1
|
Soliman M, Maity K, Gloppe A, Mahmoudi A, Ouerghi A, Doudin B, Kundys B, Dayen JF. Photoferroelectric All-van-der-Waals Heterostructure for Multimode Neuromorphic Ferroelectric Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15732-15744. [PMID: 36919904 PMCID: PMC10375436 DOI: 10.1021/acsami.3c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interface-driven effects in ferroelectric van der Waals (vdW) heterostructures provide fresh opportunities in the search for alternative device architectures toward overcoming the von Neumann bottleneck. However, their implementation is still in its infancy, mostly by electrical control. It is of utmost interest to develop strategies for additional optical and multistate control in the quest for novel neuromorphic architectures. Here, we demonstrate the electrical and optical control of the ferroelectric polarization states of ferroelectric field effect transistors (FeFET). The FeFETs, fully made of ReS2/hBN/CuInP2S6 vdW materials, achieve an on/off ratio exceeding 107, a hysteresis memory window up to 7 V wide, and multiple remanent states with a lifetime exceeding 103 s. Moreover, the ferroelectric polarization of the CuInP2S6 (CIPS) layer can be controlled by photoexciting the vdW heterostructure. We perform wavelength-dependent studies, which allow for identifying two mechanisms at play in the optical control of the polarization: band-to-band photocarrier generation into the 2D semiconductor ReS2 and photovoltaic voltage into the 2D ferroelectric CIPS. Finally, heterosynaptic plasticity is demonstrated by operating our FeFET in three different synaptic modes: electrically stimulated, optically stimulated, and optically assisted synapse. Key synaptic functionalities are emulated including electrical long-term plasticity, optoelectrical plasticity, optical potentiation, and spike rate-dependent plasticity. The simulated artificial neural networks demonstrate an excellent accuracy level of 91% close to ideal-model synapses. These results provide a fresh background for future research on photoferroelectric vdW systems and put ferroelectric vdW heterostructures on the roadmap for the next neuromorphic computing architectures.
Collapse
Affiliation(s)
- Mohamed Soliman
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Krishna Maity
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Arnaud Gloppe
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Aymen Mahmoudi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Abdelkarim Ouerghi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Bernard Doudin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 cedex 05 Paris, France
| | - Bohdan Kundys
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Jean-Francois Dayen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 cedex 05 Paris, France
| |
Collapse
|
2
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
3
|
Abiram G, Thanihaichelvan M, Ravirajan P, Velauthapillai D. Review on Perovskite Semiconductor Field-Effect Transistors and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2396. [PMID: 35889621 PMCID: PMC9322712 DOI: 10.3390/nano12142396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022]
Abstract
Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. This review focuses on the previous works on perovskite FETs which are summarized into tables based on their structures and electrical properties. Further, this review focuses on the applications of perovskite FETs in photodetectors, phototransistors, light emitting FETs and memory devices. Moreover, this review highlights the challenges faced by the perovskite FETs to meet the current standards along with the future directions of these FETs. Overall, the review summarizes all the available information on existing perovskite FET works and their applications reported so far.
Collapse
Affiliation(s)
- Gnanasampanthan Abiram
- Department of Physics, University of Jaffna, Jaffna 40 000, Sri Lanka; (G.A.); (P.R.)
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| | | | | | - Dhayalan Velauthapillai
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| |
Collapse
|
4
|
Dang TH, Vasanelli A, Todorov Y, Sirtori C, Prado Y, Chu A, Gréboval C, Khalili A, Cruguel H, Delerue C, Vincent G, Lhuillier E. Bias Tunable Spectral Response of Nanocrystal Array in a Plasmonic Cavity. NANO LETTERS 2021; 21:6671-6677. [PMID: 34339191 DOI: 10.1021/acs.nanolett.1c02193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocrystals (NCs) have gained considerable attention for their broadly tunable absorption from the UV to the THz range. Nevertheless, their optical features suffer from a lack of tunability once integrated into optoelectronic devices. Here, we show that bias tunable aspectral response is obtained by coupling a HgTe NC array with a plasmonic resonator. Up to 15 meV blueshift can be achieved from a 3 μm absorbing wavelength structure under a 3 V bias voltage when the NC exciton is coupled with a mode of the resonator. We demonstrate that the blueshift arises from the interplay between hopping transport and inhomogeneous absorption due to the presence of the photonic structure. The observed tunable spectral response is qualitatively reproduced in simulation by introducing a bias-dependent diffusion length in the charge transport. This work expands the realm of existing NC-based devices and paves the way toward light modulators.
Collapse
Affiliation(s)
- Tung Huu Dang
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Angela Vasanelli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Yanko Todorov
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Carlo Sirtori
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Audrey Chu
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- ONERA - The French Aerospace Lab, 6, chemin de la Vauve aux Granges, BP 80100, 91123 Palaiseau, France
| | - Charlie Gréboval
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Adrien Khalili
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Herve Cruguel
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Christophe Delerue
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN, F-59000 Lille, France
| | - Gregory Vincent
- ONERA - The French Aerospace Lab, 6, chemin de la Vauve aux Granges, BP 80100, 91123 Palaiseau, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| |
Collapse
|
5
|
Dayen JF, Konstantinov N, Palluel M, Daro N, Kundys B, Soliman M, Chastanet G, Doudin B. Room temperature optoelectronic devices operating with spin crossover nanoparticles. MATERIALS HORIZONS 2021; 8:2310-2315. [PMID: 34846435 DOI: 10.1039/d1mh00703c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular systems can exhibit multi-stimuli switching of their properties, with spin crossover materials having unique magnetic transition triggered by temperature and light, among others. Light-induced room temperature operation is however elusive, as optical changes between metastable spin states require cryogenic temperatures. Furthermore, electrical detection is hampered by the intrinsic low conductivity properties of these materials. We show here how a graphene underlayer reveals the light-induced heating that triggers a spin transition, paving the way for using these molecules for room temperature optoelectronic applications.
Collapse
Affiliation(s)
- Jean-Francois Dayen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg, 67034, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gréboval C, Chu A, Goubet N, Livache C, Ithurria S, Lhuillier E. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chem Rev 2021; 121:3627-3700. [DOI: 10.1021/acs.chemrev.0c01120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charlie Gréboval
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Audrey Chu
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Nicolas Goubet
- CNRS, Laboratoire de la Molécule aux Nano-objets; Réactivité, Interactions et Spectroscopies, MONARIS, Sorbonne Université, 4 Place Jussieu, Case Courier 840, F-75005 Paris, France
| | - Clément Livache
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d’Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
7
|
Chakraborty R, Nag A. Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. Phys Chem Chem Phys 2021; 23:82-93. [PMID: 33325476 DOI: 10.1039/d0cp04682e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two dimensional (2D) layered hybrid lead halide perovskites are a fascinating class of semiconductors displaying a plethora of interesting optoelectronic properties with potential for application in solar cells, light emitting diodes, etc. Most of these properties can be linked to their repeating quantum well-like structures providing 2D excitons. In this perspective, we discuss how dielectric confinement of excitons originates in these layered hybrid perovskites, and then, how it can be used to tune the excitonic properties. In particular, we discuss the recent theoretical and experimental advances correlating dielectric confinement with chemical composition, excitonic binding energy, and optoelectronic property. The freedom from the restrictions of the Goldsmith tolerance factor allows the synthesis of hundreds of compositions of 2D layered hybrid perovskites by independently varying the organic and inorganic layers. We envisage that the combination of this compositional flexibility with the concepts of dielectric confinement discussed in this perspective would be a path forward for designing novel optoelectronic materials.
Collapse
Affiliation(s)
- Rayan Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India.
| | | |
Collapse
|