1
|
Shen Z, Zhang F, Yang J, Zhang K, Liang F, Mu H, Shi L, Jiang J, Yang Y, Lin Z, Gao J, Gao N. Novel Mitochondria-Targeted NIR Cyanine Cy750M-C1 Nanoparticles for Chemotherapy against Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2025. [PMID: 40356493 DOI: 10.1021/acsbiomaterials.5c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Mitochondrial metabolism plays an important role in promoting cancer development, making mitochondria a novel promising target for cancer therapy. Current mitochondria-targeted fluorescent agents can specifically accumulate in the mitochondria of cancer cells and can be applied for cancer imaging and therapy. However, their clinical application is still limited due to the poor solubility and lower tumor-specific distribution. In the present study, we synthesized a novel NIR small-molecule dye, Cy750M-C1, and evaluated its optical properties, mitochondrial distribution, and anticancer activity. We also synthesized nanoparticles loading Cy750M-C1 (Cy750M-C1-FA-NPs) and demonstrated that Cy750M-C1-FA-NPs are specifically targeted to the tumor and dramatically inhibited tumor growth in vivo. The mechanistic study revealed that Cy750M-C1 specifically targeted mitochondria of TNBC cells, subsequently promoting ROS production through inhibition of mitochondrial complexes (complexes I, III, and IV) and OXPHOS and depletion of ATP, leading, in turn, to AMPK activation and Drp1 dephosphorylation mediating the mitochondrial translocation of Drp1 and BAX and ultimately inducing mitochondrial fission, caspase activation, as well as apoptosis. Overall, our data implicate that Cy750M-C1 could be developed as a novel anticancer agent with mitochondria-targeting ability and NIR fluorescence imaging and that Cy750M-C1-FA-NPs could also be considered as promising drug delivery carriers for antitumor agents.
Collapse
Affiliation(s)
- Zhilin Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Kaihang Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Mu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Li Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jijun Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuanzhi Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixuan Lin
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
2
|
Adibifar A, Salimi M, Rostamkhani N, Karami Z, Agh-Atabay AH, Rostamizadeh K. Folic acid-conjugated bovine serum albumin-coated selenium-ZIF-8 core/shell nanoparticles for dual target-specific drug delivery in breast cancer. Drug Deliv Transl Res 2025; 15:1786-1799. [PMID: 39317912 DOI: 10.1007/s13346-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Methotrexate (MTX), a frequently used chemotherapeutic agent, has limited water solubility, leading to rapid clearance even in local injections. In the present study, we developed folic acid-conjugated BSA-stabilized selenium-ZIF-8 core/shell nanoparticles for targeted delivery of MTX to combat breast cancer. FT-IR, XRD, SEM, TEM, and elemental mapping analysis confirmed the successful formation of FA-BSA@MTX@Se@ZIF-8. The developed nano-DDS had a mean diameter, polydispersity index, and zeta potential of 254.8 nm, 0.17, and - 16.5 mV, respectively. The release behavior of MTX from the nanocarriers was pH-dependent, where the cumulative release percentage at pH 5.4 was higher than at pH 7.4. BSA significantly improved the blood compatibility of nanoparticles so that after modifying their surface with BSA, the percentage of hemolysis decreased from 12.67 to 5.12%. The loading of methotrexate in BSA@Se@ZIF-8 nanoparticles reduced its IC50 on 4T1 cells from 40.29 µg/mL to 16.54 µg/mL, and by conjugating folic acid on the surface, this value even decreased to 12.27 µg/mL. In vivo evaluation of the inhibitory effect in tumor-bearing mice showed that FA-BSA@MTX@Se@ZIF-8 caused a 2.8-fold reduction in tumor volume compared to the free MTX, which is due to the anticancer effect of selenium nanoparticles, the pH sensitivity of ZIF-8, and the presence of folic acid on the surface as a targeting agent. More importantly, histological studies and animal body weight monitoring confirmed that developed nano-DDS does not have significant organ toxicity. Taking together, the incorporation of chemotherapeutics in folic acid-conjugated BSA-stabilized selenium-ZIF-8 nanoparticles may hold a significant impact in the field of future tumor management.
Collapse
Affiliation(s)
- Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
3
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Tonbul H, Şahin A, Öztürk SC, Ultav G, Tavukçuoğlu E, Akbaş S, Aktaş Y, Esendağlı G, Çapan Y. An all-in-one nanoparticle for overcoming drug resistance: doxorubicin and elacridar co-loaded folate receptor targeted PLGA/MSN hybrid nanoparticles. J Drug Target 2024; 32:1101-1110. [PMID: 38946465 DOI: 10.1080/1061186x.2024.2374034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in pharmacokinetics, toxicity and solubility limit the application of P-gp inhibitors. Herein, we developed a novel all-in-one hybrid nanoparticle system to overcome MDR in doxorubicin (DOX)-resistant breast cancer. First, folic acid-modified DOX-loaded mesoporous silica nanoparticles (MSNs) were prepared and then loaded into PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles along with a P-gp inhibitor, elacridar. This hybrid nanoparticle system had high drug loading capacity, enabled both passive and active targeting of tumour tissues, and exhibited sequential and pH-triggered release of drugs. In vitro and in vivo studies in DOX-resistant breast cancer demonstrated the ability of the hybrid nanoparticles to reverse P-gp-mediated drug resistance. The nanoparticles were efficiently taken up by the breast cancer cells and delivered elacridar, in vitro. Biodistribution studies demonstrated substantial accumulation of the folate receptor-targeted PLGA/MSN hybrid nanoparticles in tumour-bearing mice. Moreover, deceleration of the tumour growth was remarkable in the animals administered with the DOX and elacridar co-loaded hybrid nanoparticles when compared to those treated with the marketed liposomal DOX (Caelyx®) or its combination with elacridar.
Collapse
MESH Headings
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Doxorubicin/pharmacokinetics
- Drug Resistance, Neoplasm/drug effects
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Animals
- Humans
- Nanoparticles/chemistry
- Female
- Mice
- Tetrahydroisoquinolines/pharmacology
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/pharmacokinetics
- Lactic Acid/chemistry
- Acridines/pharmacology
- Acridines/administration & dosage
- Acridines/chemistry
- Cell Line, Tumor
- Folic Acid/chemistry
- Drug Resistance, Multiple/drug effects
- Silicon Dioxide/chemistry
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Drug Carriers/chemistry
- Polyglycolic Acid/chemistry
- Mice, Nude
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Mice, Inbred BALB C
- Folic Acid Transporters/metabolism
Collapse
Affiliation(s)
- Hayrettin Tonbul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Adem Şahin
- Department of Pharmacy Service, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Süleyman Can Öztürk
- Laboratory Animals Research and Application Center (HUDHAM), Hacettepe University, Ankara, Turkey
| | - Gözde Ultav
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sedenay Akbaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yılmaz Çapan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
5
|
Javadi P, Derakhshan MA, Heidari R, Ashrafi H, Azarpira N, Shahbazi MA, Azadi A. A thermoresponsive chitosan-based in situ gel formulation incorporated with 5-FU loaded nanoerythrosomes for fibrosarcoma local chemotherapy. Int J Biol Macromol 2024; 278:134781. [PMID: 39151860 DOI: 10.1016/j.ijbiomac.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Local administration of drugs at tumor sites over an extended period of time shows potential as a promising approach for cancer treatment. In the present study, the temperature-induced phase transition of chitosan and poloxamer 407 is used to construct an injectable hydrogel encapsulating 5-FU-loaded nanoerythrosome (5-FU-NER-gel). The 5-FU-NERs were found to be spherical, measuring approximately 115 ± 20 nm in diameter and having a surface potential of -7.06 ± 0.4. The drug loading efficiency was approximately 40 %. In situ gel formation took place within 15 s when the gel was exposed to body temperature or subcutaneous injection. A sustained release profile was observed at pH 7.4 and 6.8, with a total 5-FU release of 76.57 ± 4.4 and 98.07 ± 6.31 in 24 h, respectively. MTT, Live/dead, and migration assays confirmed the cytocompatibility of the drug carrier and its effectiveness as a chemotherapeutic formulation. After in vivo antitumor assessment in a subcutaneous autograft model, it was demonstrated that tumor growth inhibition in 14 days was 90 %. Therefore, the obtained injectable chitosan-based hydrogel containing 5-FU-loaded nanoerythrosomes illustrated promising potential as a candidate for local and enhanced delivery of chemotherapeutics at the tumor site.
Collapse
Affiliation(s)
- Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Yang J, Shi X, Kuang Y, Wei R, Feng L, Chen J, Wu X. Cell-nanocarrier drug delivery system: a promising strategy for cancer therapy. Drug Deliv Transl Res 2024; 14:581-596. [PMID: 37721694 DOI: 10.1007/s13346-023-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Tumor targeting has been a great challenge for drug delivery systems. A number of nanotechnology-derived drug carriers have been developed for cancer treatment to improve efficacy and biocompatibility. Among them, the emergence of cell-nanocarriers has attracted great attention, which simulates cell function and has good biocompatibility. They can also escape the clearance of reticuloendothelial system, showing a long-cycle effect. The inherent tumor migration and tumor homing ability of cells increase their significance as tumor-targeting vectors. In this review, we focus on the combination of stem cells, immune cells, red blood cells, and cell membranes to nanocarriers, which enable chemotherapy agents to efficiently target lesion sites and improve drug distribution while being low toxic and safe. In addition, we discuss the pros and cons of these nanoparticles as well as the challenges and opportunities that lie ahead. Although research to address these limitations is still ongoing, this promising tumor-targeted drug delivery system will provide a safe and effective platform against cancer.
Collapse
Affiliation(s)
- Jiefen Yang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xiongxi Shi
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Yanting Kuang
- Shanghai Wei Er Lab, Shanghai, China
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia, People's Republic of China
| | - Ruting Wei
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Lanni Feng
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China.
- Shanghai Wei Er Lab, Shanghai, China.
| |
Collapse
|
7
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
8
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
9
|
Xie J, Wang H, Huang Q, Lin J, Wen H, Miao Y, Lv L, Ruan D, Yu X, Qin L, Zhou Y. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin. Eur J Pharm Sci 2023; 189:106561. [PMID: 37562549 DOI: 10.1016/j.ejps.2023.106561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - Yingling Miao
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Lv
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongxue Ruan
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
10
|
Dong J, Yuan L, Hu C, Cheng X, Qin JJ. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review. Pharmacol Ther 2023; 249:108488. [PMID: 37442207 DOI: 10.1016/j.pharmthera.2023.108488] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Can Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
11
|
Zhou Y, Miao Y, Huang Q, Shi W, Xie J, Lin J, Huang P, Yue C, Qin Y, Yu X, Wang H, Qin L, Chen J. A redox-responsive self-assembling COA-4-arm PEG prodrug nanosystem for dual drug delivery suppresses cancer metastasis and drug resistance by downregulating hsp90 expression. Acta Pharm Sin B 2023; 13:3153-3167. [PMID: 37521875 PMCID: PMC10372829 DOI: 10.1016/j.apsb.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
Metastasis and resistance are main causes to affect the outcome of the current anticancer therapies. Heat shock protein 90 (Hsp90) as an ATP-dependent molecular chaperone takes important role in the tumor metastasis and resistance. Targeting Hsp90 and downregulating its expression show promising in inhibiting tumor metastasis and resistance. In this study, a redox-responsive dual-drug nanocarrier was constructed for the effective delivery of a commonly used chemotherapeutic drug PTX, and a COA-modified 4-arm PEG polymer (4PSC) was synthesized. COA, an active component in oleanolic acid that exerts strong antitumor activity by downregulating Hsp90 expression, was used as a structural and functional element to endow 4PSC with redox responsiveness and Hsp90 inhibitory activity. Our results showed that 4PSC/PTX nanomicelles efficiently delivered PTX and COA to tumor locations without inducing systemic toxicity. By blocking the Hsp90 signaling pathway, 4PSC significantly enhanced the antitumor effect of PTX, inhibiting tumor proliferation and invasiveness as well as chemotherapy-induced resistance in vitro. Remarkable results were further confirmed in vivo with two preclinical tumor models. These findings demonstrate that the COA-modified 4PSC drug delivery nanosystem provides a potential platform for enhancing the efficacy of chemotherapies.
Collapse
Affiliation(s)
- Yi Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingling Miao
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiachang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Pei Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengfeng Yue
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuan Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhai Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Drack A, Rai A, Greening DW. Generation of Red Blood Cell Nanovesicles as a Delivery Tool. Methods Mol Biol 2023; 2628:321-336. [PMID: 36781795 DOI: 10.1007/978-1-0716-2978-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Extracellular vesicles (EVs) are natural membranous vesicles with immense potential as drug delivery tools. However, their large-scale production remains a huge technical challenge, is time consuming, and expensive. Thus, EV mimetics (nanovesicles) generated from easily sourced red blood cells (RBCs) have gained vested interest as an effective and scalable drug delivery system. Their surface proteins (e.g., CD47) inherited from parental RBCs also improve their biocompatibility and bioavailability. Here, we outline a step-by-step guide for large-scale production of RBC nanovesicles using one-step extrusion method coupled to rapid density-cushion centrifugation. We also outline protocol for their extensive biophysical characterization (size and morphology using single particle analysis and cryogenic electron microscopy), and in-depth mass spectrometry-based proteome characterization. Finally, we outline two strategies (active loading during extrusion vs. passive loading via diffusion) to incorporate pharmacological compound(s) into nanovesicles and detect their loading using spectrophotometry.
Collapse
Affiliation(s)
- Auriane Drack
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.
- Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Zhang L, Huang P, Huang S, Wang T, Chen S, Chen Z, Zhou Y, Qin L. Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. Int J Pharm 2022; 626:122156. [PMID: 36058410 DOI: 10.1016/j.ijpharm.2022.122156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The use of conventional chemotherapy often faces limitations such as severe side effects, weak tumor tissue specificity, and the development of multidrug resistance. To conquer these challenges, numerous novel drug carriers have been designed in recent years. However, due to the complex processes of tumor development, metastasis and recurrence, single chemotherapy cannot fulfill the goals of clinical diverse treatment. In this work, by utilizing the inherent characteristics of surface-modified erythrocyte and the outstanding photothermal conversion capability of polydopamine (PDA), we designed and constructed a biomimetic multifunctional nanomedicine DPPR NPs to codeliver chemotherapeutic agent doxorubicin (DOX) and oxygen. The results showed that DPPR NPs exhibited inspiring features including nanoscale droplet size, good physicochemical stability, and sustained, pH-, and NIR triggered drug release behavior. It can dramatically prolong the systematic circulation time and elevated the drug accumulated level in the tumor site. Moreover, DPPR NPs could be effectively internalized into tumor cells and destroyed the intracellular redox balance to mediate cell apoptosis. It exerted excellent in vivo tumor targeting effect, photothermal conversion efficiency, ultrasound imaging responses, antitumor efficacy, and good compatibility. In summary, DPPR NPs provide a biomimetic drug delivery platform to organically combine chemotherapy and photothermal therapy for precise cancer treatment.
Collapse
Affiliation(s)
- Liyao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Peijie Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shubin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Tao Wang
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, PR China
| | - Shufeng Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin Drug Discov 2022; 17:1013-1027. [PMID: 35996765 DOI: 10.1080/17460441.2022.2112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The argument around cancer therapy is an old one. Using chemotherapeutic drugs, as one of the most effective strategies in treatment of malignancies, is restricted by various issues that progress during therapy and avoid achieving clinical endpoints. Multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters, is one of the most recognized obstacles in the success of pharmacological anticancer approaches. These transporters efflux diverse drugs to extracellular environment, causing MDR and responsiveness of tumor cells to chemotherapy diminishes. AREAS COVERED Several strategies have been used to overcome MDR phenomenon. Succession in this field requires complete knowledge about features and mechanism of ABC transporters. In this review, conventional synthetic and natural inhibitors are discussed first and then novel approaches including RNA, monoclonal antibodies, nanobiotechnology, and structural modification techniques are represented. EXPERT OPINION With increasing frequency of MDR in cancer cells, it is essential to develop new drugs to inhibit MDR. Using knowledge acquired about ABC transporter's structure, rational design of inhibitors is possible. Also, some herbal products have shown to be potential lead compounds in drug discovery for reversal of MDR.
Collapse
Affiliation(s)
- Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
15
|
Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188777. [PMID: 35963551 DOI: 10.1016/j.bbcan.2022.188777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Microtubule targeting agents (MTAs) have attracted extensive attention for cancer treatment. However, their clinical efficacies are limited by intolerable toxicities, inadequate efficacy and acquired multidrug resistance. The combination of MTAs with other antineoplastics has become an efficient strategy to lower the toxicities, overcome resistance and improve the efficacies for cancer treatment. In this article, we review the combinations of MTAs with some other anticancer drugs, such as cytotoxic agents, kinases inhibitors, histone deacetylase inhibitors, immune checkpoints inhibitors, to overcome these obstacles. We strongly believe that this review will provide helpful information for combination therapy based on MTAs.
Collapse
|
16
|
Sartaj A, Annu, Alam M, Biswas L, Yar MS, Mir SR, Verma AK, Baboota S, Ali J. Combinatorial delivery of Ribociclib and Green tea extract mediated nanostructured lipid carrier for oral delivery for the treatment of breast cancer synchronizing in silico, in vitro, and in vivo studies. J Drug Target 2022; 30:1113-1134. [PMID: 35856926 DOI: 10.1080/1061186x.2022.2104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose: The current research investigated the development and evaluation of dual drug-loaded nanostructure lipidic carriers (NLCs) of green tea extract and Ribociclib.Method: In silico study were performed to determine the effectiveness of combinational approach. The prepared NLCs were subjected to in vitro drug release, lipolysis, haemolysis and cell line studies to assess their in vivo prospect.Results: In silico study was done to get docking score of EGCG (-8.98) close to Ribociclib (-10.78) in CDK-4 receptors. The prepared NLCs exhibited particle size (175.80 ± 3.51 nm); PDI (0.571 ± 0.012); and %EE [RBO (80.91 ± 1.66%) and GTE 75.98 ± 2.35%)] respectively. MCF-7 cell lines were used to evaluate the MTT assay, cellular uptake and antioxidant (ROS and SOD) of prepared NLCs. In vitro drug release showed the controlled release up to 72 h. In vitro lipolysis and in vitro haemolysis studies showed the availability of drugs at absorption sites and the greater in vivo prospects of NLCs respectively. Pharmacokinetic study revealed a 3.63-fold and 1.53-fold increment in RBO and GTE bioavailability in female Wistar rats respectively.Conclusion: The prominent potential of green tea extract and RBO-loaded NLCs in enhancing their therapeutic efficacy for better treatment of breast cancer.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Meraj Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Largee Biswas
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Showkat Rasool Mir
- Department of Pharmacognosy and Phytochemistry, Phytomedicine Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anita Kamra Verma
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
17
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Hasan A, Tang D, Nijat D, Yang H, Aisa HA. Diterpenoids from Euphorbia glomerulans with potential reversal activities against P-glycoprotein-mediated multidrug resistance. Bioorg Chem 2021; 117:105442. [PMID: 34742027 DOI: 10.1016/j.bioorg.2021.105442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
The development of collateral sensitivity agents that are able to modulate P-glycoprotein (P-gp) is the most promising approaches to overcome multidrug resistance (MDR) in cancer. In this study, eight new diterpenoids of jatrophane and ingenane type, 1-8, and three known ones (9-11) were isolated from Euphorbia glomerulans. Their structures were elucidated by spectroscopic analysis and electronic circular dichroism (ECD) calculations. The MDR reversal activity evaluation of these isolates on breast cancer MCF-7/ADR cells demonstrated the four potent MDR modulators (3, 4, 5, and 9) with great chemoreversal ability and low cytotoxicity. The structure-activity relationship (SAR) analysis indicated that the presence of isobutanoyloxy group at C-8 significantly enhance reversal efficiency. Compound 5 exhibited high efficacy (EC50 = 159.5 nM) in reversing MDR resistance, being stronger than verapamil (EC50 = 302.9 nM). The MDR reversal mechanism assays revealed that 5 could promote the accumulation of Rh123 and DOX in drug-resistant cells in a certain dose-dependent manner, and inhibit P-gp transport function. In addition, the possible recognition mechanism of compound 5 and verapamil (VRP) with P-gp was predicted by molecular docking.
Collapse
Affiliation(s)
- Aobulikasimu Hasan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Dan Tang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Dilaram Nijat
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Hequn Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - H A Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
19
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
20
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
22
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
23
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021; 9:626910. [PMID: 33855017 PMCID: PMC8039396 DOI: 10.3389/fcell.2021.626910] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
24
|
Zhao Y, Chen Y, Wang J, Liu L. Effects of ATP-binding cassette transporter G2 in extracellular vesicles on drug resistance of laryngeal cancer cells in in vivo and in vitro. Oncol Lett 2021; 21:364. [PMID: 33747221 DOI: 10.3892/ol.2021.12625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance is one of the main factors limiting the efficacy of chemotherapy in patients with laryngeal cancer; thus, it is important to investigate the drug resistance of laryngeal cancer. In the present study, the mechanism of the regulation of drug resistance in laryngeal cancer cells by ATP-binding transporter G2 (ABCG2) that is present in the extracellular vesicles (EVs) released by drug-resistant cells was studied in vivo and in vitro. A cisplatin (CDDP)-resistant cell line (AMC-HN-8/CDDP) was established from AMC-HN-8 cells by continuous exposure to increasing concentrations of CDDP. The EVs extracted from the culture medium of AMC-HN-8/CDDP and AMC-HN-8 cells were termed EVs1 and EVs2, respectively. Following 48-h treatment of AMC-HN-8 cells with EVs1 or EVs2, the cells were designated as AMC-HN-8-EVs1 or AMC-HN-8-EVs2. Nude mice bearing AMC-HN-8-EVs1 and AMC-HN-8 cell-derived xenograft tumors were established to detect the effects of EVs on drug resistance. The resistance index of AMC-HN-8/CDDP cells to CDDP was 5.60, which was determined by the MTT assay. The mRNA and protein expression levels of ABCG2 in AMC-HN-8/CDDP cells and EVs1 were significantly higher compared with those in AMC-HN-8 cells and EVs2, respectively (P<0.01). The ABCG2 mRNA and protein levels, and the proliferation index of AMC-HN-8-EVs1 cells were significantly higher compared with those of AMC-HN-8-EVs2 and AMC-HN-8 cells (P<0.01), whereas the apoptotic rate was significantly lower (P<0.01). The mean volume of subcutaneous tumor xenografts in the test group (inoculated with AMC-HN-8-EVs1 cells and intraperitoneally injected with 3 mg/kg CDDP) was significantly higher compared with that in the control group (inoculated with AMC-HN-8 cells and intraperitoneally injected with 3 mg/kg CDDP) (P<0.01), whereas the apoptotic rate of tumor cells was significantly lower (P<0.01). The ABCG2 mRNA and the protein expression levels in the tumor cells of the test group were significantly higher compared with those in the blank (inoculated with AMC-HN-8 cells and was intraperitoneally injected with normal saline) and control groups (P<0.01). The high expression levels of ABCG2 in laryngeal carcinoma cells affected the drug resistance of the cells. The EVs released by drug-resistant cells upregulated the expression of ABCG2 and induced drug resistance in laryngeal carcinoma cells, which may be dependent on the ABCG2 gene carried by the EVs.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otolaryngology, Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuetong Chen
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Wang
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
25
|
Javed S, Alshehri S, Shoaib A, Ahsan W, Sultan MH, Alqahtani SS, Kazi M, Shakeel F. Chronicles of Nanoerythrosomes: An Erythrocyte-Based Biomimetic Smart Drug Delivery System as a Therapeutic and Diagnostic Tool in Cancer Therapy. Pharmaceutics 2021; 13:368. [PMID: 33802156 PMCID: PMC7998655 DOI: 10.3390/pharmaceutics13030368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Saad Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| |
Collapse
|
26
|
Das T, Anand U, Pandey SK, Ashby CR, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and β-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
27
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
28
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021. [PMID: 33855017 DOI: 10.3389/fcell.2021.626910/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
29
|
Ashirbekov Y, Abaildayev A, Omarbayeva N, Botbayev D, Belkozhayev A, Askandirova A, Neupokoyeva A, Utegenova G, Sharipov K, Aitkhozhina N. Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ 2020; 8:e10494. [PMID: 33362968 PMCID: PMC7749656 DOI: 10.7717/peerj.10494] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer among women worldwide. At present, there is a need to search for new, accurate, reliable, minimally invasive and cheap biomarkers in addition to existing methods for the diagnosis and prognosis of BC. The main goal of this study was to test the diagnostic value of six circulating miRNAs in Kazakh women. Materials and methods TaqMan-based miRNA profiling was conducted using plasma specimens from 35 BC women patients and 33 healthy women samples (control group). Results The level of all seven miRNAs (including endogenous control) normalized by synthetic cel-miR-39 were significantly elevated in the group of BC patients. Normalization using miR-222-3p as endogenous control reduced differences in level of miRNAs between groups; as a result, only three miRNAs were significantly upregulated in the group of BC patients—miR-145-5p (P = 6.5e−12), miR-191-5p (P = 3.7e−10) and miR-21-5p (P = 0.0034). Moreover, ROC analysis showed that the use of miR-145-5p and miR-191-5p, both individually (AUC = 0.931 and 0.904, respectively) or in combination (AUC = 0.984), allows to accurately differentiate BC patients from healthy individuals. Conclusions Two plasma miRNAs—miR-145-5p and miR-191-5p—are potential biomarkers for diagnosis of BC in the Kazakh population. The findings need to be further substantiated using a more representative sample.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arman Abaildayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nazgul Omarbayeva
- Kazakh Research Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Dauren Botbayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Ayaz Belkozhayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Anel Askandirova
- Kazakh Research Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Alena Neupokoyeva
- Almaty Branch of National Center for Biotechnology, Almaty, Kazakhstan
| | | | - Kamalidin Sharipov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nagima Aitkhozhina
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| |
Collapse
|
30
|
Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, Lee NJ, Gorain B, Amin MCIM, Pichika MR. Folic Acid Conjugated Nanocarriers for Efficient Targetability and Promising Anticancer Efficacy for Treatment of Breast Cancer: A Review of Recent Updates. Curr Pharm Des 2020; 26:5365-5379. [DOI: 10.2174/1381612826666200721000958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be
caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional
treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy,
however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance.
Advancement of nanotechnology in the medical application has been made to enhance the therapeutic
effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer
drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering
the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor
overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers
have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells.
Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics
in BC cells, without much exposing the other parts of the body. Simultaneously, these folate--
conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses
to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics
for the treatment and theranostic approaches against BC along with the significant challenges to anticancer
therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate
nanocarriers.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lee Pei Wen
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ling Kah Cien
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ho Xin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Alvina Ng Jia Yee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ng Joo Lee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Genome-wide DNA methylation analysis of breast cancer MCF-7 / Taxol cells with MeDIP-Seq. PLoS One 2020; 15:e0241515. [PMID: 33306680 PMCID: PMC7732127 DOI: 10.1371/journal.pone.0241515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed tumor in women worldwide. Although the combination of surgery and Taxol chemotherapy can achieve a certain therapeutic effect, patients often develop drug-resistance, resulting in a poor prognosis. Therefore, it is significative to seek the molecular mechanism of chemotherapy resistance. Recent studies have found that abnormal epigenetic regulation in breast cells changes the expression of key genes, which can lead to the occurrence, development, and maintenance of cancer, even related to the development of drug-resistance. Therefore, in this study, we performed methylated DNA immunoprecipitation-sequencing (MeDIP-seq) to reveal the difference in methylation between breast cancer drug-resistant cells and sensitive cells. A total of 55076 differentially methylated genes (DMGs) were detected, including 21061 hypermethylated DMGs and 34015 hypomethylated DMGs. Moreover, Gene Ontology (GO) analysis and KEGG pathway analysis reveal the function and pathway of screening genes. These results indicate that DNA methylation may be involved in regulating the occurrence and development of breast cancer.
Collapse
|