1
|
Zhang L, Yang T, Zhao Z, Wang Z, Lin S, Zhao S. Thin-film composite vapor-gap membrane for pressure-driven distillation. SCIENCE ADVANCES 2025; 11:eadu6787. [PMID: 40344076 PMCID: PMC12063649 DOI: 10.1126/sciadv.adu6787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Pressure-driven distillation (PD), as an emerging technology, holds tremendous potential for producing freshwater from nontraditional water sources. In this process, a sufficient hydraulic pressure is applied to drive water evaporation and vapor transport across a vapor-gap membrane. The development of the PD process critically depends on the availability of robust and large-area superhydrophobic membranes. Here, we propose an ultraselective superhydrophobic thin-film composite (TFC) vapor-gap membrane with confined transport channels toward the PD process, which can be manufactured scale-up through a facile swelling-assisted deposition strategy. The TFC-PD membrane demonstrates separation capabilities, achieving near-complete rejections of nonvolatile solutes, including salts, boron, and urea. Featured by a vapor-gap superhydrophobic layer, the TFC-PD membrane exhibits superior chlorine and scaling resistance and maintains stable performance over time without being oxidized or scaling. This work offers notable advancements in the microstructural design of PD membranes and the development of scalable robust TFC membranes for the PD process.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tianxiang Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhenyi Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Song Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Han S, Lu Z, Zhu J, Mai Z, Matsuyama H, He T, Zhang Y. Boosted Intracavity Aperture in Macrocyclic Amines Enabling Finely Regulated Microporous Membranes. NANO LETTERS 2024; 24:12382-12389. [PMID: 39258768 DOI: 10.1021/acs.nanolett.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations. In conjunction with the increased intracavity size, the water permeability follows an augmented trend of 3A-TMC, 4A1-TMC, and 4A2-TMC (TMC: trimesoyl chloride) while exhibiting increased molecular weight cut-offs due to larger free-volume elements and stronger pore interconnectivity. Our proposed macrocyclic amine design strategy provides a guideline for finely regulated microporous membranes with high potential in NF-related applications.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Zhen Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Chen Q, Tang Y, Ding YM, Jiang HY, Zhang ZB, Li WX, Liu ML, Sun SP. Synergistic Construction of Sub-Nanometer Channel Membranes through MOF-Polymer Composites: Strategies and Nanofiltration Applications. Polymers (Basel) 2024; 16:1653. [PMID: 38932003 PMCID: PMC11207757 DOI: 10.3390/polym16121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The selective separation of small molecules at the sub-nanometer scale has broad application prospects in the field, such as energy, catalysis, and separation. Conventional polymeric membrane materials (e.g., nanofiltration membranes) for sub-nanometer scale separations face challenges, such as inhomogeneous channel sizes and unstable pore structures. Combining polymers with metal-organic frameworks (MOFs), which possess uniform and intrinsic pore structures, may overcome this limitation. This combination has resulted in three distinct types of membranes: MOF polycrystalline membranes, mixed-matrix membranes (MMMs), and thin-film nanocomposite (TFN) membranes. However, their effectiveness is hindered by the limited regulation of the surface properties and growth of MOFs and their poor interfacial compatibility. The main issues in preparing MOF polycrystalline membranes are the uncontrollable growth of MOFs and the poor adhesion between MOFs and the substrate. Here, polymers could serve as a simple and precise tool for regulating the growth and surface functionalities of MOFs while enhancing their adhesion to the substrate. For MOF mixed-matrix membranes, the primary challenge is the poor interfacial compatibility between polymers and MOFs. Strategies for the mutual modification of MOFs and polymers to enhance their interfacial compatibility are introduced. For TFN membranes, the challenges include the difficulty in controlling the growth of the polymer selective layer and the performance limitations caused by the "trade-off" effect. MOFs can modulate the formation process of the polymer selective layer and establish transport channels within the polymer matrix to overcome the "trade-off" effect limitations. This review focuses on the mechanisms of synergistic construction of polymer-MOF membranes and their structure-nanofiltration performance relationships, which have not been sufficiently addressed in the past.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
| | - Ying Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang-Min Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Ya Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Bo Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| |
Collapse
|
4
|
Baig U, Jillani SMS, Waheed A. Decoration of β-Cyclodextrin and Tuning Active Layer Chemistry Leading to Nanofiltration Membranes for Desalination and Wastewater Decontamination. MEMBRANES 2023; 13:membranes13050528. [PMID: 37233589 DOI: 10.3390/membranes13050528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Given the huge potential of thin film composite (TFC) nanofiltration (NF) membranes for desalination and micro-pollutant removal, two different sets of six NF membranes were synthesized. The molecular structure of the polyamide active layer was tuned by using two different cross-linkers, terephthaloyl chloride (TPC) and trimesoyl chloride (TMC), reacted with tetra-amine solution containing β-Cyclodextrin (BCD). To further tune the structure of the active layers, the time duration of interfacial polymerization (IP) was varied from 1 to 3 min. The membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), attenuated total reflectance Fourier transform infra-red (ATR-FTIR) spectroscopy, elemental mapping and energy dispersive (EDX) analysis. The six fabricated membranes were tested for their ability to reject divalent and monovalent ions followed by rejection of micro-pollutants (pharmaceuticals). Consequently, terephthaloyl chloride turned out to be the most effective crosslinker for the fabrication of membrane active layer with tetra-amine in the presence of β-Cyclodextrin using interfacial polymerization reaction for 1 min. The membrane fabricated using TPC crosslinker (BCD-TA-TPC@PSf) showed higher % rejection for divalent ions (Na2SO4 = 93%; MgSO4 = 92%; MgCl2 = 91%; CaCl2 = 84%) and micro-pollutants (Caffeine = 88%; Sulfamethoxazole = 90%; Amitriptyline HCl = 92%; Loperamide HCl = 94%) compared to the membrane fabricated using TMC crosslinker (BCD-TA-TMC@PSf). For the BCD-TA-TPC@PSf membrane, the flux was increased from 8 LMH (L/m2.h) to 36 LMH as the transmembrane pressure was increased from 5 bar to 25 bar.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Zhao LL, Cao XL, Luo C, Wang Q, Lu TD, Tang MJ, Sun SP, Xing W. Locking Patterned Carbon Nanotube Cages by Nanofibrous Mats to Construct Cucurbituril[n]-Based Ultrapermselective Dye/Salt Separation Membranes. NANO LETTERS 2023; 23:4167-4175. [PMID: 37155570 DOI: 10.1021/acs.nanolett.2c05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.
Collapse
Affiliation(s)
- Liu-Lin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cong Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Dan Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Chen Z, He Q, Deng X, Peng J, Du K, Sun Y. Engineering solid nanochannels with macrocyclic host-guest chemistry for stimuli responses and molecular separations. Chem Commun (Camb) 2023; 59:1907-1916. [PMID: 36688813 DOI: 10.1039/d2cc06562b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biological channels in the cell membrane play a critical role in the regulation of signal transduction and transmembrane transport. Researchers have been committed to building biomimetic nanochannels to imitate the above significant biological processes. Unlike the fragile feature of biological channels, numerous solid nanochannels have aroused extensive interests for their controllable chemical properties on the surface and superior mechanical properties. Surface functionalization has been confirmed to be vital to determine the properties of solid nanochannels. Macrocyclic hosts (e.g., the crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, pillar[n]arenes, and trianglamine) can be tailored to the interior surface of the nanochannels with the performance of stimuli response and separation. Macrocycles have good reversibility and high selectivity toward specific ions or molecules, promoting functionalies of solid nanochannels. Hence, the combination of macrocyclic hosts and solid nanochannels is conducive to taking both advantages and achieving applications in functional nanochannels (e.g., membranes separations, biosensors, and smart devices). In this review, the most recent advances in nanochannel membranes decorated by macrocyclic host-guest chemistry are briefed. A variety of macrocyclic hosts-based responsive nanochannels are organized (e.g., the physical stimuli and specific molecules or ions stimuli) and nanochannels are separated (e.g., water purifications, enantimerseparations, and organic solvent nanofiltration), respectively. Hopefully, this review can enlighten on how to effectively build functional nanochannels and facilitate their practical applications in membrane separations.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Qiang He
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaowen Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jiehai Peng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
7
|
Wu B, Wang N, Shen Y, Jin CG, An QF. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Han S, Zhu J, Uliana AA, Li D, Zhang Y, Zhang L, Wang Y, He T, Elimelech M. Microporous organic nanotube assisted design of high performance nanofiltration membranes. Nat Commun 2022; 13:7954. [PMID: 36575167 PMCID: PMC9794819 DOI: 10.1038/s41467-022-35681-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Microporous organic nanotubes (MONs) hold considerable promise for designing molecular-sieving membranes because of their high microporosity, customizable chemical functionalities, and favorable polymer affinity. Herein, we report the use of MONs derived from covalent organic frameworks to engineer 15-nm-thick microporous membranes via interfacial polymerization (IP). The incorporation of a highly porous and interpenetrated MON layer on the membrane before the IP reaction leads to the formation of polyamide membranes with Turing structure, enhanced microporosity, and reduced thickness. The MON-modified membranes achieve a remarkable water permeability of 41.7 L m-2 h-1 bar-1 and high retention of boron (78.0%) and phosphorus (96.8%) at alkaline conditions (pH 10), surpassing those of reported nanofiltration membranes. Molecular simulations reveal that introducing the MONs not only reduces the amine molecule diffusion toward the organic phase boundary but also increases membrane porosity and the density of water molecules around the membrane pores. This MON-regulated IP strategy provides guidelines for creating high-permeability membranes for precise nanofiltration.
Collapse
Affiliation(s)
- Shuangqiao Han
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Junyong Zhu
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Adam A. Uliana
- grid.47840.3f0000 0001 2181 7878Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
| | - Dongyang Li
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yatao Zhang
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Lin Zhang
- grid.13402.340000 0004 1759 700XKey Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yong Wang
- grid.412022.70000 0000 9389 5210College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
| | - Tao He
- grid.9227.e0000000119573309Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Menachem Elimelech
- grid.47100.320000000419368710Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286 USA
| |
Collapse
|
9
|
Li X, Jiao C, Zhang X, Li X, Song X, Zhang Z, Jiang H. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Porous organic cage supramolecular membrane showing superior monovalent/divalent salts separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Ren L, Chen J, Lu Q, Han J, Liang J, Wu H. Cucurbit[n]uril-rotaxanes functionalized membranes with heterogeneous channel and regenerable surface for efficient and sustainable nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Gui L, Cui Y, Zhu Y, An X, Lan H, Jin J. g-C3N4 nanofibers network reinforced polyamide nanofiltration membrane for fast desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Fabrication of high performance nanofiltration membrane by construction of Noria based nanoparticles interlayer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wang Y, Liang RZ, Jia TZ, Cao XL, Wang Q, Cao JR, Li S, Shi Q, Isaacs L, Sun SP. Voltage-Gated Membranes Incorporating Cucurbit[ n]uril Molecular Containers for Molecular Nanofiltration. J Am Chem Soc 2022; 144:6483-6492. [DOI: 10.1021/jacs.2c01263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rong-Zu Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Rong Cao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Chen R, Dong X, Ge Q. Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wu B, Wang N, Lei JH, Shen Y, An QF. Intensification of mass transfer for zwitterionic amine monomers in interfacial polymerization to fabricate monovalent salt/antibiotics separation membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Han S, Mai Z, Wang Z, Zhang X, Zhu J, Shen J, Wang J, Wang Y, Zhang Y. Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3427-3436. [PMID: 34989545 DOI: 10.1021/acsami.1c19605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) have evinced a potential solution that promises for fast and efficient molecular separation due to the presence of orderly arranged pores and regulable pore apertures. Herein, the synthesized COF (TPB-DMTP-COF) with the pore aperture matching the pore size of the nanofiltration (NF) membrane was utilized to modulate the physicochemical characters of the polyamide (PA) membranes. It is demonstrated that COFs with superior polymer affinity and hydrophilicity not only circumvent the nonselective interfacial cavities but also improve the hydrophilicity of the resultant thin-film nanocomposite (TFN) membranes. Furthermore, the predeposited COF layer is able to slow down the diffusion rate toward the reaction boundary through hydrogen bonding, which is consistent with the results of molecular dynamic (MD) and dissipative particle dynamic (DPD) simulations. In this context, COF-modulated TFN membranes show a roughened and thickened surface with bubble-shaped structures in contrast to the nodular structure of original polyamide membranes. Combined with the introduced in-plane pores of COFs, the resultant TFN membranes display a significantly elevated water permeance of 35.7 L m2 h-1 bar-1, almost 4-fold that of unmodified polyamide membranes. Furthermore, the selectivity coefficient of Cl-/SO42- for COF-modulated TFN membranes achieves a high value of 84 mainly related to the enhanced charge density, far exceeding the traditional NF membranes. This work is considered to provide a guideline of exploring hydrophilic COFs as an interlayer for constructing highly permeable membranes with precise ion-sieving ability.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Institute of Energy Conversion, Jiangxi Academy of Sciences, Changdong Rd., Nanchang 330096, China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Wang
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Tang M, Liu M, Li L, Su G, Yan X, Ye C, Sun S, Xing W. Solvation‐amination‐synergy that neutralizes interfacially polymerized membranes for ultrahigh selective nanofiltration. AIChE J 2022. [DOI: 10.1002/aic.17602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Jian Tang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Mei‐Ling Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Lu Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Guo‐Jiang Su
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Xiang‐Yu Yan
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Can Ye
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Shi‐Peng Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
19
|
Lalabadi MA, Peyman H, Roshanfekr H, Azizi S, Maaza M. Polyethersulfone nanofiltration membrane embedded by magnetically modified MOF (MOF@Fe3O4): fabrication, characterization and performance in dye removal from water using factorial design experiments. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Chen M, Lv N, Zhao W, Day AI. The Cyclobutanocucurbit[5-8]uril Family: Electronegative Cavities in Contrast to Classical Cucurbituril while the Electropositive Outer Surface Acts as a Crystal Packing Driver. Molecules 2021; 26:7343. [PMID: 34885923 PMCID: PMC8659056 DOI: 10.3390/molecules26237343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The structural parameters for the cyclobutanoQ[5-8] family were determined through single crystal X-ray diffraction. It was found that the electropositive cyclobutano methylene protons (CH2) are important in forming interlinking crystal packing arrangements driven by the dipole-dipole interactions between these protons and the portal carbonyl O of a near neighbor. This type of interaction was observed across the whole family. Electrostatic potential maps also confirmed the electropositive nature of the cyclobutano CH2 but, more importantly, it was established that the cavities are electronegative in contrast to classical Q[5-8], which are near neutral.
Collapse
Affiliation(s)
- Minghua Chen
- College of Biology and Chemistry, Xingyi Normal University For Nationalities, Xingyi 562400, China; (M.C.); (N.L.)
| | - Naixia Lv
- College of Biology and Chemistry, Xingyi Normal University For Nationalities, Xingyi 562400, China; (M.C.); (N.L.)
| | - Weiwei Zhao
- Pharmaron Beijing Co., Ltd., Beijing 100176, China;
| | - Anthony I. Day
- Chemistry, School of Science, University of New South Wales Canberra, Australian Defence Force Academy, Canberra, ACT 2600, Australia
| |
Collapse
|
21
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Shi X, Zhang Z, Fang S, Wang J, Zhang Y, Wang Y. Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions. NANO LETTERS 2021; 21:8355-8362. [PMID: 34596413 DOI: 10.1021/acs.nanolett.1c02919] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membranes based on covalent organic frameworks (COFs) have demonstrated huge potential to resolve the long-standing bottlenecks in separation fields due to their structural and functional attributes. Herein, a three-dimensional COF featuring interpenetrated apertures, 3D-OH-COF, is rationally synthesized on polyimide supports to generate flexible, robust membranes. The resultant 3D-OH-COF presents excellent crystallinity, prominent porosity, and exceptional solvent resistance, enabling the produced membrane a sharp and durable selectivity to small molecules in water and organic solvents. Impressively, the membrane also exhibits excellent flexibility and robustness as verified by the well-maintained performances after serious bending and solvent soaking under elevated temperatures. We further chemically convert 3D-OH-COF into the carboxyl-decorated 3D-COOH-COF by a postsynthetic strategy. The 3D-COOH-COF retains high crystallinity, and the converted membrane receives a remarkable capture ability for targeted multivalent ions over other competing ions. This study exploits a viable avenue to produce practical 3D COF membranes toward ultimate separations under extreme conditions.
Collapse
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| | - Siyu Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan P.R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan P.R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| |
Collapse
|
23
|
Zhang R, Zhu Y, Zhang L, Lu Y, Yang Z, Zhang Y, Jin J. Polyamide Nanofiltration Membranes from Surfactant‐Assembly Regulated Interfacial Polymerization: The Effect of Alkyl Chain. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ruolin Zhang
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yuzhang Zhu
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Liufu Zhang
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Yang Lu
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Zhao Yang
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Yatao Zhang
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou 450001 China
| | - Jian Jin
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
24
|
Guo X, Xu S, Sun Y, Qiao Z, Huang H, Zhong C. Metal-organic polyhedron membranes for molecular separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Cao N, Yue C, Lin Z, Li W, Zhang H, Pang J, Jiang Z. Durable and chemical resistant ultra-permeable nanofiltration membrane for the separation of textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125489. [PMID: 33676253 DOI: 10.1016/j.jhazmat.2021.125489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
It is highly challenging to prepare durable and chemical resistant ultra-permeable membranes that can quickly separate small organic molecules like dye or inorganic salt in the complex textile wastewater industry. Here, side-chain sulfonated poly(ether ether ketone) (SPEEK) was synthesized and prepared the poly(ether ether ketone) (PEEK) - SPEEK nanofiltration (NF) membrane by a simple dipping coating and heat treatment. Single component filtration tests of the optimized membrane showed ultrahigh pure water flux (126 Lm-2 h-1 bar-1) and relatively low NaCl rejection (6.7%). Moreover, the negatively charged membrane exhibited excellent rejection of 98.8% toward Congo red (CR). The pure water flux was about 9 folds than that of commercial NF270 with comparable solutes rejection. The separation tests of CR and NaCl mixed solution at optimized conditions exhibited ultra-high permeation flux (34 Lm-2 h-1 bar-1), satisfactory dye (98.8%)/salt (< 10%) rejection and the separation performance remained stable after 10 cycles. Finally, the contaminated membrane was washed with ethanol, the permeation flux and the CR rejection remained constant after several cycles, while the commercial NF1 membrane exhibited serious swelling only within one cycle. The prepared membrane exhibited good organic solvents resistance and antifouling properties. Thus, this work confirmed the PEEK-SPEEK NF membrane showed great potential in the sustainable treatment of textile wastewater.
Collapse
Affiliation(s)
- Ning Cao
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Cheng Yue
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ziyu Lin
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Wenying Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
26
|
Wang B, Zhao D. Polyamide layer sulfonation of a nanofiltration membrane to enhance perm‐selectivity via regulation of pore size and surface charge. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Biao Wang
- College of Civil Engineering and Architecture Nanyang Normal University Nanyang China
| | - Dongsheng Zhao
- College of Civil Engineering and Architecture Nanyang Normal University Nanyang China
| |
Collapse
|
27
|
Shah AA, Park A, Yoo Y, Nam SE, Park YI, Cho YH, Park H. Preparation of highly permeable nanofiltration membranes with interfacially polymerized biomonomers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Raza W, Jianhua Y, Wang J, Saulat H, Wang L, Lu J, Zhang Y. A selective organosilica membrane for ethyl acetate dehydration by pervaporation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Waseem Raza
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Yang Jianhua
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
- Panjin Institute of Industrial Technology Dalian University of Technology Panjin China
| | - Jiaxuan Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Hammad Saulat
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Jingming Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Yan Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| |
Collapse
|
29
|
Jiao C, Song X, Zhang X, Sun L, Jiang H. MOF-Mediated Interfacial Polymerization to Fabricate Polyamide Membranes with a Homogeneous Nanoscale Striped Turing Structure for CO 2/CH 4 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18380-18388. [PMID: 33844496 DOI: 10.1021/acsami.1c03737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Control of the surface morphology of polyamide membranes fabricated by interfacial polymerization is of great importance in dictating the separation performance. Herein, polyamide membranes with a specific nanoscale striped Turing structure are generated through facile addition of Zr-based metal-organic framework UiO-66-NH2 in the aqueous triethylenetetramine phase. Interestingly, accompanied by the degradation of UiO-66-NH2 in aqueous solution, an intermediate complex is in situ formed through the strong interaction between the Zr metal center and the amine group from triethylenetetramine, which can lower amine diffusion and induce a local interfacial reaction, contributing to the generation of a homogeneous nanoscale striped Turing structure. The resulting membranes are used for CO2/CH4 gas separation. Compared with the parent polyamide membrane displaying a CO2/CH4 selectivity of 43.1 and a CO2 permeance of 31.5 GPU, the membrane with 0.02 wt % of UiO-66-NH2 introduced into the aqueous phase shows a higher CO2/CH4 selectivity of 58.3, along with a CO2 permeance of 27.1 GPU. Additionally, when 0.1 wt % of UiO-66-NH2 is incorporated into the aqueous phase, the membrane exhibits a combination of a higher CO2/CH4 selectivity and an enhanced CO2 permeance in contrast with the parent polyamide membrane.
Collapse
Affiliation(s)
- Chengli Jiao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiangju Song
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoqian Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Heqing Jiang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
30
|
Shao DD, Zhang Q, Wang L, Wang ZY, Jing YX, Cao XL, Zhang F, Sun SP. Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Gai W, Zhang Y, Zhao Q, Chung TS. Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Shen L, Yi M, Japip S, Han C, Tian L, Lau CH, Wang Y. Breaking through permeability–selectivity trade‐off of thin‐film composite membranes assisted with crown ethers. AIChE J 2021. [DOI: 10.1002/aic.17173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Susilo Japip
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore
| | - Chao Han
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Lian Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Cher Hon Lau
- School of Engineering The University of Edinburgh Edinburgh UK
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| |
Collapse
|
33
|
Fu Z, Wang Z, Liu M, Cai J, Yuan P, Wang Q, Xing W, Sun S. Dual‐layer membrane with hierarchical hydrophobicity and transport channels for nonpolar organic solvent nanofiltration. AIChE J 2021. [DOI: 10.1002/aic.17138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zheng‐Jun Fu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Zhen‐Yuan Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Mei‐Ling Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jing Cai
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Pu‐An Yuan
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Qian Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Shi‐Peng Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
34
|
|
35
|
Wang S, Xiang D, Meng J, Cao B, Zhang R, Li P. Preparation of UiO‐66/DMBPTB and UiO‐66‐NH
2
/DMBPTB Nanocomposite Membranes with Enhanced CO
2
/CH
4
Selectivity for Gas Separation. ChemistrySelect 2020. [DOI: 10.1002/slct.202004075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaokang Wang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Dongxiao Xiang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Junquan Meng
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Bing Cao
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Rui Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Pei Li
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
36
|
Ren L, Chen J, Lu Q, Han J, Wu H. Antifouling Nanofiltration Membrane Fabrication via Surface Assembling Light-Responsive and Regenerable Functional Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52050-52058. [PMID: 33156605 DOI: 10.1021/acsami.0c16858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling, caused by aggregation of organics and microorganisms from filtrate on the membrane surface, seriously reduces the service life of a nanofiltration (NF) membrane. Developing facile and renewable antifouling modification methods without sacrificing separation properties of the membrane remain an imperative requirement. Herein, a thin-film composite (TFC) NF membrane with a light-responsive and regenerable functional layer (P-TFC) was fabricated via host-guest interactions between the azobenzene (guest) labeled functional polymers and the β-cyclodextrin (host) bonded membrane surface (H-TFC). The P-TFC-3 not only showed outstanding antifouling ability and high flux recovery ratio (FRR > 90% at the fourth antiadhesive test) but also exhibited enhanced water permeability (17.9 L m-2 h-1 bar-1) and high selectivity (αMgSO4NaCl = 33.4 and fast antibiotics enrichment capacity) compared with the pristine membrane. Furthermore, when the functional layer was contaminated, it can be removed by ultraviolet light irradiation and a new functional layer can be rebuilt by adding fresh azobenzene labeled functional polymers. After several regeneration processes, the membranes still showed constant separation properties and high flux recovery ability (FRR > 90%). This work proposes an easy-to-assemble and regenerable surface modification strategy to endow TFC NF membranes with excellent fouling resistance and sustainable utilization ability while maintaining high separation properties.
Collapse
Affiliation(s)
- Liang Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Qing Lu
- Tianjin Bokelin Medical Packaging Technology Co., Ltd., Tasly Group, Tianjin 300410, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Xia QC, Yang WJ, Fan F, Ji M, Wang Y, Wang ZY, Cao XL, Xing W, Sun SP. Encapsulated Polyethyleneimine Enables Synchronous Nanostructure Construction and In Situ Functionalization of Nanofiltration Membranes. NANO LETTERS 2020; 20:8185-8192. [PMID: 33125239 DOI: 10.1021/acs.nanolett.0c03288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly permselective nanostructured membranes are desirable for the energy-efficient molecular sieving on the subnanometer scale. The nanostructure construction and charge functionalization of the membranes are generally carried out step by step through the conventional layer-by-layer coating strategy, which inevitably brings about a demanding contradiction between the permselective performance and process efficiency. For the first time, we report the concurrent construction of the well-defined molecular sieving architectures and tunable surface charges of nanofiltration membranes through precisely controlled release of the nanocapsule decorated polyethyleneimine and carbon dioxide. This novel strategy not only substantially shortens the fabrication process but also leads to impressive performance (permeance up to 37.4 L m-2 h-1 bar-1 together with a rejection 98.7% for Janus Green B-511 Da) that outperforms most state-of-art nanofiltration membranes. This study unlocks new avenues to engineer next-generation molecular sieving materials simply, precisely, and cost efficiently.
Collapse
Affiliation(s)
- Qian-Cheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Jie Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fan Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen-Yuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
38
|
A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115845] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Yang X, Yuan L, Zhao Y, Yan L, Bai Y, Ma J, Li S, Sorokin P, Shao L. Mussel-inspired structure evolution customizing membrane interface hydrophilization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Mutihac RC, Bunaciu AA, Buschmann HJ, Mutihac L. A brief overview on supramolecular analytical chemistry of cucurbit[n]urils and hemicucurbit[n]urils. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Li Y, Yang R, Zhang R, Cao B, Li P. Preparation of Thermally Imidized Polyimide Nanofiltration Membranes with Macrovoid-Free Structures. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuan Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Cao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pei Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|