1
|
Zhu H, Xu T, Tan H, Wang M, Wang J. O/W nanoemulsions encapsulated octacosanol: Preparation, characterization and anti-fatigue activity. Colloids Surf B Biointerfaces 2024; 241:114066. [PMID: 38954938 DOI: 10.1016/j.colsurfb.2024.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Octacosanol has various biological effects such as antioxidant, hypolipidemic and anti-fatigue. However, poor solubility has limited the application of octacosanol in food. The aim of this study was to prepare octacosanol nanoemulsions with better solubility, stability and safety and to investigate in vivo anti-fatigue effect. The food-grade formulation of the octacosanol nanoemulsions consisted of octacosanol, olive oil, Tween 80, glycerol and water with 0.1 %, 1.67 %, 23.75 %, 7.92 % and 66.65 % (w/w), respectively. The nanoemulsions had an average particle size of 12.26 ± 0.76 nm and polydispersity index of 0.164 ± 0.12, and showed good stability under different pH, cold, heat, ionic stress and long-term storage conditions. The results of animal experiments showed that the octacosanol nanoemulsions significantly prolonged the fatigue tolerance time, alleviated the fatigue-related biochemical indicators, and weakened the oxidative stress. Meanwhile, octacosanol nanoemulsions upregulated hepatic glycogen levels. Taken together, these findings suggested that octacosanol nanoemulsions have promising applications as anti-fatigue functional foods.
Collapse
Affiliation(s)
- Hongxuan Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Tao Xu
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Hao Tan
- College of Chemistry and Chemical engineering, Guangxi University, Nanning 530004, China
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Palacio DA, Muñoz C, Meléndrez M, Rabanal-León WA, Murillo-López JA, Palencia M, Rivas BL. Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations. Polymers (Basel) 2023; 15:3185. [PMID: 37571079 PMCID: PMC10421493 DOI: 10.3390/polym15153185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Emerging antibiotic contaminants in water is a global problem because bacterial strains resistant to these antibiotics arise, risking human health. This study describes the use of poly[(4-vinylbenzyl) trimethylammonium chloride] and N-alkylated chitosan, two cationic polymers with different natures and structures to remove nalidixic acid. Both contain ammonium salt as a functional group. One of them is a synthetic polymer, and the other is a modified artificial polymer. The removal of the antibiotic was investigated under various experimental conditions (pH, ionic strength, and antibiotic concentration) using the technique of liquid-phase polymer-based retention (LPR). In addition, a stochastic algorithm provided by Fukui's functions is used. It was shown that alkylated N-chitosan presents 65.0% removal at pH 7, while poly[(4-vinylbenzyl)trimethylammonium chloride] removes 75.0% at pH 9. The interaction mechanisms that predominate the removal processes are electrostatic interactions, π-π interactions, and hydrogen bonding. The polymers reached maximum retention capacities of 1605 mg g-1 for poly[(4-vinylbenzyl) trimethylammonium chloride] and 561 mg g-1 of antibiotic per gram for alkylated poly(N-chitosan). In conclusion, the presence of aromatic groups improves the capacity and polymer-antibiotic interactions.
Collapse
Affiliation(s)
- Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.)
| | - Carla Muñoz
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.)
| | - Manuel Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070409, Chile;
| | - Walter A. Rabanal-León
- Laboratorio de Modelamiento Computacional en Sistemas Inorgánicos y Organometálicos (Lab-MCSIO), Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile
| | - Juliana A. Murillo-López
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Autopista Concepción–Talcahuano 7100, Talcahuano 4260000, Chile
| | - Manuel Palencia
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Grupo de Investigación en Ciencias con Aplicaciones Tecnológicas (GI-CAT), Universidad del Valle, Calle 13#100-00, Cali 25360, Colombia
| | - Bernabé L. Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.)
| |
Collapse
|
3
|
Neira-Carrillo A, Zárate IA, Nieto E, Butto-Miranda N, Lobos-González L, Del Campo-Smith M, Palacio DA, Urbano BF. Electrospun Poly(acrylic acid- co-4-styrene sulfonate) as Potential Drug-Eluting Scaffolds for Targeted Chemotherapeutic Delivery Systems on Gastric (AGS) and Breast (MDA-Mb-231) Cancer Cell Lines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3903. [PMID: 36364679 PMCID: PMC9657868 DOI: 10.3390/nano12213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Potential drug-eluting scaffolds of electrospun poly(acrylic acid-co-styrene sulfonate) P(AA-co-SS) in clonogenic assays using tumorigenic gastric and ovarian cancer cells were tested in vitro. Electrospun polymer nanofiber (EPnF) meshes of PAA and PSSNa homo- and P(AA-co-SS) copolymer composed of 30:70, 50:50, 70:30 acrylic acid (AA) and sodium 4-styrene sulfonate (SSNa) units were performed by electrospinning (ES). The synthesis, structural and morphological characterization of all EPnF meshes were analyzed by optical and electron microscopy (SEM-EDS), infrared spectroscopy (FTIR), contact angle, and X-ray diffraction (XRD) measurements. This study shows that different ratio of AA and SSNa of monomers in P(AA-co-SS) EPnF play a crucial role in clonogenic in vitro assays. We found that 50:50 P(AA-co-SS) EPnF mesh loaded with antineoplastic drugs can be an excellent suppressor of growth-independent anchored capacities in vitro assays and a good subcutaneous drug delivery system for chemotherapeutic medication in vivo model for surgical resection procedures in cancer research.
Collapse
Affiliation(s)
- Andrónico Neira-Carrillo
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
| | - Ignacio A. Zárate
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Eddie Nieto
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Nicole Butto-Miranda
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo, Clínica Alemana, Santiago 7610658, Chile
| | - Matias Del Campo-Smith
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo, Clínica Alemana, Santiago 7610658, Chile
| | - Daniel A. Palacio
- Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción, Concepción 3349001, Chile
| | - Bruno F. Urbano
- Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción, Concepción 3349001, Chile
| |
Collapse
|
4
|
Tang Q, Yi Y, Chen Y, Zhuang Z, Wang F, Zhang L, Wei S, Zhang Y, Wang Y, Liu L, Liu Q, Jiang C. A green and highly efficient method to deliver hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for enhanced anti-atherosclerotic effect via metal-phenolic network. Colloids Surf B Biointerfaces 2022; 215:112511. [PMID: 35483256 DOI: 10.1016/j.colsurfb.2022.112511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
Salvia miltiorrhiza and Carthamus tinctorius are traditional Chinese medicines that have been widely used for the treatment of cardiovascular disease. Salvianic acid A (SAA), salvianic acid B (SAB), protocatechuic aldehyde (PCA) and hydroxysafflor yellow A (HSYA) are the major hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius, all of which have been documented as active compounds for the prevention and treatment of atherosclerosis (AS). However, high aqueous solubility, low permeability and poor stability properties of the four hydrophilic polyphenols might influence their bioavailability and thus hinder their clinical potential. In this work, we introduced a green and highly efficient method for the efficient delivery of the four hydrophilic components via metal-phenolic network. The four coordination polymers of SAA, SAB, PCA and HSYA were successfully fabricated, and confirmed by UV-vis, FTIR, XPS, ICP-MS and dynamic light scattering analysis. We found all of them displayed potent antioxidant activity, good biocompatibility and stability. Impressively, the four coordination polymers showed remarkably enhanced anti-atherosclerotic effect compared with free drugs. Collectively, metal-phenolic network-based coordination polymer might show great potential for safe and efficient delivery of the hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Qingfa Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yankui Yi
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yao Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Ziming Zhuang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Shenkun Wei
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yusheng Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yueqiusha Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China.
| | - Cuiping Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China; Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Concentration Dependent Single Chain Properties of Poly(sodium 4-styrenesulfonate) Subjected to Aromatic Interactions with Chlorpheniramine Maleate Studied by Diafiltration and Synchrotron-SAXS. Polymers (Basel) 2021; 13:polym13203563. [PMID: 34685324 PMCID: PMC8538281 DOI: 10.3390/polym13203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
The polyelectrolyte poly(sodium 4-styrenesulfonate) undergoes aromatic–aromatic interaction with the drug chlorpheniramine, which acts as an aromatic counterion. In this work, we show that an increase in the concentration in the dilute and semidilute regimes of a complex polyelectrolyte/drug 2:1 produces the increasing confinement of the drug in hydrophobic domains, with implications in single chain thermodynamic behavior. Diafiltration analysis at polymer concentrations between 0.5 and 2.5 mM show an increase in the fraction of the aromatic counterion irreversibly bound to the polyelectrolyte, as well as a decrease in the electrostatic reversible interaction forces with the remaining fraction of drug molecules as the total concentration of the system increases. Synchrotron-SAXS results performed in the semidilute regimes show a fractal chain conformation pattern with a fractal dimension of 1.7, similar to uncharged polymers. Interestingly, static and fractal correlation lengths increase with increasing complex concentration, due to the increase in the amount of the confined drug. Nanoprecipitates are found in the range of 30–40 mM, and macroprecipitates are found at a higher system concentration. A model of molecular complexation between the two species is proposed as the total concentration increases, which involves ion pair formation and aggregation, producing increasingly confined aromatic counterions in hydrophobic domains, as well as a decreasing number of charged polymer segments at the hydrophobic/hydrophilic interphase. All of these features are of pivotal importance to the general knowledge of polyelectrolytes, with implications both in fundamental knowledge and potential technological applications considering aromatic-aromatic binding between aromatic polyelectrolytes and aromatic counterions, such as in the production of pharmaceutical formulations.
Collapse
|
6
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
7
|
Flores ME, Ancalaf D, Rolleri A, Nishide H, Lisoni JG, Moreno‐Villoslada I. Porous polyelectrolyte materials with controlled luminescence properties based on aromatic‐aromatic interactions with rhodamine B. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mario E. Flores
- Instituto de Ciencias Químicas, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Daniel Ancalaf
- Instituto de Ciencias Químicas, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Aldo Rolleri
- Instituto de Bosques y Sociedad, Facultad de Ciencias Forestales Universidad Austral de Chile Valdivia Chile
| | - Hiroyuki Nishide
- Department of Applied Chemistry School of Science and Engineering, Waseda University Tokyo Japan
| | - Judit G. Lisoni
- NM MultiMat, Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | | |
Collapse
|
8
|
Villamizar-Sarmiento MG, Guerrero J, Moreno-Villoslada I, Oyarzun-Ampuero FA. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions. Eur J Pharm Biopharm 2021; 166:19-29. [PMID: 34052430 DOI: 10.1016/j.ejpb.2021.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
The efficient association and controlled release of hydrophilic and aromatic low molecular-weight drugs (HALMD) still remains a challenge due to their relatively weak interactions with excipients and strong affinity to water. Considering that a wide variety of drugs to treat chronic diseases are HALMD, their inclusion in polymeric nanoparticles (NPs) constitutes an attractive possibility by providing to these drugs with controllable physiochemical properties, preventing crisis episodes, decreasing dose-dependent side effects and promoting therapeutic adhesiveness. However, the strong interaction of HALMD with the aqueous medium jeopardizes their encapsulation and controlled release. In this work, the role of the self-assembly tendency of HALMD on their association with the aromatic excipient poly(sodium 4-styrensulfonate) (PSS) to form NPs is studied. For this aim, the widely used drugs amitriptyline (AMT), promethazine (PMZ), and chlorpheniramine (CPM) are selected due to their well described critical aggregation concentration (cac) (36 mM for AMT, 36 mM for PMZ, and 69.5 mM for CPM). These drugs undergo aromatic-aromatic interactions with the polymer, which stabilize their mutual binding, as seen by NMR. The simple mixing of solutions of opposite charged molecules (drug + PSS) allowed obtaining NPs. Importantly, comparing the three drugs, the formation of NPs occurred at significantly lower absolute concentration and significantly lower drug/polymer ratio as the cac takes lower values, indicating a stronger binding to the polymer, as also deduced from the respective drug/polymer dissociation constant values. In addition, the number of formed NPs is similar for all formulations, even though a much lower concentration of the drug and polymer is present in systems comprising lower cac. The obtained NPs are spheroidal and present size between 100 and 160 nm, low polydispersity (≤0.3) and negative zeta potential (from -30 to -60 mV). The association efficiency reaches values ≥ 83% and drug loading could achieve values up to 68% (never evidenced before for systems comprising HALMD). In addition, drug release studies are also significantly influenced by cac, providing more prolonged release for AMT and PMZ (lower cac), whose delivery profiles adjust to the Korsmeyer-Peppas equation. As a novelty of this work, a synergic contribution of drug self-association tendency and aromatic-aromatic interaction between the drug and polymers is highlighted, a fact that could be crucial for the rational design and development of efficient drug delivery systems.
Collapse
Affiliation(s)
- María Gabriela Villamizar-Sarmiento
- Department of Sciences and Pharmaceutical Technology, University of Chile, Santiago de Chile 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile.
| | - Juan Guerrero
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación central, 9170002 Santiago, Chile.
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110033, Chile.
| | - Felipe A Oyarzun-Ampuero
- Department of Sciences and Pharmaceutical Technology, University of Chile, Santiago de Chile 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Cerda-Opazo P, Gotteland M, Oyarzun-Ampuero FA, Garcia L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
González LF, Acuña E, Arellano G, Morales P, Sotomayor P, Oyarzun-Ampuero F, Naves R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J Control Release 2020; 331:443-459. [PMID: 33220325 DOI: 10.1016/j.jconrel.2020.11.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS). Interferon (IFN)-β constitutes one of the first-line therapies to treat MS, but has limited efficacy due to the injectable systemic administration, short half-life, and limited CNS access. To address these limitations, we developed IFN-β-loaded chitosan/sulfobutylether-β-cyclodextrin nanoparticles (IFN-β-NPs) for delivery of IFN-β into the CNS via the intranasal (i.n.) route. The nanoparticles (NPs) (≈200 nm, polydispersity ≈0.1, and zeta potential ≈20 mV) were prepared by mixing two aqueous solutions and associated human or murine IFN-β with high efficiency (90%). Functional in vitro assays showed that IFN-β-NPs were safe and that IFN-β was steadily released while retaining biological activity. Biodistribution analysis showed an early and high fluorescence in the brain after nasal administration of fluorescent probe-loaded NPs. Remarkably, mice developing experimental autoimmune encephalomyelitis (EAE), an experimental model of MS, exhibited a significant improvement of clinical symptoms in response to intranasal IFN-β-NPs (inIFN-β-NPs), whereas a similar dose of intranasal or systemic free IFN-β had no effect. Importantly, inIFN-β-NPs treatment was equally effective despite a reduction of 78% in the total amount of weekly administered IFN-β. Spinal cords obtained from inIFN-β-NPs-treated EAE mice showed fewer inflammatory foci and demyelination, lower expression of antigen-presenting and costimulatory proteins on CD11b+ cells, and lower astrocyte and microglia activation than control mice. Therefore, IFN-β treatment at tested doses was effective in promoting clinical recovery and control of neuroinflammation in EAE only when associated with NPs. Overall, inIFN-β-NPs represent a potential, effective, non-invasive, and low-cost therapy for MS.
Collapse
Affiliation(s)
- Luis F González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula Sotomayor
- Center for Integrative Medicine and Innovative Science, Universidad Andrés Bello, Santiago, Chile
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Catalan-Figueroa J, García MA, Contreras P, Boisset CB, Gonzalez PM, Fiedler JL, Pérez MF, Morales JO. Poloxamer 188-Coated Ammonium Methacrylate Copolymer Nanocarriers Enhance Loperamide Permeability across Pgp-Expressing Epithelia. Mol Pharm 2020; 18:743-750. [PMID: 33044825 DOI: 10.1021/acs.molpharmaceut.0c00623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loperamide is a μ-opioid agonist with poor gastrointestinal absorption, mainly because of its modest aqueous solubility and being a P-glycoprotein (Pgp) efflux substrate. Nevertheless, studies associated with therapeutic effects strongly suggest that loperamide holds potential pharmacological advantages over traditional μ-opioid agonists commonly used for analgesia. Thus, in this Communication, we assessed in MDCK-hMDR1 cell lines the effects over loperamide uptake and efflux ratio, when loaded into Eudragit RS (ERS) nanocarriers coated with poloxamer 188 (P188). ERS was chosen for enhancing loperamide aqueous dispersibility and P188 as a potential negative Pgp modulator. In uptake assays, it was observed that Pgp limited the accumulation of loperamide into cells and that preincubation with P188, but not coincubation, led to increasing loperamide uptake at a similar extent of Pgp pharmacological inhibition. On the other hand, the efflux ratio displayed no alterations when Pgp was pharmacologically inhibited, whereas ERS/P188 nanocarriers effectively enhanced loperamide uptake and absorptive transepithelial transport. The latter suggests that loperamide transport across cells is significantly influenced by the presence of the unstirred water layer (UWL), which could hinder the visualization of Pgp-efflux effects during transport assays. Thus, results in this work highlight that formulating loperamide into this nanocarrier enhances its uptake and transport permeability.
Collapse
Affiliation(s)
- Johanna Catalan-Figueroa
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Department of Biochemistry, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Departamento Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mauricio A García
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Pilar Contreras
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Constanza B Boisset
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Pablo M Gonzalez
- Innovation and Biopharmaceutical Evaluation (IBE) Center, Santiago 8441536, Chile
| | - Jenny L Fiedler
- Department of Biochemistry, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Mariela F Pérez
- Departamento Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
| |
Collapse
|
12
|
Mackiewicz M, Stojek Z, Karbarz M. Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190981. [PMID: 31827839 PMCID: PMC6894567 DOI: 10.1098/rsos.190981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/04/2019] [Indexed: 05/30/2023]
Abstract
For the first time, by using precipitation polymerization in an aqueous solution, a cross-linked poly(acrylic acid)-(pAA) nanogel was synthesized. pAA was synthesized and cross-linked with N,N'-methylenebisacrylamide (BIS) at 70°C in an acidified environment (pH 2) and containing 0.7 M NaCl using potassium persulfate as the initiator. Ionized pAA was soluble in water. The use of sodium chloride at low pH caused a decrease in the solubility of pAA and led to its precipitation and formation of cross-linked pAA nanogel. By using electron microscopies and light scattering techniques, the morphology, pH sensitivity and zeta potential of the obtained p(AA-BIS) nanogel were evaluated. The polymerization in an aqueous environment resulted in a very big swelling/shrinking coefficient (of approx. 4000) in response to pH and exhibited an unusually high negative zeta potential (of approx. -130 mV). These properties make the nanogel a very interesting sorbent and a construction material.
Collapse
Affiliation(s)
| | | | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Avenue, 02-089 Warsaw, Poland
| |
Collapse
|
13
|
Villamizar-Sarmiento MG, Moreno-Villoslada I, Martínez S, Giacaman A, Miranda V, Vidal A, Orellana SL, Concha M, Pavicic F, Lisoni JG, Leyton L, Oyarzun-Ampuero FA. Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E944. [PMID: 31261871 PMCID: PMC6669755 DOI: 10.3390/nano9070944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to -43 mV, respectively. Turbidimetry and nanoparticle concentration analyses demonstrated the high capacity of the INC to interact with increasing concentrations of LMWHA, improving the yield of production of the nanostructures. Interestingly, once the selected formulations of INC were freeze-dried, only those comprising a larger excess of LMWHA could form reproducible sponge formulations, as seen with the naked eye. This optical behavior was consistent with the scanning transmission electron microscopy (STEM) images, which showed a tendency of the particles to agglomerate when an excess of LMWHA was present. Mechanical characterization evidenced low stiffness in the materials, attributed to the low density and high porosity. A preliminary cellular evaluation in a fibroblast cell line (RMF-EG) evidenced the concentration range where swollen formulations did not affect cell proliferation (93-464 µM) at 24, 48, or 72 h. Considering that the reproducible sponge formulations were elaborated following inexpensive and non-contaminant methods and comprised bioactive components, we postulate them with potential for biomedical purposes. Additionally, this systematic study provides important information to design reproducible porous solid materials using ionic nanocomplexes.
Collapse
Affiliation(s)
- María Gabriela Villamizar-Sarmiento
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, Chile
| | - Samuel Martínez
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Annesi Giacaman
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
- Jeffrey Modell Center of Diagnosis and Research in Primary Immunodeficiencies. Faculty of Medicine, University of La Frontera, Temuco 4780000, Chile
| | - Victor Miranda
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Alejandra Vidal
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sandra L Orellana
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, Chile
| | - Miguel Concha
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Francisca Pavicic
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Judit G Lisoni
- NM MultiMat, Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Lisette Leyton
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile.
| | - Felipe A Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|