1
|
Han P, Wu L, Zhang Y, Yue J, Jin Y, Jia H, Luo W. An Interstitial Boron Inserted Metastable Hexagonal Rh Nanocrystal for Efficient Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202419320. [PMID: 39578235 DOI: 10.1002/anie.202419320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Constructing metastable phase structure plays an important role in changing the physicochemical properties and improving the catalytic performance of nanocrystals. Unfortunately, the synthesis of metastable phase metallic nanocrystals is highly challenging, mainly due to the thermodynamically unstable ground-state. Here, we report a synthesis of unconventional metastable hexagonal rhodium nanocrystal (Bint-Rhhcp/C) via interstitial boron insertion. The insertion of boron atoms into the interstitial sites of cubic Rh lattice not only induces the atomic arrangements from face-centered cubic (fcc) to hexagonal close-packed (hcp), but also stabilizes the metastable hexagonal Rh structure. Benefiting from the phase transition and interstitial boron doping, the Bint-Rhhcp/C catalyst exhibits remarkable catalytic performance toward hydrogen oxidation reaction (HOR) under alkaline media, with a mass activity of 1.413 mA μgPGM -1. Experimental measurements including in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations indicate that the strengthened adsorption of hydroxyl species on the electrode surface of Bint-Rhhcp/C is responsible for the reconstruction of interfacial water structure and increased water proportions in the gap region in the electric double layers. As a result, the increased water connectivity and hydrogen bond network facilitate high-efficiency hydrogen transfer across the interface, thereby boost the alkaline HOR performance.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
2
|
Kusada K, Kitagawa H. Phase Control in Monometallic and Alloy Nanomaterials. Chem Rev 2025; 125:599-659. [PMID: 39751381 DOI: 10.1021/acs.chemrev.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials. Then, phase control in monometallic nanomaterials with respect to each element and alloy nanomaterials classified into three types based on their crystal structures is discussed. In the end, all the content introduced in this review is summarized, and challenges for advanced phase control are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Yu J, Xiao J, Guo L, Xie Z, Wang K, Wang Y, Hao F, Ma Y, Zhou J, Lu P, Wang G, Meng X, Zhu Z, Li Q, Ling C, Sun J, Wang Y, Song S, Fan Z. In Situ Phase Transformation-Enabled Metal-Organic Frameworks for Efficient CO 2 Electroreduction to Multicarbon Products in Strong Acidic Media. ACS NANO 2024; 18:33602-33613. [PMID: 39574319 DOI: 10.1021/acsnano.4c12245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been acknowledged as a promising strategy to relieve carbon emissions by converting CO2 to essential chemicals. Despite significant progresses that have been made in neutral and alkaline media, the implementation of CO2RR in acidic conditions remains challenging due to the harsh conditions, especially in producing high-value multicarbon products. Here, we report that Cu-btca (btca = benzotriazole-5-carboxylic acid) metal-organic framework (MOF) nanostructures can act as a stable catalyst for the CO2RR in an acidic environment. The Cu-btca MOF undergoes phase transformation and morphology evolution during electrolysis, forming a stable porous Cu-btca MOF network. The resultant MOF network exhibits excellent selectivity toward ethylene and multicarbon products with Faradaic efficiencies of 51.2% and 81.9%, respectively, in a strong acidic electrolyte with a flow cell at 300 mA/cm2. Mechanism studies uncover that the Cu-btca MOF network can limit the proton reduction to suppress hydrogen evolution and maintain high local *CO concentration to promote CO2RR. Theoretical calculations suggest that two adjacent Cu sites in the Cu-btca MOF provide a favorable microenvironment for carbon-carbon coupling, facilitating the multicarbon production. This work reveals that rational structure control of MOFs can enable highly selective and efficient CO2 electroreduction to multicarbon products in strong acidic conditions toward practical applications.
Collapse
Affiliation(s)
- Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Juan Xiao
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Zezhong Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jingying Sun
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuqin Song
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Xiong Y, Wang Y, Sun M, Chen J, Zhou J, Hao F, Liu F, Lu P, Meng X, Guo L, Liu Y, Xi S, Zhang Q, Huang B, Fan Z. Regulating the Electrochemical Nitrate Reduction Performance with Controllable Distribution of Unconventional Phase Copper on Alloy Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407889. [PMID: 39240011 DOI: 10.1002/adma.202407889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is emerging as a promising strategy for nitrate removal and ammonia (NH3) production using renewable electricity. Although great progresses have been achieved, the crystal phase effect of electrocatalysts on NO3RR remains rarely explored. Here, the epitaxial growth of unconventional 2H Cu on hexagonal close-packed (hcp) IrNi template, resulting in the formation of three IrNiCu@Cu nanostructures, is reported. IrNiCu@Cu-20 shows superior catalytic performance, with NH3 Faradaic efficiency (FE) of 86% at -0.1 (vs reversible hydrogen electrode [RHE]) and NH3 yield rate of 687.3 mmol gCu -1 h-1, far better than common face-centered cubic Cu. In sharp contrast, IrNiCu@Cu-30 and IrNiCu@Cu-50 covered by hcp Cu shell display high selectivity toward nitrite (NO2 -), with NO2 - FE above 60% at 0.1 (vs RHE). Theoretical calculations have demonstrated that the IrNiCu@Cu-20 has the optimal electronic structures for NO3RR due to the highest d-band center and strongest reaction trend with the lowest energy barriers. The high electroactivity of IrNiCu@Cu-20 originates from the abundant low coordination of Cu sites on the surface, which guarantees the fast electron transfer to accelerate the intermediate conversions. This work provides a feasible tactic to regulate the product distribution of NO3RR by crystal phase engineering of electrocatalysts.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Chen
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yuqian Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
5
|
Kim JH, Kwon H, Jeong M, Bang J. Heterostructure seed-mediated synthesis of zinc phosphide quantum dots for bright band-edge emission. NANOSCALE 2024; 16:17984-17991. [PMID: 39246266 DOI: 10.1039/d4nr02524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
This study explores the synthesis of colloidal zinc phosphide quantum dots (QDs) by a novel In(Zn)P cluster seed-mediated approach, addressing the challenge of achieving low-cost, high-quality, nontoxic QDs suitable for optoelectronic applications. By intentionally limiting the amount of In precursor added to a hot solvent containing Zn and P precursors, In-rich In(Zn)P cluster seeds were formed. Subsequently, these clusters served as seeds for the growth of zinc phosphide nanocrystals, effectively using the remaining Zn and P precursors for further crystal growth. The synthesized QDs exhibited a tetragonal-like Zn3P2 structure and exceptional optical properties, including band-edge photoluminescence (PL) emission under ambient conditions. A ZnS shell was applied to further enhance the PL intensity, achieving a PL quantum yield of 40% and an average PL decay lifetime of 74 ns, while significantly improving the stability of the QDs. Temperature-dependent PL spectroscopy revealed significant resistance to thermal quenching with an exciton dissociation energy of 62 meV, underscoring the potential of this approach for advancing the field of optoelectronics. This method provides a pathway to fabricate zinc phosphide-based QDs with controlled optical properties and highlights the effective use of earth-abundant materials in the development of environmentally benign photonic materials.
Collapse
Affiliation(s)
- Ju Ho Kim
- Department of chemistry, Incheon National University Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Hyekyeong Kwon
- Department of chemistry, Incheon National University Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Myoungho Jeong
- Samsung Future Technology Campus, 130 Samsung-ro, Yeongtong-gu, Suwon, Korea Republic
| | - Jiwon Bang
- Department of chemistry, Incheon National University Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
6
|
Ma Y, Sun M, Xu H, Zhang Q, Lv J, Guo W, Hao F, Cui W, Wang Y, Yin J, Wen H, Lu P, Wang G, Zhou J, Yu J, Ye C, Gan L, Zhang D, Chu S, Gu L, Shao M, Huang B, Fan Z. Site-Selective Growth of fcc-2H-fcc Copper on Unconventional Phase Metal Nanomaterials for Highly Efficient Tandem CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402979. [PMID: 38811011 DOI: 10.1002/adma.202402979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.
Collapse
Affiliation(s)
- Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hongming Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia Lv
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Weihua Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wenting Cui
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Haiyu Wen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Lin Gan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
7
|
Huang J, Zhang X, Yang J, Yu J, Chen Q, Peng L. Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO 2 Electrocatalysis: Unlocking the Mystery of Product Selectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309865. [PMID: 38634577 PMCID: PMC11199994 DOI: 10.1002/advs.202309865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.
Collapse
Affiliation(s)
- Jiabao Huang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xinping Zhang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Jiao Yang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
8
|
Zhou X, Mukoyoshi M, Kusada K, Yamamoto T, Toriyama T, Murakami Y, Kitagawa H. Phase control of solid-solution RuIn nanoparticles and their catalytic properties. NANOSCALE 2024. [PMID: 38655766 DOI: 10.1039/d4nr00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The properties of solids could be largely affected by their crystal structures. We achieved, for the first time, the phase control of solid-solution RuIn nanoparticles (NPs) from face-centred cubic (fcc) to hexagonal close-packed (hcp) crystal structures by hydrogen heat treatment. The effect of the crystal structure of RuIn alloy NPs on the catalytic performance in the hydrogen evolution reaction (HER) was also investigated. In the hcp RuIn NPs, enhanced HER catalytic performance was observed compared to the fcc RuIn NPs and monometallic Ru NPs. The intrinsic electronic structures of the NPs were investigated by valence-band X-ray photoelectron spectroscopy (VB-XPS). The d-band centre of hcp RuIn NPs obtained from VB-XPS was deeper than that of fcc RuIn NPs and monometallic Ru NPs, which is considered to enable the hcp RuIn NPs to exhibit enhanced HER catalytic performance.
Collapse
Affiliation(s)
- Xin Zhou
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Megumi Mukoyoshi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yasukazu Murakami
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Wang J, Ye J, Chen S, Zhang Q. Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules 2024; 29:1617. [PMID: 38611896 PMCID: PMC11013576 DOI: 10.3390/molecules29071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 04/14/2024] Open
Abstract
The crystal phase, alongside the composition, morphology, architecture, facet, size, and dimensionality, has been recognized as a critical factor influencing the properties of noble metal nanomaterials in various applications. In particular, unconventional crystal phases can potentially enable fascinating properties in noble metal nanomaterials. Recent years have witnessed notable advances in the phase engineering of nanomaterials (PEN). Within the accessible strategies for phase engineering, the effect of strain cannot be ignored because strain can act not only as the driving force of phase transition but also as the origin of the diverse physicochemical properties of the unconventional crystal phase. In this review, we highlight the development of unconventional crystal-phase noble metal nanomaterials within strain engineering. We begin with a short introduction of the unconventional crystal phase and strain effect in noble metal nanomaterials. Next, the correlations of the structure and performance of strain-engineered unconventional crystal-phase noble metal nanomaterials in electrocatalysis are highlighted, as well as the phase transitions of noble metal nanomaterials induced by the strain effect. Lastly, the challenges and opportunities within this rapidly developing field (i.e., the strain engineering of unconventional crystal-phase noble metal nanocatalysts) are discussed.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | | | | | - Qinyong Zhang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
10
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
12
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Intermetallic Nanocrystals: Seed-Mediated Synthesis and Applications in Electrocatalytic Reduction Reactions. Chemistry 2022; 28:e202202221. [PMID: 36066483 DOI: 10.1002/chem.202202221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 12/14/2022]
Abstract
In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Shilong Jiao
- Department School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, Henan, 475001, P.R. China
| | - Xiuying Ya
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huiling Zheng
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Ran Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Jiao Yu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huanyu Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Zhilin Zhang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Congxiao He
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| |
Collapse
|
14
|
Zhang C, Zhang W, Karadas F, Low J, Long R, Liang C, Wang J, Li Z, Xiong Y. Laser-ablation assisted strain engineering of gold nanoparticles for selective electrochemical CO 2 reduction. NANOSCALE 2022; 14:7702-7710. [PMID: 35551317 DOI: 10.1039/d2nr01400a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain engineering can endow versatile functions, such as refining d-band center and inducing lattice mismatch, on catalysts for a specific reaction. To this end, effective strain engineering for introducing strain on the catalyst is highly sought in various catalytic applications. Herein, a facile laser ablation in liquid (LAL) strategy is adopted to synthesize gold nanoparticles (Au NPs) with rich compressive strain (Au-LAL) for electrochemical CO2 reduction. It is demonstrated that the rich compressive strain can greatly promote the electrochemical CO2 reduction performance of Au, achieving a CO partial current density of 24.9 mA cm-2 and a maximum CO faradaic efficiency of 97% at -0.9 V for Au-LAL, while it is only 2.77 mA cm-2 and 16.2% for regular Au nanoparticles (Au-A). As revealed by the in situ Raman characterization and density functional theory calculations, the presence of compressive strain can induce a unique electronic structure change in Au NPs, significantly up-shifting the d-band center of Au. Such a phenomenon can greatly enhance the adsorption strength of Au NPs toward the key intermediate of CO2 reduction (i.e., *COOH). More interestingly, we demonstrate that, an important industrial chemical feedstock, syngas, can be obtained by simply mixing Au-LAL with Au-A in a suitable ratio. This work provides a promising method for introducing strain in metal NPs and demonstrates the important role of strain in tuning the performance and selectivity of catalysts.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Wei Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ferdi Karadas
- National Nanotechnology Research Center, and Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
15
|
Tao Z, Pearce AJ, Mayer JM, Wang H. Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO 2 Reduction. J Am Chem Soc 2022; 144:8641-8648. [PMID: 35507510 PMCID: PMC9158392 DOI: 10.1021/jacs.2c01098] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prior in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) studies of electrochemical CO2 reduction catalyzed by Au, one of the most selective and active electrocatalysts to produce CO from CO2, suggest that the reaction proceeds solely on the top sites of the Au surface. This finding is worth updating with an improved spectroelectrochemical system where in situ IR measurements can be performed under real reaction conditions that yield high CO selectivity. Herein, we report the preparation of an Au-coated Si ATR crystal electrode with both high catalytic activity for CO2 reduction and strong surface enhancement of IR signals validated in the same spectroelectrochemical cell, which allows us to probe the adsorption and desorption behavior of bridge-bonded *CO species (*COB). We find that the Au surface restructures irreversibly to give an increased number of bridge sites for CO adsorption within the initial tens of seconds of CO2 reduction. By studying the potential-dependent desorption kinetics of *COB and quantifying the steady-state surface concentration of *COB under reaction conditions, we further show that *COB are active reaction intermediates for CO2 reduction to CO on this Au electrode. At medium overpotential, as high as 38% of the reaction occurs on the bridge sites.
Collapse
Affiliation(s)
- Zixu Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Adam J Pearce
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
16
|
He C, Wang S, Jiang X, Hu Q, Yang H, He C. Bimetallic Cobalt–Copper Nanoparticle-Decorated Hollow Carbon Nanofibers for Efficient CO2 Electroreduction. Front Chem 2022; 10:904241. [PMID: 35572101 PMCID: PMC9099375 DOI: 10.3389/fchem.2022.904241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Bimetallic materials are one of the most promising catalysts for the electrochemical reduction of CO2, but there are still many challenges to be overcome on the route to industrialization. Herein, a series of carbon nanofiber-supported bimetallic cobalt–copper catalysts (CoxCuy/CFs) are designed and constructed through the electrospinning technique and a subsequent pyrolysis procedure. Small-sized Co–Cu nanoparticles are homogenously distributed on the porous carbon nanofibers, which can significantly improve the utilization rate of metal sites and greatly reduce the loading amount of metals. Moreover, different product distributions and catalytic performance can be obtained in CO2 reduction via adjusting the metal proportion of CoxCuy/CFs. Especially, Co3Cu/CFs can bring forth a 97% total faradaic efficiency (FE) of CO (68%) and HCOOH (29%) at –0.8 VRHE cathode potential in 0.5 M KHCO3 electrolyte. Furthermore, the hierarchical pores can firmly confine the small Co–Cu nanoparticles and keep them from easy agglomeration during electrolysis, eventually leading to 60 h of stability for Co3Cu/CFs in CO2 electroreduction. This study might provide a facile and economic method to fabricate efficient bimetallic catalysts for CO2 electroreduction and other electrocatalysis applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuanxin He
- *Correspondence: Hengpan Yang, ; Chuanxin He,
| |
Collapse
|
17
|
Kinetics‐Controlled Synthesis of {100}‐Facet‐Enclosed Gold Quasi‐Square Nanosheets with Curved Edges. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Chen J, Li Z, Wang X, Sang X, Zheng S, Liu S, Yang B, Zhang Q, Lei L, Dai L, Hou Y. Promoting CO
2
Electroreduction Kinetics on Atomically Dispersed Monovalent Zn
I
Sites by Rationally Engineering Proton‐Feeding Centers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiayi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University—Quzhou Quzhou 324000 China
| | - Xinyue Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Xiahan Sang
- Nanostructure Research Center Wuhan University of Technology Wuhan 430070 China
| | - Sixing Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Shoujie Liu
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University—Quzhou Quzhou 324000 China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University—Quzhou Quzhou 324000 China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University—Quzhou Quzhou 324000 China
| | - Liming Dai
- Australian Carbon Materials Centre(A-CMC) School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University—Quzhou Quzhou 324000 China
| |
Collapse
|
19
|
Classifying Intermetallic Tetragonal Phase of All-d-Metal Heusler Alloys for Catalysis Applications. Top Catal 2021. [DOI: 10.1007/s11244-021-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Chen J, Li Z, Wang X, Sang X, Zheng S, Liu S, Yang B, Zhang Q, Lei L, Dai L, Hou Y. Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent Zn(I) Sites by Rationally Engineering Proton-feeding Centers. Angew Chem Int Ed Engl 2021; 61:e202111683. [PMID: 34608726 DOI: 10.1002/anie.202111683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Indexed: 11/11/2022]
Abstract
Electrocatalytic reduction of CO2 (CO2RR) to value-added chemicals is of great significance for CO2 utilization. Due to the slow proton-feeding rates from sluggish water dissociation kinetics, however, the CO2RR process involving multi-electron and proton transfer is greatly limited by poor selectivity and low yield. Herein, we develop an atomically dispersed monovalent zinc anchored on nitrogenated carbon nanosheets (Zn/NC NSs) as an efficient catalyst for CO2RR. Benefiting from the unique coordination environment and atomic dispersion, the optimized Zn/NC NSs exhibits a superior CO2RR performance, featured by a high current density up to 50 mA cm-2 with an outstanding CO Faradaic efficiency of ~95%. The center Zn(I) atom coordinated with three N atoms and one N atom that bridge over two adjacent graphitic edge (Zn-N3+1) is identified as the catalytically active site by thorough structural characterizations. In-situ attenuated total reflectance infrared absorption spectroscopy results reveal that the twisted Zn-N3+1 structure accelerates the CO2 activation and protonation in the rate-determining step of *CO2 to *COOH on the rationally engineered proton-feeding centers, while theoretical calculations elucidate that atomically dispersed Zn-N3+1 moieties decrease the potential barriers for the intermediate COOH* formation, promoting the proton-coupled CO2RR kinetics and boosting the overall catalytic performance. A rechargeable Zn-CO2 battery based on the Zn/NC NS cathode delivers a maximal power density of 1.8 mW cm-2.
Collapse
Affiliation(s)
- Jiayi Chen
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310027, Hangzhou, CHINA
| | - Zhongjian Li
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310027, Hangzhou, CHINA
| | - Xinyue Wang
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310000, Hangzhou, CHINA
| | - Xiahan Sang
- Wuhan University of Technology, Nanostructure Research Center, 430070, Wuhan, CHINA
| | - Sixing Zheng
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310000, Hangzhou, CHINA
| | - Shoujie Liu
- Chemistry and Chemical Engineering Guangdong Laboratoty, Chemisty and Chemical Engineering Guangdong Laboratory, 515063, Shantou, CHINA
| | - Bin Yang
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310027, Hangzhou, CHINA
| | - Qinghua Zhang
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310027, Hangzhou, CHINA
| | - Lecheng Lei
- Zhejiang University, College of Chemical and Biological Engineering, ZheDa Road 38, 310027, Hangzhou, CHINA
| | - Liming Dai
- University of New South Wales, School of Chemical Engineering, NSW2052, Sydney, AUSTRALIA
| | - Yang Hou
- Zhejiang Univeristy, College of Chemical and Biological Engineering, 38, Zheda road, 310027, Hangzhou, CHINA
| |
Collapse
|
21
|
Yuan Y, Yang Z, Lai W, Gao L, Li M, Zhang J, Huang H. Intermetallic Compounds: Liquid-Phase Synthesis and Electrocatalytic Applications. Chemistry 2021; 27:16564-16580. [PMID: 34428332 DOI: 10.1002/chem.202102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Characterized by long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure, intermetallics have attracted increasing attention in the area of chemical synthesis and catalytic applications. Liquid-phase synthesis of intermetallics has arisen as the promising methodology due to its precise control over size, shape, and resistance toward sintering compared with the traditional metallurgy. This short review tends to provide perspectives on the liquid-phase synthesis of intermetallics in terms of both thermodynamics and methodology, as well as its applications in various catalytic reactions. Specifically, basic thermodynamics and kinetics in the synthesis of intermetallics will be first discussed, followed by discussing the main factors that will affect the formation of intermetallics during synthesis. The application of intermetallics in electrocatalysis will be demonstrated case by case at last. We conclude the review with perspectives on the future developments with respect to both synthesis and catalytic applications.
Collapse
Affiliation(s)
- Yuliang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhilong Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiawei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
22
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|