1
|
Guo X, Wang D, Guo Y, Zhang J, Li Y, Tian H, Liu L, Liang Y, Yin Y, He B, Hu L, Jiang G. Droplet-based bioprinting for the tailored fabrication of bacteria-laden living materials. Bioprocess Biosyst Eng 2025; 48:261-273. [PMID: 39576333 DOI: 10.1007/s00449-024-03106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/10/2024] [Indexed: 02/13/2025]
Abstract
Droplet-based bioprinting (DBB) allows for high precision, noncontact, and on-demand distribution of bioinks, hence it has been widely utilized in the preparation of bacteria-laden living materials (BLMs). Nonetheless, discontinuous ink deposition makes it challenging to fabricate large-sized intact living structures via this technique. Herein, we explore the way of using DBB to construct centimeter-scale BLMs with bespoke geometries, and further demonstrate its potential applicability in sensing-responsive device by integrating engineered bacteria. We first established a DBB method based on printing-path design, which does not require hardware modification. This strategy was able to produce customized 3D-hydrogel structures with high shape fidelity. Then, we confirmed the excellent biocompatibility of the above biofabrication approach. The Escherichia coli survived 93% ± 4.0% in printed BLMs, with uniform distribution throughout the structure. As a proof-of-concept, we finally manufactured a test strip-like heavy metal biosensor capable of plug-and-play detecting mercury (II) in water using the aforesaid approach. To our knowledge, this is the first study to employ 3D bioprinted BLMs for the detection of prevalent heavy metal pollutants. Our research shed light on the versatility of DBB in BLMs construction, which is not restricted to two-dimensional patterns. Moreover, our results are expected to innovate heavy metal biodetection and improve detection efficiency and sensitivity.
Collapse
Affiliation(s)
- Xudong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junpeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haozhong Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Xiao M, Lv S, Zhu C. Bacterial Patterning: A Promising Biofabrication Technique. ACS APPLIED BIO MATERIALS 2024; 7:8008-8018. [PMID: 38408887 DOI: 10.1021/acsabm.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacterial patterning has emerged as a pivotal biofabrication technique in the biomedical field. In the past 2 decades, a diverse array of bacterial patterning approaches have been developed to enable the precise manipulation of the spatial distribution of bacterial patterns for various applications. Despite the significance of these advancements, there is a deficiency of review articles providing an overview of bacterial patterning technologies. In this mini-review, we systematically summarize the progress of bacterial patterning over the past 2 decades. This review commences with an elucidation of the definition and fundamental principles of bacterial patterning. Subsequently, we introduce the established bacterial patterning strategies, accompanied by discussions about the advantages and limitations of each approach. Furthermore, we showcase the biomedical applications of these strategies, highlighting their efficacy in spatial control of biofilms, biosensing, and biointervention. Finally, this mini-review is concluded with a summary and an outlook on future challenges and opportunities. It is anticipated that this mini-review can serve as a concise guide for those who are interested in this exciting and rapidly evolving research area.
Collapse
Affiliation(s)
- Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
3
|
K Jang L, T Ahlquist J, Ye C, Trujillo J, Triplett M, L Moya M, Robertson C, Hynes W, M Wasson E. Rapid curing dynamics of PEG-thiol-ene resins allow facile 3D bioprinting and in-air cell-laden microgel fabrication. Biomed Mater 2024; 20:015009. [PMID: 39584565 DOI: 10.1088/1748-605x/ad8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024]
Abstract
Thiol-norbornene photoclick hydrogels are highly efficient in tissue engineering applications due to their fast gelation, cytocompatibility, and tunability. In this work, we utilized the advantageous features of polyethylene glycol (PEG)-thiol-ene resins to enable fabrication of complex and heterogeneous tissue scaffolds using 3D bioprinting and in-air drop encapsulation techniques. We demonstrated that photoclickable PEG-thiol-ene resins could be tuned by varying the ratio of PEG-dithiol to PEG norbornene to generate a wide range of mechanical stiffness (0.5-12 kPa) and swelling ratios. Importantly, all formulations maintained a constant, rapid gelation time (<0.5 s). We used this resin in biological projection microstereolithography (BioPµSL) to print complex structures with geometric fidelity and demonstrated biocompatibility by printing cell-laden microgrids. Moreover, the rapid gelling kinetics of this resin permitted high-throughput fabrication of tunable, cell-laden microgels in air using a biological in-air drop encapsulation apparatus (BioIDEA). We demonstrated that these microgels could support cell viability and be assembled into a gradient structure. This PEG-thiol-ene resin, along with BioPµSL and BioIDEA technology, will allow rapid fabrication of complex and heterogeneous tissues that mimic native tissues with cellular and mechanical gradients. The engineered tissue scaffolds with a controlled microscale porosity could be utilized in applications including gradient tissue engineering, biosensing, andin vitrotissue models.
Collapse
Affiliation(s)
- Lindy K Jang
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Jesse T Ahlquist
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Congwang Ye
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Juliana Trujillo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Michael Triplett
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| | - William Hynes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Elisa M Wasson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| |
Collapse
|
4
|
Byrne R, Carrico A, Lettieri M, Rajan AK, Forster RJ, Cumba LR. Bioinks and biofabrication techniques for biosensors development: A review. Mater Today Bio 2024; 28:101185. [PMID: 39205870 PMCID: PMC11350460 DOI: 10.1016/j.mtbio.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
3D bioprinting technologies and bioink development are enabling significant advances in miniaturized and integrated biosensors. For example, bioreceptors can be immobilized within a porous 3D structure to significantly amplify the signal, while biocompatible and mechanically flexible systems uniquely enable wearable chem- and bio-sensors. This advancement is accelerating translation by enabling the production of high performance, reproducible, and flexible analytical devices. The formulation of the bioink plays a crucial role in determining the bio-functionality of the resulting printed structures, e.g., the porosity that allows the analyte to diffuse through the 3D structure, the affinity and avidity of the receptors, etc. This review explores the next generation of advanced bioinks for biosensor development and provides insights into the latest cutting-edge bioprinting technologies. The bioprinting methods available for biosensor fabrication including inkjet, extrusion, and laser-based bioprinting, are discussed. The advantages and limitations of each method are analysed, and recent advancements in bioprinting technologies are presented. The review then delves into the properties of advanced bioinks, such as biocompatibility, printability, stability, and applicability. Different types of advanced bioinks are explored, including multicomponent, stimuli-responsive, and conductive bioinks. Finally, the next generation of bioinks for biosensors is considered, identifying possible new opportunities and challenges. Overall, this literature review highlights the combined importance of bioink formulation and bioprinting methods for the development of high-performance analytical biosensors.
Collapse
Affiliation(s)
- Róisín Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Amanda Carrico
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mariagrazia Lettieri
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Athira K. Rajan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert J. Forster
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Ireland
| | - Loanda R. Cumba
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
5
|
Pu X, Wu Y, Liu J, Wu B. 3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications. CHEM & BIO ENGINEERING 2024; 1:568-592. [PMID: 39974701 PMCID: PMC11835188 DOI: 10.1021/cbe.4c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 02/21/2025]
Abstract
Microorganisms, serving as super biological factories, play a crucial role in the production of desired substances and the remediation of environments. The emergence of 3D bioprinting provides a powerful tool for engineering microorganisms and polymers into living materials with delicate structures, paving the way for expanding functionalities and realizing extraordinary performance. Here, the current advancements in microbial-based 3D-printed living materials are comprehensively discussed from material perspectives, covering various 3D bioprinting techniques, types of microorganisms used, and the key parameters and selection criteria for polymer bioinks. Endeavors on the applications of 3D printed living materials in the fields of energy and environment are then emphasized. Finally, the remaining challenges and future trends in this burgeoning field are highlighted. We hope our perspective will inspire some interesting ideas and accelerate the exploration within this field to reach superior solutions for energy and environment challenges.
Collapse
Affiliation(s)
- Xingqun Pu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuqi Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Junqiu Liu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Baiheng Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
6
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
7
|
Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng 2024; 47:443-461. [PMID: 38296889 PMCID: PMC11003907 DOI: 10.1007/s00449-023-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
Collapse
Affiliation(s)
- Josha Herzog
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lea Franke
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Yingyao Lai
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Pablo Gomez Rossi
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Janina Sachtleben
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
8
|
Denton O, Wan Y, Beattie L, Jack T, McGoldrick P, McAllister H, Mullan C, Douglas CM, Shu W. Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel. Bioengineering (Basel) 2024; 11:202. [PMID: 38534476 DOI: 10.3390/bioengineering11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024] Open
Abstract
Acute recurrent tonsillitis is a chronic, biofilm-related infection that is a significant burden to patients and healthcare systems. It is often treated with repeated courses of antibiotics, which contributes to antimicrobial resistance. Studying biofilms is key to understanding this disease. In vitro modelling using 3D bioprinted hydrogels is a promising approach to achieve this. A novel gelatin-PEGDA pseudomonas fluorescens-laden bioink was developed and bioprinted in a 3D hydrogel construct fabricated using computer-aided design to mimic the tonsillar biofilm environment. The bioprinted constructs were cultured at 37 °C in lysogeny broth for 12 days. Bacterial growth was assessed by spectrophotometry. Cellular viability analysis was conducted using optical fluorescence microscopy (FDA/PI staining). A biocompatible 3D-printed bacteria-laden hydrogel construct was successfully fabricated. Bacterial growth was observed using optical fluorescence microscopy. A live/dead cellular-staining protocol demonstrated bacterial viability. Results obtained after the 12-day culture period showed higher bacterial growth in the 1% gelatin concentration construct compared to the 0% control. This study demonstrates the first use of a bacteria-laden gelatin-PEGDA hydrogel for biofabrication of a 3D-printed construct designed to model acute recurrent tonsillitis. Initiating a study with clinically relevant ex vivo tonsil bacteria will be an important next step in improving treatment of this impactful but understudied disease.
Collapse
Affiliation(s)
- Oliver Denton
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
- Department of Otolaryngology/ENT Surgery, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Department of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yifei Wan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Laura Beattie
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Téa Jack
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Preston McGoldrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Holly McAllister
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Cara Mullan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Catriona M Douglas
- Department of Otolaryngology/ENT Surgery, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Department of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| |
Collapse
|
9
|
Finny AS. 3D bioprinting in bioremediation: a comprehensive review of principles, applications, and future directions. PeerJ 2024; 12:e16897. [PMID: 38344299 PMCID: PMC10859081 DOI: 10.7717/peerj.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Bioremediation is experiencing a paradigm shift by integrating three-dimensional (3D) bioprinting. This transformative approach augments the precision and versatility of engineering with the functional capabilities of material science to create environmental restoration strategies. This comprehensive review elucidates the foundational principles of 3D bioprinting technology for bioremediation, its current applications in bioremediation, and the prospective avenues for future research and technological evolution, emphasizing the intersection of additive manufacturing, functionalized biosystems, and environmental remediation; this review delineates how 3D bioprinting can tailor bioremediation apparatus to maximize pollutant degradation and removal. Innovations in biofabrication have yielded bio-based and biodegradable materials conducive to microbial proliferation and pollutant sequestration, thereby addressing contamination and adhering to sustainability precepts. The review presents an in-depth analysis of the application of 3D bioprinted constructs in enhancing bioremediation efforts, exemplifying the synergy between biological systems and engineered solutions. Concurrently, the review critically addresses the inherent challenges of incorporating 3D bioprinted materials into diverse ecological settings, including assessing their environmental impact, durability, and integration into large-scale bioremediation projects. Future perspectives discussed encompass the exploration of novel biocompatible materials, the automation of bioremediation, and the convergence of 3D bioprinting with cutting-edge fields such as nanotechnology and other emerging fields. This article posits 3D bioprinting as a cornerstone of next-generation bioremediation practices, offering scalable, customizable, and potentially greener solutions for reclaiming contaminated environments. Through this review, stakeholders in environmental science, engineering, and technology are provided with a critical appraisal of the current state of 3D bioprinting in bioremediation and its potential to drive forward the efficacy of environmental management practices.
Collapse
Affiliation(s)
- Abraham Samuel Finny
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, United States
- Waters Corporation, Milford, Massachusetts, United States
| |
Collapse
|
10
|
Lazarus E, Meyer AS, Ikuma K, Rivero IV. Three dimensional printed biofilms: Fabrication, design and future biomedical and environmental applications. Microb Biotechnol 2024; 17:e14360. [PMID: 38041693 PMCID: PMC10832517 DOI: 10.1111/1751-7915.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 12/03/2023] Open
Abstract
Three dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in-depth understanding of the structure-function relationship between the complex construct and the microorganism response still exists. This review discusses 3D printing fabrication methods for engineered biofilms with specific structural features. Next, it highlights the importance of bioink compositions and 3D bioarchitecture design. Finally, a brief overview of current and potential applications of 3D printed biofilms in environmental and biomedical fields is discussed.
Collapse
Affiliation(s)
- Emily Lazarus
- Department Industrial and Systems EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
| | - Anne S. Meyer
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Kaoru Ikuma
- Department of Civil, Construction, and Environmental EngineeringIowa State UniversityAmesIowaUSA
| | - Iris V. Rivero
- Department Industrial and Systems EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
- Department of Biomedical EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
- Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
11
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Etter EL, Heavey MK, Errington M, Nguyen J. Microbe-loaded bioink designed to support therapeutic yeast growth. Biomater Sci 2023; 11:5262-5273. [PMID: 37341642 PMCID: PMC10529830 DOI: 10.1039/d3bm00514c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Live biotherapeutic products (LBPs) are an emerging class of therapeutics comprised of engineered living organisms such as bacteria or yeast. Bioprinting with living materials has now become possible using modern three-dimensional (3D) printing strategies. While there has been significant progress in bioprinting cells, bioprinting LBPs, specifically yeast, remains in its infancy and has not been optimized. Yeasts are a promising platform to develop into protein biofactories because they (1) grow rapidly, (2) are easy to engineer and manufacture, and (3) are inexpensive to produce. Here we developed an optimized method for loading yeast into hydrogel patches using digital light processing (DLP) 3D printing. We assessed the effects of patch geometry, bioink composition, and yeast concentration on yeast viability, patch stability, and protein release, and in doing so developed a patch formulation capable of supporting yeast growth and sustained protein release for at least ten days.
Collapse
Affiliation(s)
- Emma L Etter
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27599, USA, Raleigh, NC, 27695, USA.
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Errington
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juliane Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27599, USA, Raleigh, NC, 27695, USA.
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
15
|
Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Liu Y, Xia X, Liu Z, Dong M. The Next Frontier of 3D Bioprinting: Bioactive Materials Functionalized by Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205949. [PMID: 36549677 DOI: 10.1002/smll.202205949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
3D bioprinting has become a flexible technical means used in many fields. Currently, research on 3D bioprinting is mainly focused on the use of mammalian cells to print organ and tissue models, which has greatly promoted progress in the fields of tissue engineering, regenerative medicine, and pharmaceuticals. In recent years, bacterial bioprinting has gradually become a rapidly developing research fields, with a wide range of potential applications in basic research, biomedicine, bioremediation, and other field. Here, this works reviews new research on bacterial bioprinting, and discuss its future research direction.
Collapse
Affiliation(s)
- Yifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P. R. China
| | - Zhen Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
17
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
18
|
Usai F, Loi G, Scocozza F, Bellato M, Castagliuolo I, Conti M, Pasotti L. Design and biofabrication of bacterial living materials with robust and multiplexed biosensing capabilities. Mater Today Bio 2022; 18:100526. [PMID: 36632629 PMCID: PMC9826803 DOI: 10.1016/j.mtbio.2022.100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
Collapse
Affiliation(s)
- Francesca Usai
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Massimo Bellato
- Department of Information Engineering, University of Padua, Via Gradenigo 6b, 35131 Padua, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy,Corresponding author.
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy,Corresponding author.
| |
Collapse
|
19
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
20
|
Ze Y, Wang R, Deng H, Zhou Z, Chen X, Huang L, Yao Y. Three-dimensional bioprinting: A cutting-edge tool for designing and fabricating engineered living materials. BIOMATERIALS ADVANCES 2022; 140:213053. [PMID: 35964390 DOI: 10.1016/j.bioadv.2022.213053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The design of engineered living materials (ELMs) is an emerging field developed from synthetic biology and materials science principles. ELMs are multi-scale bulk materials that combine the properties of self-healing and organism adaptability with the designed physicochemical or mechanical properties for functional applications in various fields, including therapy, electronics, and architecture. Among the many ELM design and manufacturing methods, three-dimensional (3D) bioprinting stands out for its precise control over the structure of the fabricated constructs and the spatial distribution of cells. In this review, we summarize the progress in the field, cell type and material selection, and the latest applications of 3D bioprinting to manufacture ELMs, as well as their advantages and limitations, hoping to deepen our understanding and provide new insights into ELM design. We believe that 3D bioprinting will become an important development direction and provide more contributions to this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruixin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanzhi Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheqing Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoju Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Probing the growth and mechanical properties of Bacillus subtilis biofilms through genetic mutation strategies. Synth Syst Biotechnol 2022; 7:965-971. [PMID: 35756965 PMCID: PMC9194759 DOI: 10.1016/j.synbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial communities form biofilms on various surfaces by synthesizing a cohesive and protective extracellular matrix, and these biofilms protect microorganisms against harsh environmental conditions. Bacillus subtilis is a widely used experimental species, and its biofilms are used as representative models of beneficial biofilms. Specifically, B. subtilis biofilms are known to be rich in extracellular polymeric substances (EPS) and other biopolymers such as DNA and proteins like the amyloid protein TasA and the hydrophobic protein BslA. These materials, which form an interconnected, cohesive, three-dimensional polymer network, provide the mechanical stability of biofilms and mediate their adherence to surfaces among other functional contributions. Here, we explored how genetically-encoded components specifically contribute to regulate the growth status, mechanical properties, and antibiotic resistance of B. subtilis biofilms, thereby establishing a solid empirical basis for understanding how various genetic engineering efforts are likely to affect the structure and function of biofilms. We noted discrete contributions to biofilm morphology, mechanical properties, and survival from major biofilm components such as EPS, TasA and BslA. For example, EPS plays an important role in maintaining the stability of the mechanical properties and the antibiotic resistance of biofilms, whereas BslA has a significant impact on the resolution that can be obtained for printing applications. This work provides a deeper understanding of the internal interactions of biofilm components through systematic genetic manipulations. It thus not only broadens the application prospects of beneficial biofilms, but also serves as the basis of future strategies for targeting and effectively removing harmful biofilms.
Collapse
|
23
|
Pose-Boirazian T, Martínez-Costas J, Eibes G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol Biosci 2022; 22:e2200110. [PMID: 35579179 DOI: 10.1002/mabi.202200110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Employment of enzymes as biocatalysts offers immense benefits across diverse sectors in the context of green chemistry, biodegradability, and sustainability. When compared to free enzymes in solution, enzyme immobilization proposes an effective means of improving functional efficiency and operational stability. The advance of printable and functional materials utilized in additive manufacturing, coupled with the capability to produce bespoke geometries, has sparked great interest towards the 3D printing of immobilized enzymes. Printable biocatalysts represent a new generation of enzyme immobilization in a more customizable and adaptable manner, unleashing their potential functionalities for countless applications in industrial biotechnology. This review provides an overview of enzyme immobilization techniques and 3D printing technologies, followed by illustrations of the latest 3D printed enzyme-immobilized industrial and clinical applications. The unique advantages of harnessing 3D printing as an enzyme immobilization technique will be presented, alongside a discussion on its potential limitations. Finally, the future perspectives of integrating 3D printing with enzyme immobilization will be considered, highlighting the endless possibilities that are achievable in both research and industry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Eibes
- CRETUS, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
24
|
Cui Z, Feng Y, Liu F, Jiang L, Yue J. 3D Bioprinting of Living Materials for Structure-Dependent Production of Hyaluronic Acid. ACS Macro Lett 2022; 11:452-459. [PMID: 35575323 DOI: 10.1021/acsmacrolett.2c00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
3D bioprinting of living materials represents an interesting paradigm toward the efficacy enhancement for the biosynthesis of various functional compounds in microorganisms. Previous studies have shown the success of 3D-printed bioactive systems in the production of small molecular compounds. However, the feasibility of such a strategy in producing macromolecules and how the geometry of the 3D scaffold influences the productivity are still unknown. In this study, we printed a series of 3D gelatin-based hydrogels immobilized with fermentation bacteria that can secrete hyaluronic acid (HA), a very useful natural polysaccharide in the fields of biomedicine and tissue engineering. The 3D-printed bioreactor was capable of producing HA, and an elevated yield was obtained with the system bearing a grid structure compared to that either with a solid structure or in a scaffold-free fermentation condition. As for the grid structure, bioreactors with a 90° strut angel and a median interfilament distance displayed the highest HA yield. Our findings highlighted the significant role of 3D printing in the spatial control of microorganism-laden hydrogel structures for the enhancement of biosynthesis efficiency.
Collapse
Affiliation(s)
- Zhenhua Cui
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| | - Yanwen Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| | - Fei Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| | - Lelun Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
25
|
Müller J, Jäkel AC, Richter J, Eder M, Falgenhauer E, Simmel FC. Bacterial Growth, Communication, and Guided Chemotaxis in 3D-Bioprinted Hydrogel Environments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15871-15880. [PMID: 35349260 PMCID: PMC9012179 DOI: 10.1021/acsami.1c20836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/14/2022] [Indexed: 06/06/2023]
Abstract
Bioprinting of engineered bacteria is of great interest for applications of synthetic biology in the context of living biomaterials, but so far, only a few viable approaches are available for the printing of gels hosting live Escherichia coli bacteria. Here, we develop a gentle extrusion-based bioprinting method based on an inexpensive alginate/agarose ink mixture that enables printing of E. coli into three-dimensional hydrogel structures up to 10 mm in height. We first characterize the rheological properties of the gel ink and then study the growth of the bacteria inside printed structures. We show that the maturation of fluorescent proteins deep within the printed structures can be facilitated by the addition of a calcium peroxide-based oxygen generation system. We then utilize the bioprinter to control different types of interactions between bacteria that depend on their spatial position. We next show quorum-sensing-based chemical communication between the engineered sender and receiver bacteria placed at different positions inside the bioprinted structure and finally demonstrate the fabrication of barrier structures defined by nonmotile bacteria that can guide the movement of chemotactic bacteria inside a gel. We anticipate that a combination of 3D bioprinting and synthetic biological approaches will lead to the development of living biomaterials containing engineered bacteria as dynamic functional units.
Collapse
|
26
|
Abstract
Recent advances in 3D printing technologies and materials have enabled rapid development of innovative sensors for applications in different aspects of human life. Various 3D printing technologies have been adopted to fabricate biosensors or some of their components thanks to the advantages of these methodologies over the traditional ones, such as end-user customization and rapid prototyping. In this review, the works published in the last two years on 3D-printed biosensors are considered and grouped on the basis of the 3D printing technologies applied in different fields of application, highlighting the main analytical parameters. In the first part, 3D methods are discussed, after which the principal achievements and promising aspects obtained with the 3D-printed sensors are reported. An overview of the recent developments on this current topic is provided, as established by the considered works in this multidisciplinary field. Finally, future challenges on the improvement and innovation of the 3D printing technologies utilized for biosensors production are discussed.
Collapse
|
27
|
Wangpraseurt D, You S, Sun Y, Chen S. Biomimetic 3D living materials powered by microorganisms. Trends Biotechnol 2022; 40:843-857. [DOI: 10.1016/j.tibtech.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
|