1
|
Lee H, Im H, Choi BK, Park K, Chen Y, Ruan W, Zhong Y, Lee JE, Ryu H, Crommie MF, Shen ZX, Hwang C, Mo SK, Hwang J. Controlling structure and interfacial interaction of monolayer TaSe 2 on bilayer graphene. NANO CONVERGENCE 2024; 11:14. [PMID: 38622355 PMCID: PMC11018566 DOI: 10.1186/s40580-024-00422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Tunability of interfacial effects between two-dimensional (2D) crystals is crucial not only for understanding the intrinsic properties of each system, but also for designing electronic devices based on ultra-thin heterostructures. A prerequisite of such heterostructure engineering is the availability of 2D crystals with different degrees of interfacial interactions. In this work, we report a controlled epitaxial growth of monolayer TaSe2 with different structural phases, 1H and 1 T, on a bilayer graphene (BLG) substrate using molecular beam epitaxy, and its impact on the electronic properties of the heterostructures using angle-resolved photoemission spectroscopy. 1H-TaSe2 exhibits significant charge transfer and band hybridization at the interface, whereas 1 T-TaSe2 shows weak interactions with the substrate. The distinct interfacial interactions are attributed to the dual effects from the differences of the work functions as well as the relative interlayer distance between TaSe2 films and BLG substrate. The method demonstrated here provides a viable route towards interface engineering in a variety of transition-metal dichalcogenides that can be applied to future nano-devices with designed electronic properties.
Collapse
Affiliation(s)
- Hyobeom Lee
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, South Korea
| | - Hayoon Im
- Department of Physics, Pusan National University, Busan, South Korea
| | - Byoung Ki Choi
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kyoungree Park
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, South Korea
| | - Yi Chen
- Department of Physics, University of California, Berkeley, CA, USA
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Wei Ruan
- Department of Physics, University of California, Berkeley, CA, USA
- State Key Laboratory of Surface Physics, New Cornerstone Science Laboratory, and Department of Physics, Fudan University, Shanghai, China
| | - Yong Zhong
- Geballe Laboratory for Advanced Materials, Department of Physics and Applied Physics, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ji-Eun Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Max Planck POSTECH Center for Complex Phase Materials, Pohang University of Science and Technology, Pohang, South Korea
| | - Hyejin Ryu
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Department of Physics and Applied Physics, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Choongyu Hwang
- Department of Physics, Pusan National University, Busan, South Korea.
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jinwoong Hwang
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
2
|
Nakamura T, Sugihara H, Chen Y, Yukawa R, Ohtsubo Y, Tanaka K, Kitamura M, Kumigashira H, Kimura SI. Two-dimensional heavy fermion in a monoatomic-layer Kondo lattice YbCu 2. Nat Commun 2023; 14:7850. [PMID: 38040781 PMCID: PMC10692116 DOI: 10.1038/s41467-023-43662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
The Kondo effect between localized f-electrons and conductive carriers leads to exotic physical phenomena. Among them, heavy-fermion (HF) systems, in which massive effective carriers appear due to the Kondo effect, have fascinated many researchers. Dimensionality is also an important characteristic of the HF system, especially because it is strongly related to quantum criticality. However, the realization of the perfect two-dimensional (2D) HF materials is still a challenging topic. Here, we report the surface electronic structure of the monoatomic-layer Kondo lattice YbCu2 on a Cu(111) surface observed by synchrotron-based angle-resolved photoemission spectroscopy. The 2D conducting band and the Yb 4f state, located very close to the Fermi level, are observed. These bands are hybridized at low-temperature, forming the 2D HF state, with an evaluated coherence temperature of about 30 K. The effective mass of the 2D state is enhanced by a factor of 100 by the development of the HF state. Furthermore, clear evidence of the hybridization gap formation in the temperature dependence of the Kondo-resonance peak has been observed below the coherence temperature. Our study provides a new candidate as an ideal 2D HF material for understanding the Kondo effect at low dimensions.
Collapse
Affiliation(s)
- Takuto Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
| | - Hiroki Sugihara
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yitong Chen
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Ryu Yukawa
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshiyuki Ohtsubo
- National Institutes for Quantum Science and Technology, Sendai, 980-8579, Japan
| | | | - Miho Kitamura
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, 305-0801, Japan
| | - Hiroshi Kumigashira
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ichi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
- Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|