. The underlying mechanism of EPI-inhibited myofibroblasts transformation involves activation of SUMOylation of SIRT1 through SP1. Furthermore, SUMOylation of SIRT1 inhibited Ang II-induced fibrogenic effect via the AKT/GSK3β pathway. CONCLUSION EPI plays a protective effect on cardiac fibrosis by regulating the SUMO1-dependent modulation of SIRT1, which provides a theoretical basis for use in clinical therapies.
Collapse
Affiliation(s)
- Yingchun Luo
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zeng Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guodong Wu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Liu M, Kang GJ, Dudley SC. Preventing unfolded protein response-induced ion channel dysregulation to treat arrhythmias. Trends Mol Med 2022; 28:443-451. [DOI: 10.1016/j.molmed.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023]
|
11
|
Kwon M, Nam GH, Jung H, Kim SA, Kim S, Choi Y, Lee YS, Cho HJ, Kim IS. Statin in combination with cisplatin makes favorable tumor-immune microenvironment for immunotherapy of head and neck squamous cell carcinoma. Cancer Lett 2021; 522:198-210. [PMID: 34571082 DOI: 10.1016/j.canlet.2021.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to determine whether statins can enhance anticancer effects in head and neck squamous cell carcinoma (HNSCC) when used with cisplatin and act as immunogenic cell death (ICD) inducers that can be used in cancer immunotherapy. Statins alone showed both in vitro and in vivo inhibitory effects against HNSCC, and synergistic antitumor effects were observed when combined with cisplatin in a syngeneic murine HNSCC model. Statins increased calreticulin exposure and endoplasmic reticulum stress-related signals in HNSCC cells. In addition, it was confirmed that statins could activate antigen-presenting cells and tumor-specific CD8+ T cells with an increase in their numbers in the tumor tissues and draining lymph nodes, with this effect showing significant improvement following the combination therapy with cisplatin. Moreover, in triple combination with both cisplatin and anti-programmed cell death 1 receptor (anti-PD-1) antibody, statins dramatically induced further tumor eradication and improved the survival of tumor-bearing mice. Taken together, these results demonstrate that statins, administered in combination with anti-PD-1 antibody, could enhance the anticancer effect of cisplatin and potentiate the efficacy of immunotherapy for HNSCC and present a rationale for repurposing statins as an adjuvant immunotherapeutic option for HNSCC.
Collapse
Affiliation(s)
- Minsu Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Hanul Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Yeonju Choi
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yoon Se Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University Hospital, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea.
| |
Collapse
|
12
|
Teo RD, Tieleman DP. Modulation of Phospholipid Bilayer Properties by Simvastatin. J Phys Chem B 2021; 125:8406-8418. [PMID: 34296883 DOI: 10.1021/acs.jpcb.1c03359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Simvastatin (Zocor) is one of the most prescribed drugs for reducing high cholesterol. Although simvastatin is ingested in its inactive lactone form, it is converted to its active dihydroxyheptanoate form by carboxylesterases in the liver. The dihydroxyheptanoate form can also be converted back to its original lactone form. Unfortunately, some of the side effects associated with the intake of simvastatin and other lipophilic statins at higher doses include statin-associated myopathy (SAM) and, in more severe cases, kidney failure. While the cause of SAM is unknown, it is hypothesized that these side effects are dependent on the localization of statins in lipid bilayers and their impact on bilayer properties. In this work, we carry out all-atom molecular dynamics simulations on both the lactone and dihydroxyheptanoate forms of simvastatin (termed "SN" and "SA", respectively) with a pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer and a POPC/cholesterol (30 mol %) binary mixture as membrane models. Additional simulations were carried out with multiple simvastatin molecules to mimic in vitro conditions that produced pleiotropic effects. Both SN and SA spontaneously diffused into the lipid bilayer, and a longer simulation time of 4 μs was needed for the complete incorporation of multiple SAs into the bilayer. By constructing potential mean force and electron density profiles, we find that SN localizes deeper within the hydrophobic interior of the bilayer and that SA has a greater tendency to form hydrogen-bonding interactions with neighboring water molecules and lipid headgroups. For the pure POPC bilayer, both SN and SA increase membrane order, while membrane fluidity increases for the POPC/cholesterol bilayer.
Collapse
Affiliation(s)
- Ruijie D Teo
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
13
|
Zequn Z, Yujia W, Dingding Q, Jiangfang L. Off-label use of chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel. Eur J Pharmacol 2020; 893:173813. [PMID: 33345848 PMCID: PMC7746509 DOI: 10.1016/j.ejphar.2020.173813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an enormous challenge to the medical system, especially the lack of safe and effective COVID-19 treatment methods, forcing people to look for drugs that may have therapeutic effects as soon as possible. Some old drugs have shown clinical benefits after a few small clinical trials that attracted great attention. Clinically, however, many drugs, including those currently used in COVID-19, such as chloroquine, hydroxychloroquine, azithromycin, and lopinavir/ritonavir, may cause cardiotoxicity by acting on cardiac potassium channels, especially hERG channel through their off-target effects. The blocking of the hERG channel prolongs QT intervals on electrocardiograms; thus, it might induce severe ventricular arrhythmias and even sudden cardiac death. Therefore, while focusing on the efficacy of COVID-19 drugs, the fact that they block hERG channels to cause arrhythmias cannot be ignored. To develop safer and more effective drugs, it is necessary to understand the interactions between drugs and the hERG channel and the molecular mechanism behind this high affinity. In this review, we focus on the biochemical and molecular mechanistic aspects of drug-related blockade of the hERG channel to provide insights into QT prolongation caused by off-label use of related drugs in COVID-19, and hope to weigh the risks and benefits when using these drugs.
Collapse
Affiliation(s)
- Zheng Zequn
- Medical College, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Wu Yujia
- Medical College, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Qian Dingding
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lian Jiangfang
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
14
|
Thioridazine Induces Cardiotoxicity via Reactive Oxygen Species-Mediated hERG Channel Deficiency and L-Type Calcium Channel Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3690123. [PMID: 32064022 PMCID: PMC6998749 DOI: 10.1155/2020/3690123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Thioridazine (THIO) is a phenothiazine derivative that is mainly used for the treatment of psychotic disorders. However, cardiac arrhythmias especially QT interval prolongation associated with the application of this compound have received serious attention after its introduction into clinical practice, and the mechanisms underlying the cardiotoxicity induced by THIO have not been well defined. The present study was aimed at exploring the long-term effects of THIO on the hERG and L-type calcium channels, both of which are relevant to the development of QT prolongation. The hERG current (I hERG) and the calcium current (I Ca-L) were measured by patch clamp techniques. Protein levels were analyzed by Western blot, and channel-chaperone interactions were determined by coimmunoprecipitation. Reactive oxygen species (ROS) were determined by flow cytometry and laser scanning confocal microscopy. Our results demonstrated that THIO induced hERG channel deficiency but did not alter channel kinetics. THIO promoted ROS production and stimulated endoplasmic reticulum (ER) stress and the related proteins. The ROS scavenger N-acetyl cysteine (NAC) significantly attenuated hERG reduction induced by THIO and abolished the upregulation of ER stress marker proteins. Meanwhile, THIO increased the degradation of hERG channels via disrupting hERG-Hsp70 interactions. The disordered hERG proteins were degraded in proteasomes after ubiquitin modification. On the other hand, THIO increased I Ca-L density and intracellular Ca2+ ([Ca2+]i) in neonatal rat ventricular cardiomyocytes (NRVMs). The specific CaMKII inhibitor KN-93 attenuated the intracellular Ca2+ overload, indicating that ROS-mediated CaMKII activation promoted calcium channel activation induced by THIO. Optical mapping analysis demonstrated the slowing effects of THIO on cardiac repolarization in mouse hearts. THIO significantly prolonged APD50 and APD90 and increased the incidence of early afterdepolarizations (EADs). In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), THIO also resulted in APD prolongation. In conclusion, dysfunction of hERG channel proteins and activation of L-type calcium channels via ROS production might be the ionic mechanisms for QT prolongation induced by THIO.
Collapse
|