1
|
Bordos E, Das G, Schroeder SLM, Florence A, Halbert GW, Robertson J. Probing the interplay between drug saturation, processing temperature and microstructure of amorphous solid dispersions with synchrotron X-ray phase-contrast tomography. Int J Pharm 2025; 669:125018. [PMID: 39626848 DOI: 10.1016/j.ijpharm.2024.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The impact of drug saturation and processing regime on the microstructure of amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) has been investigated. By exploring various combinations of drug loadings and processing temperatures, a range of drug saturation points were obtained by HME. The process was monitored with an in-line low-frequency Raman probe to construct the respective solubility phase diagram (i.e., solubility of crystalline drug in molten/soften polymer). The resulting ASDs were analysed with synchrotron X-ray phase-contrast micro computed tomography (Sync-XPC-μCT) in conjunction with a tailored image segmentation strategy to extract quantitative and qualitative descriptors. Despite minimal elemental variability between the drug (paracetamol) and the polymer (HPMC), Sync-XPC-μCT provided sufficient contrast to identify multiple structural domains, including drug-rich crystalline clusters, impurities, polymer-related heterogeneities and voids/pores. Supersaturated ASDs (> 20 wt% drug loading) displayed higher structural complexity and showed a plethora of highly defective API-rich crystalline domains upon ageing, which were absent in the undersaturated ASDs. Beyond its impact on the API physical state, the HME processing regime influenced the degree of homogeneity within the polymer fraction, as well as total porosity, size, shape and pore connectivity. By correlating with fundamental API-polymer solubility data, this study offers additional insight into the dynamics of the drug's solubilisation process during extrusion and the subsequent formation of microstructures within the ASD system, which have potential implications on product performance and stability.
Collapse
Affiliation(s)
- Ecaterina Bordos
- CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Gunjan Das
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK; Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK; EPSRC Future Manufacturing Research Hub, CMAC, Research Complex at Harwell, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0FA, UK
| | - Sven L M Schroeder
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK; Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK; EPSRC Future Manufacturing Research Hub, CMAC, Research Complex at Harwell, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0FA, UK
| | - Alastair Florence
- CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Gavin W Halbert
- CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John Robertson
- CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Remoto PJG, Gordon KC, Fraser-Miller SJ. A Quantitative Chemometric Study of Pharmaceutical Tablet Formulations Using Multi-Spectroscopic Fibre Optic Probes. Pharmaceuticals (Basel) 2024; 17:1659. [PMID: 39770501 PMCID: PMC11677398 DOI: 10.3390/ph17121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Two fibre optic probes were custom designed to perform Raman and near-infrared spectroscopic measurements. Our long-term objective is to develop a non-destructive tool able to collect data in hard-to-access locations for real-time analysis or diagnostic purposes. This study evaluated the quantitative performances of Probe A and Probe B using model pharmaceutical tablets. Methods: Measurements were performed using pharmaceutical tablets containing hydroxyl propylcellulose, titanium dioxide (anatase), lactose monohydrate, and indomethacin (γ form). Material content and thickness of bilayer samples (samples consisting of a top layer and a bottom layer of differing materials) were also assessed using Probe A to evaluate its capabilities to collect sub-surface information. Principal component analysis and partial least squares regression models were using individual and fused data to evaluate the performances of the different probe configurations. Results: Hydroxymethyl cellulose (RP2=0.98, RMSEP = 2.27% w/w) and lactose monohydrate (RP2=0.97, RMSEP = 2.96% w/w) content were most effectively estimated by near-infrared spectroscopy data collected using Probe A. Titanium dioxide (RP2=0.99, RMSEP = 0.21% w/w) content was most effectively estimated using a combination of 785 nm Raman spectroscopy and near-infrared spectroscopy using Probe B. Indomethacin (RP2=0.97, RMSEP = 1.01% w/w) was best estimated using a low-level fused dataset collected using 0 mm, 2.5 mm, and 5.0 mm lateral offsets of 785 nm spatially offset Raman spectroscopy using Probe A. Conclusions: The different probe configurations were able to reliably collect data and demonstrated robust quantitative performances. These results highlight the advantage of using multiple techniques for analysing different structures.
Collapse
Affiliation(s)
- Peter J. G. Remoto
- The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand;
- The Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Keith C. Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand;
- The Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J. Fraser-Miller
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
3
|
Svoboda R, Nevyhoštěná M, Macháčková J, Vaculík J, Knotková K, Chromčíková M, Komersová A. Thermal degradation of Affinisol HPMC: Optimum Processing Temperatures for Hot Melt Extrusion and 3D Printing. Pharm Res 2023; 40:2253-2268. [PMID: 37610622 PMCID: PMC10547629 DOI: 10.1007/s11095-023-03592-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Affinisol HPMC HME is a new popular form of hypromellose specifically designed for the hot melt extrusion and 3D printing of pharmaceutical products. However, reports of its thermal stability include only data obtained under inert N2 atmosphere, which is not consistent with the common pharmaceutical practice. Therefore, detailed investigation of its real-life thermal stability in air is paramount for identification of potential risks and limitations during its high-temperature processing. METHODS In this work, the Affinisol HPMC HME 15LV powder as well as extruded filaments will be investigated by means of thermogravimetry, differential scanning calorimetry and infrared spectroscopy with respect to its thermal stability. RESULTS The decomposition in N2 was proceeded in accordance with the literature data and manufacturer's specifications: onset at ~260°C at 0.5°C·min-1, single-step mass loss of 90-95%. However, in laboratory or industrial practice, high-temperature processing is performed in the air, where oxidation-induced degradation drastically changes. The thermogravimetric mass loss in air proceeded in three stages: ~ 5% mass loss with onset at 150°C, ~ 70% mass loss at 200°C, and ~ 15% mass loss at 380°C. Diffusion of O2 into the Affinisol material was identified as the rate-determining step. CONCLUSION For extrusion temperatures ≥170°C, Affinisol exhibits a significant degree of degradation within the 5 min extruder retention time. Hot melt extrusion of pure Affinisol can be comfortably performed below this temperature. Utilization of plasticizers may be necessary for safe 3D printing.
Collapse
Affiliation(s)
- Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| | - Marie Nevyhoštěná
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jana Macháčková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jan Vaculík
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Kateřina Knotková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Maria Chromčíková
- VILA - Joined Glass Centre of the IIC SAS, TnUAD, FChPT STU, Študentská 2, SK-911 50, Trenčín, Slovakia
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50, Trenčín, Slovakia
| | - Alena Komersová
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
4
|
Remoto PIJG, Bērziņš K, Fraser-Miller SJ, Korter TM, Rades T, Rantanen J, Gordon KC. Exploring the Solid-State Landscape of Carbamazepine during Dehydration: A Low Frequency Raman Spectroscopy Perspective. Pharmaceutics 2023; 15:pharmaceutics15051526. [PMID: 37242768 DOI: 10.3390/pharmaceutics15051526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The solid-state landscape of carbamazepine during its dehydration was explored using Raman spectroscopy in the low- (-300 to -15, 15 to 300) and mid- (300 to 1800 cm-1) frequency spectral regions. Carbamazepine dihydrate and forms I, III, and IV were also characterized using density functional theory with periodic boundary conditions and showed good agreement with experimental Raman spectra with mean average deviations less than 10 cm-1. The dehydration of carbamazepine dihydrate was examined under different temperatures (40, 45, 50, 55, and 60 °C). Principal component analysis and multivariate curve resolution were used to explore the transformation pathways of different solid-state forms during the dehydration of carbamazepine dihydrate. The low-frequency Raman domain was able to detect the rapid growth and subsequent decline of carbamazepine form IV, which was not as effectively observed by mid-frequency Raman spectroscopy. These results showcased the potential benefits of low-frequency Raman spectroscopy for pharmaceutical process monitoring and control.
Collapse
Affiliation(s)
- Peter Iii J G Remoto
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Kārlis Bērziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Timothy M Korter
- Department of Chemistry, Center for Science and Technology, Syracuse University, Syracuse, NY 13244, USA
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Tikhomirov E, Åhlén M, Di Gallo N, Strømme M, Kipping T, Quodbach J, Lindh J. Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets. Int J Pharm 2023; 635:122780. [PMID: 36849041 DOI: 10.1016/j.ijpharm.2023.122780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.
Collapse
Affiliation(s)
- Evgenii Tikhomirov
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Nicole Di Gallo
- Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Thomas Kipping
- Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
| | - Julian Quodbach
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands.
| | - Jonas Lindh
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden.
| |
Collapse
|
6
|
Palatable Levocetirizine Dihydrochloride Solid Dispersed Fast-Dissolving Films: Formulation and In Vitro and In Vivo Characterization. ScientificWorldJournal 2022; 2022:1552602. [PMID: 36479553 PMCID: PMC9722282 DOI: 10.1155/2022/1552602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most important issues for bitter-tasting drugs such as levocetirizine dihydrochloride (LCD) is the production of palatable dosage forms. LCD also has a delayed onset of action following oral administration. In this study, solid dispersed fast-dissolving films (FDFs) of LCD using the solvent casting method for oral application were prepared and evaluated. The FDF is composed of HPMC as the film forming polymer and different types of superdisintegrants (sodium starch glycolate, croscarmellose sodium, or crospovidone). FDF containing crospovidone showed the highest percentage release of the drug (100.54% ± 1.47 within 3 min.) and was chosen for fabricating into palatable solid dispersed FDFs using different ratios of gelatine. The results of Raman and FTIR revealed that the drug's crystalline structure has been disrupted, and the drug has intermolecular hydrogen bonds with gelatine. The solid dispersed FDF (LF-7), which contained the drug in the form of a 1 : 1 solid dispersion with gelatine, showed a rapid in vitro disintegration (25 seconds) and a burst release of the drug (99.22% ± 2.22 within one min). The in vivo studies were conducted on human participants and showed a significant (p < 0.05) reduction in disintegration time (9.43 ± 2.16 sec.) and higher taste masking ability of the solid dispersed FDF (LF-7) compared to the nonsolid dispersed FDF (LF-4). The stability studies indicated that the prepared FDF remained stable over three months. Overall, FDFs of levocetirizine dihydrochloride with a palatable and rapid onset of action were developed to relieve allergic symptoms.
Collapse
|
7
|
Paladino E, Doerr FJ, Bordos E, Onyemelukwe II, Lamprou DA, Florence AJ, Gilmore IS, Halbert GW. High spatial resolution ToF-SIMS imaging and image analysis strategies to monitor and quantify early phase separation in amorphous solid dispersions. Int J Pharm 2022; 628:122191. [DOI: 10.1016/j.ijpharm.2022.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
8
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
9
|
Prasad E, Robertson J, Halbert GW. Mefenamic acid solid dispersions: Impact of formulation composition on processing parameters, product properties and performance. Int J Pharm 2022; 616:121505. [PMID: 35085732 DOI: 10.1016/j.ijpharm.2022.121505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
The objective of this study was to develop an immediate release (IR), crystalline solid dispersion (CSD) formulation of Mefenamic acid (MFA) by hot-melt-extrusion (HME) and assess the impact of drug loading on process parameters, product physico-chemical properties and product performance. An HME process to produce a range of MFA-Soluplus®-Sorbitol polymer matrix CSD formulations was developed based on rheological screening assays of physical mixtures (PM). The impact of drug loading on process parameters was compared to the impact of drug loading on the physico-chemical properties of formulations. Based on process and product data, three groupings of API drug loading were identified: sub-saturated, saturated, and supersaturated systems. CSD formulations were obtained for 20 - 50% (w/w) drug loading containing the stable polymorphic form I of MFA. CSD formulations predominantly improved the consistency of the product performance. An Amorphous Solid Dispersion (ASD) was obtained for 10% (w/w) drug loading, exhibiting faster drug release even at physiologically relevant pH. This study illustrates the impact of drug loading on process and product characteristics and how a better understanding of maximum API solubility in a given polymer system can improve targeted formulation development.
Collapse
Affiliation(s)
- Elke Prasad
- EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John Robertson
- EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gavin W Halbert
- EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
10
|
|
11
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
12
|
Robert C, Fraser-Miller SJ, Be Rziņš KR, Okeyo PO, Rantanen J, Rades T, Gordon KC. Monitoring the Isothermal Dehydration of Crystalline Hydrates Using Low-Frequency Raman Spectroscopy. Mol Pharm 2021; 18:1264-1276. [PMID: 33406363 DOI: 10.1021/acs.molpharmaceut.0c01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of the solid-state forms of pharmaceutical compounds is important from the drug performance point of view. Low-frequency Raman (LFR) spectroscopy has been demonstrated to be very sensitive in detecting the different solid-state forms of pharmaceutically relevant compounds. The potential of LFR spectroscopy to probe the in situ isothermal dehydration was studied using piroxicam monohydrate (PXM) and theophylline monohydrate (TPMH) as the model drugs. The dehydration of PXM and TPMH at four different temperatures (95, 100, 105, and 110 °C and 50, 60, 70, and 80 °C, respectively) was monitored in both the low- (20-300 cm-1) and mid-frequency (335-1800 cm-1) regions of the Raman spectra. Principal component analysis and multivariate curve resolution were applied for the analysis of the Raman data. Spectral differences observed in both regions highlighted the formation of specific anhydrous forms of piroxicam and theophylline from their respective monohydrates. The formation of the anhydrous forms was detected on different timescales (approx. 2 min) between the low and mid-frequency Raman regions. This finding highlights the differing nature of the vibrations being detected between these two spectral regions. Computational simulations performed were also in agreement with the experimental results, and allowed elucidating the origin of different spectral features.
Collapse
Affiliation(s)
- Chima Robert
- Dodd Walls Centre for Photonics and Quantum Technologies, University of Otago, 9016 Dunedin, New Zealand
| | - Sara J Fraser-Miller
- Dodd Walls Centre for Photonics and Quantum Technologies, University of Otago, 9016 Dunedin, New Zealand
| | - Ka Rlis Be Rziņš
- Dodd Walls Centre for Photonics and Quantum Technologies, University of Otago, 9016 Dunedin, New Zealand
| | - Peter O Okeyo
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800 Kgs Lyngby, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Keith C Gordon
- Dodd Walls Centre for Photonics and Quantum Technologies, University of Otago, 9016 Dunedin, New Zealand
| |
Collapse
|
13
|
Bērziņš K, Fraser-Miller SJ, Gordon KC. Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. Int J Pharm 2021; 592:120034. [DOI: 10.1016/j.ijpharm.2020.120034] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
|
14
|
Tan DK, Davis DA, Miller DA, Williams RO, Nokhodchi A. Innovations in Thermal Processing: Hot-Melt Extrusion and KinetiSol® Dispersing. AAPS PharmSciTech 2020; 21:312. [PMID: 33161479 PMCID: PMC7649167 DOI: 10.1208/s12249-020-01854-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Thermal processing has gained much interest in the pharmaceutical industry, particularly for the enhancement of solubility, bioavailability, and dissolution of active pharmaceutical ingredients (APIs) with poor aqueous solubility. Formulation scientists have developed various techniques which may include physical and chemical modifications to achieve solubility enhancement. One of the most commonly used methods for solubility enhancement is through the use of amorphous solid dispersions (ASDs). Examples of commercialized ASDs include Kaletra®, Kalydeco®, and Onmel®. Various technologies produce ASDs; some of the approaches, such as spray-drying, solvent evaporation, and lyophilization, involve the use of solvents, whereas thermal approaches often do not require solvents. Processes that do not require solvents are usually preferred, as some solvents may induce toxicity due to residual solvents and are often considered to be damaging to the environment. The purpose of this review is to provide an update on recent innovations reported for using hot-melt extrusion and KinetiSol® Dispersing technologies to formulate poorly water-soluble APIs in amorphous solid dispersions. We will address development challenges for poorly water-soluble APIs and how these two processes meet these challenges.
Collapse
Affiliation(s)
- Deck Khong Tan
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Daniel A Davis
- College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Dave A Miller
- DisperSol Technologies, LLC, 111 W. Cooperative Way, Building 3, Suite 300, Georgetown, Texas, 78626, USA
| | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| |
Collapse
|
15
|
Prasad E, Robertson J, Halbert GW. Improving Consistency for a Mefenamic Acid Immediate Release Formulation. J Pharm Sci 2020; 109:3462-3470. [PMID: 32853635 DOI: 10.1016/j.xphs.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to develop an immediate release dose form containing 250 mg Mefenamic acid (MFA) presented as a crystalline solid dispersion in order to achieve improved consistency in drug release through a simplified formulation compared to a commercial product. An MFA-Soluplus®-Sorbitol polymer matrix was developed using an HME process based on rheological screening assays of physical mixtures. The physico-chemical properties of these formulations were assessed by thermal analysis, FTIR, mechanical testing and SEM image analysis, confirming the crystalline character and stable polymorphic form I of the API in the polymer matrix. A faster release and a significant improvement in consistency (±6%) of drug release was observed compared to a commercially available MFA product (±17%) (250 mg capsule). This study illustrates advantages of applying a structured development program aimed at retaining API physical properties in the final dosage form.
Collapse
Affiliation(s)
- Elke Prasad
- EPSRC Future Manufacturing Research Hub, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - John Robertson
- EPSRC Future Manufacturing Research Hub, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Gavin W Halbert
- EPSRC Future Manufacturing Research Hub, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
16
|
Lima AL, Pinho LAG, Chaker JA, Sa-Barreto LL, Marreto RN, Gratieri T, Gelfuso GM, Cunha-Filho M. Hot-Melt Extrusion as an Advantageous Technology to Obtain Effervescent Drug Products. Pharmaceutics 2020; 12:pharmaceutics12080779. [PMID: 32824475 PMCID: PMC7464369 DOI: 10.3390/pharmaceutics12080779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Here, we assessed the feasibility of hot-melt extrusion (HME) to obtain effervescent drug products for the first time. For this, a combined mixture design was employed using paracetamol as a model drug. Extrudates were obtained under reduced torque (up to 0.3 Nm) at 100 °C to preserve the stability of the effervescent salts. Formulations showed vigorous and rapid effervescent disintegration (<3 min), adequate flow characteristics, and complete solubilization of paracetamol instantly after the effervescent reaction. Formulations containing PVPVA in the concentration range of 15–20% m/m were demonstrated to be sensitive to accelerated aging conditions, undergoing marked microstructural changes, since the capture of water led to the agglomeration and loss of their functional characteristics. HPMC matrices, in contrast, proved to be resistant to storage conditions in high relative humidity, showing superior performance to controls, including the commercial product. Moreover, the combined mixture design allowed us to identify significant interactions between the polymeric materials and the disintegrating agents, showing the formulation regions in which the responses are kept within the required levels. In conclusion, this study demonstrates that HME can bring important benefits to the elaboration of effervescent drug products, simplifying the production process and obtaining formulations with improved characteristics, such as faster disintegration, higher drug solubilization, and better stability.
Collapse
Affiliation(s)
- Ana Luiza Lima
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Ludmila A. G. Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Juliano A. Chaker
- Faculty of Ceilândia, University of Brasília (UnB), Brasília 72220-900, Brazil; (J.A.C.); (L.L.S.-B.)
| | - Livia L. Sa-Barreto
- Faculty of Ceilândia, University of Brasília (UnB), Brasília 72220-900, Brazil; (J.A.C.); (L.L.S.-B.)
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
- Correspondence: ; Tel.: +55-61-31071990
| |
Collapse
|
17
|
Pisa E, Hughes LP, Wren SAC, Booth J, McCabe JF, Whittaker DTE, Mantle MD. NMR and Thermal Studies for the Characterization of Mass Transport and Phase Separation in Paracetamol/Copovidone Hot-Melt Extrusion Formulations. Mol Pharm 2020; 17:2021-2033. [DOI: 10.1021/acs.molpharmaceut.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elena Pisa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Leslie P. Hughes
- Global Product Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - Stephen A. C. Wren
- Global Product Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - Jonathan Booth
- Global Product Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - James Francis McCabe
- Pharmaceutical Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - David T. E. Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Mick D. Mantle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|