1
|
Giancola J, Okon A, Li Y, Strieter E, Raines R. Cytosolic Delivery of Functional Ubiquitin. J Pept Sci 2025; 31:e70026. [PMID: 40344378 PMCID: PMC12061796 DOI: 10.1002/psc.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
The proteostasis network involves complex protein signaling cascades. The tagging of proteins with ubiquitin is central to the degradation of cellular proteins, but understanding its exact role in processing proteins is complicated by the complexity and extent of its utilization within cells. Here, we describe the application of a traceless protein delivery strategy to effect the uptake of exogenous ubiquitin into the cytosol of human cells. We find that coadministration of the endosomolytic peptides L17E and, especially, L17ER4 provides not only cytosolic access to ubiquitin but also its functional incorporation into endogenous proteins. By enabling the study of semisynthetic ubiquitin variants in the human cytosol, this strategy could advance the field of ubiquitin biology.
Collapse
Affiliation(s)
- JoLynn B. Giancola
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aniekan Okon
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Yanfeng Li
- Department of ChemistryUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Eric R. Strieter
- Department of ChemistryUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Ronald T. Raines
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Kuriyama M, Hirose H, Kawaguchi Y, Michibata J, Maekawa M, Futaki S. KCNN4 as a genomic determinant of cytosolic delivery by the attenuated cationic lytic peptide L17E. Mol Ther 2025; 33:595-614. [PMID: 39748507 PMCID: PMC11852704 DOI: 10.1016/j.ymthe.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery. In this study, given the high efficacy of L17E in cytosolic delivery, we investigated the mechanism of action of L17E in detail. L17E was found to achieve cytosolic delivery predominantly by transient disruption of the plasma membrane without the need for endocytosis. Importantly, the cell-line selectivity studies of L17E revealed a strong correlation between the efficiency of L17E-mediated delivery and the expression level of KCNN4, the gene encoding the calcium-activated potassium channel KCa3.1. Genetic and pharmacological regulation of KCNN4 expression and KCa3.1 activity, respectively, correlate closely with the efficiency of L17E-mediated cytosolic delivery, suggesting the importance of membrane-potential regulation by extracellular Ca2+ influx. Therefore, the activity of the L17E is relevant to the calcium-activated potassium channel.
Collapse
Affiliation(s)
- Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
3
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Silva Ladeira J, Fernandes da Costa Franklin P, de Paula Dutra de Nigro N, Alves Dias R, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger PA, Costa KD, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. Nat Commun 2025; 16:272. [PMID: 39747004 PMCID: PMC11697315 DOI: 10.1038/s41467-024-55056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner. These processes are interconnected and require Plexin-B2 signaling. We further show that Plexin-B2 governs membrane tension and other membrane features such as endocytosis, phospholipid composition, and inner leaflet surface charge, thus providing biophysical mechanisms by which Plexin-B2 promotes GBM invasion. Together, our studies unveil how GBM cells regulate membrane tension and mechano-electrical coupling to adapt to physical constraints and achieve polarized confined migration.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Theodore Hannah
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sita Sadia
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christy Kolsteeg
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ha Nguyen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Murray J Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Júlia Silva Ladeira
- Department of Computer Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Rodrigo Alves Dias
- Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
4
|
Giancola JB, Raines RT. Endosomolytic peptides enable the cellular delivery of peptide nucleic acids. Chem Commun (Camb) 2024; 60:15019-15022. [PMID: 39601427 PMCID: PMC11600723 DOI: 10.1039/d4cc05214e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Precision genetic medicine enlists antisense oligonucleotides (ASOs) to bind to nucleic acid targets important for human disease. Peptide nucleic acids (PNAs) have many desirable attributes as ASOs but lack cellular permeability. Here, we use an assay based on the corrective splicing of an mRNA to assess the ability of synthetic peptides to deliver a functional PNA into a human cell. We find that the endosomolytic peptides L17E and L17ER4 are highly efficacious delivery vehicles. Co-treatment of a PNA with low micromolar L17E or L17ER4 enables robust corrective splicing in nearly all treated cells. Peptide-PNA conjugates are even more effective. These results enhance the utility of PNAs as research tools and potential therapeutic agents.
Collapse
Affiliation(s)
- JoLynn B Giancola
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Ronald T Raines
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Polderdijk SGI, Limzerwala JF, Spiess C. Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides. PLoS One 2024; 19:e0305848. [PMID: 39226290 PMCID: PMC11371239 DOI: 10.1371/journal.pone.0305848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 09/05/2024] Open
Abstract
Intracellular delivery of large molecule cargo via cell penetrating peptides (CPPs) is an inefficient process and despite intense efforts in past decades, improvements in efficiency have been marginal. Utilizing a standardized and comparative analysis of the delivery efficiency of previously described cationic, anionic, and amphiphilic CPPs, we demonstrate that the delivery ceiling is accompanied by irreparable plasma membrane damage that is part of the uptake mechanism. As a consequence, intracellular delivery correlates with cell toxicity and is more efficient for smaller peptides than for large molecule cargo. The delivery of pharmaceutically relevant cargo quantities with acceptable toxicity thus seems hard to achieve with the CPPs tested in our study. Our results suggest that any engineered intracellular delivery system based on conventional cationic or amphiphilic CPPs, or the design principles underlying them, needs to accept low delivery yields due to toxicity limiting efficient cytoplasmic uptake. Novel peptide designs based on detailed study of uptake mechanisms are required to overcome these limitations.
Collapse
Affiliation(s)
| | - Jazeel F. Limzerwala
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| |
Collapse
|
6
|
Hofmann S, Dombrowsky C, Happel D, Dessin C, Cermjani E, Cica M, Avrutina O, Sewald N, Neumann H, Kolmar H. Conditional Cell Penetration of Masked CPPs by an ADEPT-like Approach. ACS Chem Biol 2024; 19:1320-1329. [PMID: 38733564 DOI: 10.1021/acschembio.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The intracellular delivery of cargos via cell penetrating peptides (CPPs) holds significant promise as a drug delivery vehicle, but a major issue is their lack of cell type specificity, which can lead to detrimental off-target effects. We use an ADEPT-like concept to introduce conditional and selective activation of cellular uptake by using the lysine-rich, cationic, and amphiphilic L17E peptide as a model CPP. By masking the lysine residues of the L17E peptide with enzyme-cleavable acetyl protecting groups, the delivery of the covalently conjugated fluorophore TAMRA to HeLa cells was diminished. Recovery of cellular uptake could be achieved by deacetylation of the masked acetylated L17E peptide using the NAD-dependent sirtuin 2 (SirT2) deacetylase in vitro. Finally, trastuzumab-SirT2 and anti-B7H3-SirT2 antibody-enzyme conjugates were generated for the conditional and selective delivery of a cryptophycin cytotoxin by the L17E peptide. While the masked peptide still demonstrated some cytotoxicity, selective cell killing mediated by the antibody-enzyme conjugates was observed.
Collapse
Affiliation(s)
- Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Carolin Dombrowsky
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Cedric Dessin
- Department of Chemistry/Organic Chemistry, Bielefeld University, Centrum für Biotechnologie - CeBiTec, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Egzon Cermjani
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Matijas Cica
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Norbert Sewald
- Department of Chemistry/Organic Chemistry, Bielefeld University, Centrum für Biotechnologie - CeBiTec, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Heinz Neumann
- Department of Chemical Technology and Biotechnology, Darmstadt University of Applied Sciences, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| |
Collapse
|
7
|
Giancola JB, Raines RT. Endosomolytic Peptides Enable the Cellular Delivery of Peptide Nucleic Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599558. [PMID: 38948866 PMCID: PMC11213006 DOI: 10.1101/2024.06.18.599558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Precision genetic medicine enlists antisense oligonucleotides (ASOs) to bind to nucleic acid targets important for human disease. Peptide nucleic acids (PNAs) have many desirable attributes as ASOs but lack cellular permeability. Here, we use an assay based on the corrective splicing of an mRNA to assess the ability of synthetic peptides to deliver a functional PNA into a human cell. We find that the endosomolytic peptides L17E and L17ER 4 are highly efficacious delivery vehicles. Co-treatment of a PNA with low micromolar L17E or L17ER 4 enables robust corrective splicing in nearly all treated cells. Peptide-PNA conjugates are even more effective. These results enhance the utility of PNAs as research tools and potential therapeutic agents.
Collapse
|
8
|
Huo W, Miki K, Mu H, Osawa T, Yamaguma H, Kasahara Y, Obika S, Kawaguchi Y, Hirose H, Futaki S, Miyazaki Y, Shinoda W, Akai S, Ohe K. Light-controllable cell-membrane disturbance for intracellular delivery. J Mater Chem B 2024; 12:4138-4147. [PMID: 38456552 DOI: 10.1039/d3tb02956e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Highly polar and charged molecules, such as oligonucleotides, face significant barriers in crossing the cell membrane to access the cytoplasm. To address this problem, we developed a light-triggered twistable tetraphenylethene (TPE) derivative, TPE-C-N, to facilitate the intracellular delivery of charged molecules through an endocytosis-independent pathway. The central double bond of TPE in TPE-C-N is planar in the ground state but becomes twisted in the excited state. Under light irradiation, this planar-to-twisted structural change induces continuous cell membrane disturbances. Such disturbance does not lead to permanent damage to the cell membrane. TPE-C-N significantly enhanced the intracellular delivery of negatively charged molecules under light irradiation when endocytosis was inhibited through low-temperature treatment, confirming the endocytosis-independent nature of this delivery method. We have successfully demonstrated that the TPE-C-N-mediated light-controllable method can efficiently promote the intracellular delivery of charged molecules, such as peptides and oligonucleotides, with molecular weights ranging from 1000 to 5000 Da.
Collapse
Affiliation(s)
- Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Harumi Yamaguma
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yuuya Kasahara
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan
| | | | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
9
|
Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT. Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye. ACS Chem Biol 2024; 19:908-915. [PMID: 38525961 PMCID: PMC11186736 DOI: 10.1021/acschembio.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.
Collapse
Affiliation(s)
- JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Joomyung V. Jun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Kawaguchi Y, Kawamura Y, Hirose H, Kiyokawa M, Hirate M, Hirata T, Higuchi Y, Futaki S. E3MPH16: An efficient endosomolytic peptide for intracellular protein delivery. J Control Release 2024; 367:877-891. [PMID: 38301930 DOI: 10.1016/j.jconrel.2024.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yuki Kawamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Megumi Kiyokawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Momo Hirate
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
11
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
12
|
Nakazato Y, Otaki JM. Protein Delivery to Insect Epithelial Cells In Vivo: Potential Application to Functional Molecular Analysis of Proteins in Butterfly Wing Development. BIOTECH 2023; 12:biotech12020028. [PMID: 37092472 PMCID: PMC10123617 DOI: 10.3390/biotech12020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Protein delivery to cells in vivo has great potential for the functional analysis of proteins in nonmodel organisms. In this study, using the butterfly wing system, we investigated a method of protein delivery to insect epithelial cells that allows for easy access, treatment, and observation in real time in vivo. Topical and systemic applications (called the sandwich and injection methods, respectively) were tested. In both methods, green/orange fluorescent proteins (GFP/OFP) were naturally incorporated into intracellular vesicles and occasionally into the cytosol from the apical surface without any delivery reagent. However, the antibodies were not delivered by the sandwich method at all, and were delivered only into vesicles by the injection method. A membrane-lytic peptide, L17E, appeared to slightly improve the delivery of GFP/OFP and antibodies. A novel peptide reagent, ProteoCarry, successfully promoted the delivery of both GFP/OFP and antibodies into the cytosol via both the sandwich and injection methods. These protein delivery results will provide opportunities for the functional molecular analysis of proteins in butterfly wing development, and may offer a new way to deliver proteins into target cells in vivo in nonmodel organisms.
Collapse
Affiliation(s)
- Yugo Nakazato
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
13
|
Li C, Chen X, Li L, Cheng J, Chen H, Gao Q, Yang F, Cai X, Wang S. Protective effect of antioxidant peptides from bass (
Lateolabrax japonicus
) on oxidative stress injury in Caco‐2 cells. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
14
|
Feng R, Ni R, Chau Y. Fusogenic peptide modification to enhance gene delivery by peptide-DNA nano-coassemblies. Biomater Sci 2022; 10:5116-5120. [PMID: 35975695 DOI: 10.1039/d2bm00705c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endosomal escape is a major obstacle for non-viral nucleic acids delivery. Here, we attached by click reaction a fusogenic peptide (L17E) onto peptide self-assembled disks (∼17 nm), which mimicked the functional subunits of the virus capsid. These peptide disks then spontaneously co-assembled with DNA to form patterned nanostructures (∼100 nm) as viral mimics. This modification did not affect the cellular uptake but enhanced endosomal escape and led to improved transfection in cell culture.
Collapse
Affiliation(s)
- Ruilu Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Rong Ni
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
16
|
Shinga K, Iwata T, Murata K, Daitoku Y, Michibata J, Arafiles JVV, Sakamoto K, Akishiba M, Takatani-Nakase T, Mizuno S, Sugiyama F, Imanishi M, Futaki S. L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorg Med Chem 2022; 61:116728. [PMID: 35395514 DOI: 10.1016/j.bmc.2022.116728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
We have developed a series of attenuated cationic amphiphilic lytic (ACAL) peptides that can efficiently bring immunoglobulin G (IgG) and other functional proteins into cells. Delivery is generally achieved through the coadministration of ACAL peptides with cargo proteins. However, conjugation of ACAL peptides with cargos may be a promising approach for in vivo application to link in vivo outcomes of ACAL peptides and cargos. This study describes the creation of a new cell-permeable ACAL peptide, L17ER4. L17E is an optimized prototype of ACAL peptides previously developed in our laboratory for efficient delivery of IgGs into cells. Delivery was improved by functionalizing L17E with a tetra-arginine (R4) tag. Compared to the use of R8, a representative cell-penetrating peptide with high intracellular delivery efficacy, conjugation with L17ER4 afforded approximately four-fold higher cellular uptake of model small-molecule cargos (fluorescein isothiocyanate and HiBiT peptide). L17ER4 was also able to deliver proteins to cells. Fused with L17ER4, Cre recombinase was delivered into cells. Intracerebroventricular injection of Cre-L17ER4 into green red reporter mice, R26GRR, led to significant in vivo gene recombination in ependymal cells, suggesting that L17ER4 may be used as a cell-penetrating peptide for delivering protein therapeutics into cells in vivo.
Collapse
Affiliation(s)
- Kenta Shinga
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takahiro Iwata
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | | | - Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoka Takatani-Nakase
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
17
|
Lieser RM, Li Q, Chen W, Sullivan MO. Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells. Mol Pharm 2022; 19:661-673. [PMID: 35040326 DOI: 10.1021/acs.molpharmaceut.1c00788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular delivery of protein therapeutics remains a significant challenge limiting the majority of clinically available protein drugs to extracellular targets. Strategies to deliver proteins to subcellular compartments have traditionally relied on cell-penetrating peptides, which can drive enhanced internalization but exhibit unreliable activity and are rarely able to target specific cells, leading to off-target effects. Moreover, few design rules exist regarding the relative efficacy of various endosomal escape strategies in proteins. Accordingly, we developed a simple fusion modification approach to incorporate endosomolytic peptides onto epidermal growth factor receptor (EGFR)-targeted protein conjugates and performed a systematic comparison of the endosomal escape efficacy, mechanism of action, and capacity to maintain EGFR-targeting specificity of conjugates modified with four different endosomolytic sequences of varying modes of action (Aurein 1.2, GALA, HA2, and L17E). Use of the recently developed Gal8-YFP assay indicated that the fusion of each endosomolytic peptide led to enhanced endosomal disruption. Additionally, the incorporation of each endosomolytic peptide increased the half-life of the internalized protein and lowered lysosomal colocalization, further supporting the membrane-disruptive capacity. Despite this, only EGFR-targeted conjugates modified with Aurein 1.2 or GALA maintained EGFR specificity. These results thus demonstrated that the choice of endosomal escape moiety can substantially affect targeting capability, cytotoxicity, and bioactivity and provided important new insights into endosomolytic peptide selection for the design of targeted protein delivery systems.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Qirun Li
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Okuda A, Futaki S. Protein Delivery to Cytosol by Cell-Penetrating Peptide Bearing Tandem Repeat Penetration-Accelerating Sequence. Methods Mol Biol 2022; 2383:265-273. [PMID: 34766296 DOI: 10.1007/978-1-0716-1752-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pas2r12 is comprised of a repeat of the penetration-accelerating sequence (Pas) (Pas2: FFLIG-FFLIG) and D-form dodeca-arginine (r12), a cell-penetrating peptide. Pas2r12 significantly enhances cytosolic delivery of cargo proteins, including enhanced green fluorescent protein and immunoglobulin G. Simply incubating Pas2r12 with cargo leads to their cytosolic tranlsocation. Cytosolic delivery of cargo by Pas2r12 involves caveolae-mediated endocytosis. In this chapter, we describe methods of cytosolic delivery of cargo using Pas2r12 and provide methods for investigating the cellular uptake pathway of cargo by Pas2r12.
Collapse
Affiliation(s)
- Akiko Okuda
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan.
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
19
|
Zhang C, Dong X, Ong SY, Yao SQ. Live-Cell Imaging of Survivin mRNA by Using a Dual-Color Surface-Cross-Linked Nanoquencher. Anal Chem 2021; 93:12081-12089. [PMID: 34436865 DOI: 10.1021/acs.analchem.1c02385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Precise detection of cancer-related mRNAs can significantly benefit the early diagnosis and potential therapy of cancers. Herein, we report organic dark quencher-encapsulated surface-cross-linked micelles (qSCMs) as a new sort of nanoquencher for construction of potential multiple-color fluorescence imaging nanosensors. Such nanoquenchers featured simple preparation (one-pot), broad-spectrum quenching (450-800 nm), high quenching efficiency (>94%), good stability, negligible cargo leakage, facile covalent surface modification, and finally excellent modularity. As a proof-of-concept demonstration, a mRNA-detecting qSCM nanosensor was generated, capable of simultaneous live-cell imaging of endogenous actin mRNA (a house-keeping gene) and cancer-related survivin mRNA. This nanosensor was found to be GSH- and DNase I-resistant, and with actin mRNA as an intrinsic reference, it was used to image the precise survivin mRNA expression across different mammalian cells through convenient normalization of the signal readouts. Moreover, the nanosensor was further used to quantitatively image the downregulation of endogenous survivin mRNA in HeLa cells upon treatment of YM155 (an imidazolium bioactive compound known to suppresses endogenous survivin mRNA expression). These results clearly demonstrated the promising application of these qSCMs as new nanoquenchers in potential multicolor imaging of various endogenous biomarkers.
Collapse
Affiliation(s)
- Changyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sing Yee Ong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore Graduate School, Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge Road, No. 04-02, Singapore 119077, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore Graduate School, Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge Road, No. 04-02, Singapore 119077, Singapore
| |
Collapse
|
20
|
Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takahiro Iwata
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Kentarou Sakamoto
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Yusuke Hirai
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | | | - Misao Akishiba
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| |
Collapse
|
21
|
Futaki S. Functional Peptides That Target Biomembranes: Design and Modes of Action. Chem Pharm Bull (Tokyo) 2021; 69:601-607. [PMID: 34193708 DOI: 10.1248/cpb.c21-00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomembranes are important targets in molecular design. Our laboratory has been exploring the design of functional peptides that modulate membrane barrier function, lipid packing, and structure. Evaluation of the results obtained and analyses of cellular mechanisms have yielded peptides with more refined designs and functions. This review highlights the progress made in our laboratory towards the development of unique peptides that modulate membrane properties.
Collapse
|
22
|
Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angew Chem Int Ed Engl 2021; 60:19804-19812. [PMID: 34114295 DOI: 10.1002/anie.202105527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Indexed: 01/15/2023]
Abstract
Fc region binding peptide conjugated with attenuated cationic amphiphilic lytic peptide L17E trimer [FcB(L17E)3 ] was designed for immunoglobulin G (IgG) delivery into cells. Particle-like liquid droplets were generated by mixing Alexa Fluor 488 labeled IgG (Alexa488-IgG) with FcB(L17E)3 . Droplet contact with the cellular membrane led to spontaneous influx and distribution of Alexa488-IgG throughout cells in serum containing medium. Involvement of cellular machinery accompanied by actin polymerization and membrane ruffling was suggested for the translocation. Alexa488-IgG negative charges were crucial in liquid droplet formation with positively charged FcB(L17E)3 . Binding of IgG to FcB(L17E)3 may not be necessary. Successful intracellular delivery of Alexa Fluor 594-labeled anti-nuclear pore complex antibody and anti-mCherry-nanobody tagged with supernegatively charged green fluorescence protein allowed binding to cellular targets in the presence of FcB(L17E)3 .
Collapse
Affiliation(s)
- Takahiro Iwata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
23
|
Sakamoto K, Michibata J, Hirai Y, Ide A, Ikitoh A, Takatani-Nakase T, Futaki S. Potentiating the Membrane Interaction of an Attenuated Cationic Amphiphilic Lytic Peptide for Intracellular Protein Delivery by Anchoring with Pyrene Moiety. Bioconjug Chem 2021; 32:950-957. [PMID: 33861579 DOI: 10.1021/acs.bioconjchem.1c00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported an approach for intracellular protein delivery by attenuating membrane-lytic activity of cationic amphiphilic peptides on cell surfaces. HAad is one such peptides that cytosolically delivers proteins of interest, including antibodies, by stimulating their endosomal escape. Additionally, HAad elicits ruffling of cell membrane, accompanied by transient membrane permeabilization, allowing for the efficient cytosolic translocation of proteins. In this study, we prepared a conjugate of HAad with pyrenebutyric acid as a membrane-anchoring unit (pBu-HAad). pBu-HAad demonstrated protein delivery into cells with only 1/20 concentration of HAad. However, the conjugates with cholesteryl hemisuccinate and aliphatic fatty acids (C = 3, 6, and 10) did not yield such marked effects. The results of time-course and inhibitor studies suggest that the membrane anchoring of HAad by a pyrene moiety leads to enhanced peptide-membrane interaction and to loosen lipid packing, thus facilitating cytosolic translocation through membranes.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akiko Ide
- Faculty of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Ikitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
24
|
Sánchez-Navarro M. Advances in peptide-mediated cytosolic delivery of proteins. Adv Drug Deliv Rev 2021; 171:187-198. [PMID: 33561452 DOI: 10.1016/j.addr.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The number of protein-based drugs is exponentially increasing. However, development of protein therapeutics against intracellular targets is hampered by the lack of efficient cytosolic delivery strategies. In recent years, the use of cell-penetrating peptides has been proposed as a strategy to promote protein internalization. In this article, we provide the reader with a succinct update on the strategies exploited to enable peptide-mediated cytosolic delivery of proteins. First, we analyse the various methods available for delivery. We then describe the most popular and the in vitro assays designed to assess the intracellular distribution of protein cargo.
Collapse
|
25
|
Pazo M, Salluce G, Lostalé-Seijo I, Juanes M, Gonzalez F, Garcia-Fandiño R, Montenegro J. Short oligoalanine helical peptides for supramolecular nanopore assembly and protein cytosolic delivery. RSC Chem Biol 2021; 2:503-512. [PMID: 34458796 PMCID: PMC8341679 DOI: 10.1039/d0cb00103a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this work we report a rational design strategy for the identification of new peptide prototypes for the non-disruptive supramolecular permeation of membranes and the transport of different macromolecular giant cargos. The approach targets a maximal enhancement of helicity in the presence of membranes with sequences bearing the minimal number of cationic and hydrophobic moieties. The here reported folding enhancement in membranes allowed the selective non-lytic translocation of different macromolecular cargos including giant proteins. The transport of different high molecular weight polymers and functional proteins was demonstrated in vesicles and in cells with excellent efficiency and optimal viability. As a proof of concept, functional monoclonal antibodies were transported for the first time into different cell lines and cornea tissues by exploiting the helical control of a short peptide sequence. This work introduces a rational design strategy that can be employed to minimize the number of charges and hydrophobic residues of short peptide carriers to achieve non-destructive transient membrane permeation and transport of different macromolecules. The helical enhancement of a short oligoalanine peptide scaffold in anionic membranes triggered the supramolecular assembly of a nanopore, which allowed the transport and release of proteins in the cytosol of cells and tissues.![]()
Collapse
Affiliation(s)
- Marta Pazo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Francisco Gonzalez
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) and Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago 15706 Santiago de Compostela Spain
| | - Rebeca Garcia-Fandiño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
26
|
Becker B, Englert S, Schneider H, Yanakieva D, Hofmann S, Dombrowsky C, Macarrón Palacios A, Bitsch S, Elter A, Meckel T, Kugler B, Schirmacher A, Avrutina O, Diederichsen U, Kolmar H. Multivalent dextran hybrids for efficient cytosolic delivery of biomolecular cargoes. J Pept Sci 2021; 27:e3298. [PMID: 33458922 DOI: 10.1002/psc.3298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The development of novel biotherapeutics based on peptides and proteins is often limited to extracellular targets, because these molecules are not able to reach the cytosol. In recent years, several approaches were proposed to overcome this limitation. A plethora of cell-penetrating peptides (CPPs) was developed for cytoplasmic delivery of cell-impermeable cargo molecules. For many CPPs, multimerization or multicopy arrangement on a scaffold resulted in improved delivery but also higher cytotoxicity. Recently, we introduced dextran as multivalent, hydrophilic polysaccharide scaffold for multimerization of cell-targeting cargoes. Here, we investigated covalent conjugation of a CPP to dextran in multiple copies and assessed the ability of resulted molecular hybrid to enter the cytoplasm of mammalian cells without largely compromising cell viability. As a CPP, we used a novel, low-toxic cationic amphiphilic peptide L17E derived from M-lycotoxin. Here, we show that cell-penetrating properties of L17E are retained upon multivalent covalent linkage to dextran. Dextran-L17E efficiently mediated cytoplasmic translocation of an attached functional peptide and a peptide nucleic acid (PNA). Moreover, a synthetic route was established to mask the lysine side chains of L17E with a photolabile protecting group thus opening avenues for light-triggered activation of cellular uptake.
Collapse
Affiliation(s)
- Bastian Becker
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Simon Englert
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Carolin Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Merck Lab, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt, 64287, Germany
| | - Tobias Meckel
- Merck Lab, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt, 64287, Germany
| | - Benedikt Kugler
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Anastasyia Schirmacher
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| |
Collapse
|
27
|
Futaki S, Arafiles JVV, Hirose H. Peptide-assisted Intracellular Delivery of Biomacromolecules. CHEM LETT 2020. [DOI: 10.1246/cl.200392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
28
|
Improved cytosolic delivery of macromolecules through dimerization of attenuated lytic peptides. Bioorg Med Chem Lett 2020; 30:127362. [DOI: 10.1016/j.bmcl.2020.127362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
|
29
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
30
|
Sakamoto K, Akishiba M, Iwata T, Murata K, Mizuno S, Kawano K, Imanishi M, Sugiyama F, Futaki S. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Misao Akishiba
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Takahiro Iwata
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
31
|
Sakamoto K, Akishiba M, Iwata T, Murata K, Mizuno S, Kawano K, Imanishi M, Sugiyama F, Futaki S. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angew Chem Int Ed Engl 2020; 59:19990-19998. [PMID: 32557993 DOI: 10.1002/anie.202005887] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahiro Iwata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
32
|
Tamemoto N, Akishiba M, Sakamoto K, Kawano K, Noguchi H, Futaki S. Rational Design Principles of Attenuated Cationic Lytic Peptides for Intracellular Delivery of Biomacromolecules. Mol Pharm 2020; 17:2175-2185. [DOI: 10.1021/acs.molpharmaceut.0c00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Naoki Tamemoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
33
|
Arafiles JVV, Hirose H, Akishiba M, Tsuji S, Imanishi M, Futaki S. Stimulating Macropinocytosis for Intracellular Nucleic Acid and Protein Delivery: A Combined Strategy with Membrane-Lytic Peptides To Facilitate Endosomal Escape. Bioconjug Chem 2020; 31:547-553. [PMID: 32017537 DOI: 10.1021/acs.bioconjchem.0c00064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Delivery of biomacromolecules via endocytic pathways requires the efficient accumulation of cargo molecules into endosomes, followed by their release to the cytosol. We propose a unique intracellular delivery strategy for bioactive molecules using a new potent macropinocytosis-inducing peptide derived from stromal-derived factor 1α (SN21). This peptide allowed extracellular materials to enter cells through the activation of macropinocytosis. To provide the ability to release internalized cargoes from endosomes, we conjugated SN21 with membrane-lytic peptides. The combination of a macropinocytosis-inducing peptide and a membrane-lytic peptide successfully delivered functional siRNA and proteins, which include antibodies, Cre recombinase, and an artificial transcription regulator protein having a transcription activator-like effector (TALE) motif. This study shows the feasibility of combining the physiological stimulation of macropinocytosis with the physicochemical disruption of endosomes as a strategy for intracellular delivery.
Collapse
Affiliation(s)
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shogo Tsuji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
34
|
Chen X, Ji S, Li A, Liu H, Fei H. Toggling Preassembly with Single-Site Mutation Switches the Cytotoxic Mechanism of Cationic Amphipathic Peptides. J Med Chem 2020; 63:1132-1141. [PMID: 31927997 DOI: 10.1021/acs.jmedchem.9b01458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Precise regulation of membrane-active peptide activity is a frontier of research to facilitate its applicational translation. A clear understanding of how a peptide's physicochemical properties determine its mode of action (MOA) will aid the process. Herein, anionic glutamate residue-based scanning was applied to the hydrophobic surface of a self-assembling lysine-rich cationic amphipathic peptide (CAP) KL1. Single-site mutations from leucine to glutamate dramatically changed the MOA of all mutants from membranolytic to nonlytic. An apoptosis-inducing mutant L2E unable to self-assemble under extracellular anions exhibited a different conformational transformation process in the amphiphilic environment than KL1. Further adjustment of the overall positive charge allowed regulation of cytotoxic potency without affecting the MOA determined by the lack of preassembly formation. Compared with KL1, hemolytic toxicities of nonmembranolytic peptides were greatly reduced, with safety indices increased. This work thus provided novel insights into and integrated rationales on the improvement of CAPs for both anticancer activity and safety profile.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , P R China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , P R China
| | - Shuangshuang Ji
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , P R China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , P R China
| | - Ang Li
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , P R China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , P R China
| | - Hanjie Liu
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , P R China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , P R China
| | - Hao Fei
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , P R China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , P R China
| |
Collapse
|