1
|
Zhang Y, Chen J, Yu R, Liu S, Qin Y. High-Performance Piezotronic Devices. ACS NANO 2025; 19:6705-6728. [PMID: 39928960 DOI: 10.1021/acsnano.4c16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
The interface phenomena and regulation mechanisms of semiconductor devices are crucial for their applications in the fields of electronics and optoelectronics. The piezotronic effect utilizes the strain-induced piezoelectric polarization at interfaces to regulate the interface energy band and carrier transport, so that the response current of the piezotronic device can change exponentially with small changes of stress/strain, showing high sensitivity. In recent years, in-depth studies of piezotronic effect regarding material, structure, and interface have largely enhanced the piezotronic device's performance; these investigations can also provide guidance for emerging interface engineering by polarizations like the flexotronic effect. This paper reviews the establishment and development of piezotronics and focuses on the latest research achievements in the field regarding material modification, structural design, and interface engineering, so as to provide guidance for the investigation and development of high-performance piezotronic devices. In the end, the paper points out the current challenges of piezotronic devices in practical applications and gives some outlooks for future development in this field.
Collapse
Affiliation(s)
- Yongkang Zhang
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinwan Chen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Runze Yu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Qin
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Choi YJ, Lee JJ, Park JS, Kang H, Kim M, Kim J, Okada D, Kim DH, Araoka F, Choi SW. Circularly Polarized Light Emission from Nonchiral Perovskites Incorporated into Nanoporous Cholesteric Polymer Templates. ACS NANO 2024; 18:909-918. [PMID: 37991339 DOI: 10.1021/acsnano.3c09596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Chiral perovskites have garnered significant attention, owing to their chiroptical properties and emerging applications. Current fabrication methods often involve complex chemical synthesis routes. Herein, an alternative approach for introducing chirality into nonchiral hybrid organic-inorganic perovskites (HOIPs) using nanotemplates composed of cholesteric polymeric networks is proposed. This method eliminates the need for additional molecular design. In this process, HOIP precursors are incorporated into a porous cholesteric polymer film, and two-dimensional (2D) HOIPs grow inside the nanopores. Circularly polarized light emission (CPLE) was observed even though the selective reflection band of the cholesteric polymer films containing a representative HOIP deviated from the emission wavelength of the 2D HOIP. This effect was confirmed by the induced circular dichroism (CD) observed in the absorbance band of the HOIP. The observed CPLE and CD are attributed to the chirality induced by the template in the originally nonchiral 2D HOIP. Additionally, the developed 2D HOIP exhibited a long exciton lifetime and good stability under harsh conditions. These findings provide valuable insights into the development and design of innovative optoelectronic materials.
Collapse
Affiliation(s)
- Yong-Jun Choi
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Jae-Jin Lee
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Jun-Sung Park
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Haeun Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minju Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Daichi Okada
- Physicochemical Soft Matter Research Unit, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Fumito Araoka
- Physicochemical Soft Matter Research Unit, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Suk-Won Choi
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
3
|
Hu G, Huang F, Liu JF. Piezoelectric manipulation of spin-orbit coupling in a Wurtzite heterostructure. Phys Chem Chem Phys 2023; 25:23001-23011. [PMID: 37594500 DOI: 10.1039/d3cp02902f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The combination of piezoelectricity and spin-orbit coupling (SOC) effect makes wurtzite semiconductors attractive for the development of exotic spin-related physics as well as spintronic applications. Triggering piezoelectricity, particularly by an external stimulus, provides a new perspective for manipulating SOC, but until now, a comprehensive understanding of this mechanism is lacking. Herein, by means of self-consistent calculations and Löwdin perturbation approach, we have explored the manipulation of SOC in the wurtzite (Al, Ga)N/GaN heterostructure by external stress-induced piezoelectric polarization. The results suggest that the Rashba SOC depends weakly on stress due to the wide-gap feature of the wurtzite crystal that makes Rashba SOC predominant by a bulk term instead of the structural inversion term. The piezoelectric polarization diminishes and even turns off Dresselhaus coupling by reducing the interfacial electric field. Moreover, piezoelectricity is shown to improve the poorly gate-tunable SOC. In the heterostructure with two occupied subbands, the Dresselhaus coupling of the second subband is more sensitive than the first one in response to stress. As an extension, we further demonstrate that the correlation effect in the wurtzite heterostructure can be significantly enhanced by piezoelectric polarization. This study offers an in-depth insight into piezoelectric modulation of spin-orbit physics, which has the potential for stimulating new quantum correlation states or designing functional spintronic devices.
Collapse
Affiliation(s)
- Gongwei Hu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| | - Fobao Huang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun-Feng Liu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Khan AA, Rana MM, Wang S, Fattah MFA, Kayaharman M, Zhang K, Benedict S, Goldthorpe IA, Zhou YN, Sargent EH, Ban D. Control of Halogen Atom in Inorganic Metal-Halide Perovskites Enables Large Piezoelectricity for Electromechanical Energy Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303366. [PMID: 37183275 DOI: 10.1002/smll.202303366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Regulating the strain of inorganic perovskites has emerged as a critical approach to control their electronic and optical properties. Here, an alternative strategy to further control the piezoelectric properties by substituting the halogen atom (I/Br) in the CsPbX3 perovskite (X = Cl, Br) structure is adopted. A series of piezoelectric materials with excellent piezoelectric coefficients (d33 ) are unveiled. Iodine-incorporated CsPbBr2 I demonstrates the record intrinsic piezoelectric response (d33 ≈47 pC N-1 ) among all inorganic metal halide perovskites. This leads to an excellent electrical output power of ≈ 0.375 mW (24.8 µW cm-2 N-1 ) in the piezoelectric energy generator (PEG) which is higher than those of the pristine/mixed perovskite references with CsPbX3 (X = I, Br, Cl). With its structural phase remaining unchanged, the strained CsPbBr2 I retains its superior piezoelectricity in both thin film and nanocrystal powder forms, further demonstrating its repeatability and versatility of applications. The origin of high piezoelectricity is found to be due to halogen-induced anisotropic lattice strain in the unit-cell along the c-axis, and octahedral distortion. This study reveals an avenue to design new piezoelectric materials by modifying their halide constituents and paves the way to design efficient PEGs for improved electromechanical energy conversion.
Collapse
Affiliation(s)
- Asif Abdullah Khan
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Md Masud Rana
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Md Fahim Al Fattah
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Muhammed Kayaharman
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Kaiping Zhang
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Shawn Benedict
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - I A Goldthorpe
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Y Norman Zhou
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Dayan Ban
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- School of Physics and Electronics, Henan University, No. 1 Jinming street, Kaifeng, Henan, 475001, P. R. China
| |
Collapse
|
5
|
Zhang X, Liu X, Li L, Ji C, Yao Y, Luo J. Great Amplification of Circular Polarization Sensitivity via Heterostructure Engineering of a Chiral Two-Dimensional Hybrid Perovskite Crystal with a Three-Dimensional MAPbI 3 Crystal. ACS CENTRAL SCIENCE 2021; 7:1261-1268. [PMID: 34345674 PMCID: PMC8323243 DOI: 10.1021/acscentsci.1c00649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 05/04/2023]
Abstract
Chiral hybrid perovskites have brought an unprecedented opportunity for circularly polarized light (CPL) detection. However, the circular polarization sensitivity of such a detector remains extremely low because of the high exciton recombination rate in those single-phase hybrid perovskites. Here, a heterostructure construction strategy is proposed to reduce the electron-hole recombination rate in a chiral hybrid perovskite and achieve CPL detectors with greatly amplified circular polarization sensitivity. A heterostructure crystal, namely, [(R)-MPA]2MAPb2I7/MAPbI3 ((R)-MPA = (R)-methylphenethylamine, MA = methylammonium), has been successfully created by integrating a chiral two-dimensional (2D) perovskite with its three-dimensional counterpart via solution-processed heteroepitaxy. Strikingly, the sharp interface of the as-grown heterostructure crystal facilitates the formation of a built-in electric field, enabling the combined concepts of charge transfer and chirality transfer, which effectively reduces the recombination probability for photogenerated carriers while retaining chiroptical activity of chiral 2D perovskite. Thereby, the resultant CPL detector exhibits significantly amplified circular polarization sensitivity at zero bias with an impressive anisotropy factor up to 0.67, which is about six times higher than that of the single-phase [(R)-MPA]2MAPb2I7 (0.1). As a proof-of-concept, the strategy we presented here enables a novel path to modulate circular polarization sensitivity and will be helpful to design chiral hybrid perovskites for advanced chiroptical devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xitao Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Lina Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Chengmin Ji
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yunpeng Yao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- School
of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Polarization-Sensitive Light Sensors Based on a Bulk Perovskite MAPbBr 3 Single Crystal. MATERIALS 2021; 14:ma14051238. [PMID: 33807942 PMCID: PMC7961534 DOI: 10.3390/ma14051238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
Organic-inorganic halide perovskites have attracted much attention thanks to their excellent optoelectronic performances. Here, a bulk CH3NH3PbBr3 (MAPbBr3) single crystal (SC) was fabricated, whose temperature and light polarization dependence was investigated by measuring photoluminescence. The presence of obvious band tail states was unveiled when the applied temperature was reduced from room temperature to 78 K. Temperature dependence of the bandgap of the MAPbBr3 SC was found to be abnormal compared with those of traditional semiconductors due to the presence of instabilization of out-of-phase tail states. The MAPbBr3 SC revealed an anisotropy light absorption for linearly polarized light with an anisotropy ratio of 1.45, and a circular dichroism ratio of up to 9% was discovered due to the spin-orbit coupling in the band tail states, exhibiting great polarization sensitivity of the MAPbBr3 SC for the application of light sensors. These key findings shed light on the development of potential optoelectronic and spintronic applications based on large-scaled organic-inorganic perovskite SCs.
Collapse
|