1
|
Xiao Y, Sun Q, Leng J, Jin S. Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks. J Phys Chem Lett 2024:3390-3403. [PMID: 38501970 DOI: 10.1021/acs.jpclett.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.
Collapse
Affiliation(s)
- Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Afrin S, Yang X, Morris AJ, Grumstrup EM. Rapid Exciton Transport and Structural Defects in Individual Porphyrinic Metal Organic Framework Microcrystals. J Am Chem Soc 2024; 146:4309-4313. [PMID: 38330249 PMCID: PMC10885150 DOI: 10.1021/jacs.3c12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
To date, spectroscopic characterization of porphyrin-based metal organic frameworks (MOFs) has relied almost exclusively on ensemble techniques, which provide only structurally averaged insight into the functional properties of these promising photochemical platforms. This work employs time-resolved pump-probe microscopy to probe ultrafast dynamics in PCN-222 MOF single crystals. The simultaneous high spatial and temporal resolution of the technique enables the correlation of spectroscopic observables to both inter- and intracrystal structural heterogeneity. The pump-probe measurements show that significant differences in the excited state lifetime exist between individual PCN-222 crystals of an ensemble. On a single PCN-222 crystal, differences in excited state lifetime and photoluminescence quantum yield are found to correlate to microscale structural defects introduced at crystallization. Pump probe microscopy also enables the direct measurement of excited state transport. Imaging of exciton transport on individual MOF crystals reveals rapid, but subdiffusive exciton transport which slows on the 10s of ps time scale. Time-averaged exciton diffusion coefficients over the first 200 ps span a range of 0.27 to 1.0 cm2/s, indicating that excited states are rapidly transported through the porphyrin network of PCN-222 before being trapped. Together, these single-particle-resolved measurements provide important new insight into the role played by structural defects on the photochemical functionality of porphyrin-based MOFs.
Collapse
Affiliation(s)
- Sajia Afrin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Erik M Grumstrup
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
3
|
Schlachter A, Asselin P, Fortin D, Karsenti PL, Harvey PD. Strong Host-Guest Dependence on the Emissive Properties of MOF-5 and [Zn 2(BTTB)(DMF) 2•(H 2O) 3] n. Inorg Chem 2023; 62:13757-13764. [PMID: 37578992 DOI: 10.1021/acs.inorgchem.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
3D-[Zn4O(1,4-BDC)3•x(solvent)]n (MOF-5; BDC = 1,4-benzodicarboxylate) and 3D-[Zn2(BTTB)(DMF)2•(H2O)3]n (MOF-D; BTTB = 4,4',4″,4‴-benzene-1,2,4,5-tetrayltetrabenzoate) have been investigated by means of steady-state UV-visible and fluorescence and time-resolved emission spectroscopy, as a function of solvent and power of the excitation irradiation. The low-temperature X-ray structures (173 K) were permitted to locate solvent molecules (here H2O) in the lattice. They were found distributed in the middle in the voids with no evidence of specific interactions (H-bond, coulombic, and dipole-dipole) with the framework. The fluorescence decays of the ligands (ππ* excited state), τF, for the host-guest composites MOF-5@solvent and MOF-D@solvent (solvent = air, MeCN, EtCN, MeOH, EtOH, and DMF) were found bi-exponential (short τF1 (ps), and long τF2 (ns)) with one important feature: upon cooling from 298 to 77 K, MOF-5's τF1 decreases and τF2 increases, while the opposite trend is generally observed in MOF-D. The low values for τF1 (ps) in MOF-5 are associated with the augmented probability of solvent-ligand collisions leading to nonradiative deactivation, which upon cooling to 77 K increases further as the scaffolding contracts. The augmentation in τF2 is readily associated with the increased rigidity of the ligands that are not submitted to this effect (at the surface of the MOF and as pendent groups). For the low emitter MOF-D, the reversed situation is noted but not as clearly due to the uncertainties in the data. Upon increasing the excitation flux, the fluorescence intensity increases linearly with the laser power indicating the absence of singlet-singlet annihilation, inferring the absence of efficient exciton migration. This observation is explained by the small absorptivity coefficients, which leads to a small J spectral overlap between absorption and fluorescence according to the Forster and Dexter theories, and consequently, a small rate for energy migration. This conclusion drastically changes the perception of the photocatalytic mechanism of MOF-5 and other MOFs exhibiting similar absorption features (i.e., no antenna effect).
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Daniel Fortin
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Paul-Ludovic Karsenti
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
4
|
Zeng D, Hu HF, Ming JB, Wang W. Hierarchically Organized Cocrystal of Tetra-Anionic Porphyrin and Di-Cationic Viologen: Ion Conformations, Supramolecule Interactions, and Porphyrin Arrays. Chemistry 2023; 29:e202203188. [PMID: 36511145 DOI: 10.1002/chem.202203188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ionic co-assembly of tetra-anionic porphyrins has been extensively researched in the construction of hierarchically organized architectures with potential application value in organic semiconductors, sunlight catalysts and supramolecular chirality systems. However, such architectures are difficult to grow to a size suitable for single-crystal X-ray diffraction (SCXRD); the lack of single-crystal structures of these architectures leads to challenges in gaining deeper comprehension about that. This study reports a hierarchically organized cocrystal of meso-tetra(4-sulfonato-phenyl)-porphyrin (TSPP4- ) and N, N'-diethyl-viologen (DEV2+ ), wherein wave-like and saddle-like TSPP4- ions co-aggregate at a stoichiometric ratio of 1 : 2 to form unique porphyrin arrays; the spectrum characteristics and calculated coulombic exciton coupling energy show that these porphyrin arrays are J-aggregates. We prove that the distortion of porphyrin ring of TSPP4- strongly correlates with the deflection of its phenyl groups. The crystal comprises six different ionic conformations, and the multiplicity of ionic conformation leads to intricate supramolecular interactions.
Collapse
Affiliation(s)
- Dong Zeng
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Fen Hu
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiang-Bo Ming
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng, Shanxi, 044000, P. R. China
| | - Wei Wang
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Zhou X, Satyabola D, Liu H, Jiang S, Qi X, Yu L, Lin S, Liu Y, Woodbury NW, Yan H. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System. Angew Chem Int Ed Engl 2022; 61:e202211200. [PMID: 36288100 DOI: 10.1002/anie.202211200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Photosynthetic organisms organize discrete light-harvesting complexes into large-scale networks to facilitate efficient light collection and utilization. Inspired by nature, herein, synthetic DNA templates were used to direct the formation of dye aggregates with a cyanine dye, K21, into discrete branched photonic complexes, and two-dimensional (2D) excitonic networks. The DNA templates ranged from four-arm DNA tiles, ≈10 nm in each arm, to 2D wireframe DNA origami nanostructures with different geometries and varying dimensions up to 100×100 nm. These DNA-templated dye aggregates presented strongly coupled spectral features and delocalized exciton characteristics, enabling efficient photon collection and energy transfer. Compared to the discrete branched photonic systems templated on individual DNA tiles, the interconnected excitonic networks showed approximately a 2-fold increase in energy transfer efficiency. This bottom-up assembly strategy paves the way to create 2D excitonic systems with complex geometries and engineered energy pathways.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Deeksha Satyabola
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaodong Qi
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Lu Yu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yan Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Neal W Woodbury
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
7
|
Yu J, Han Y, Zhang H, Ding X, Qiao L, Hu J. Excimer Formation in the Non-Van-Der-Waals 2D Semiconductor Bi 2 O 2 Se. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204227. [PMID: 35781340 DOI: 10.1002/adma.202204227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The layered semiconductor Bi2 O2 Se is a promising new-type 2D material that holds layered structure via electrostatic forces instead of van der Waals (vdW) attractions. Aside from the huge success in device performance, the non-vdW nature in Bi2 O2 Se with a built-in interlayer electric field has also provided an appealing platform for investigating unique photoexcited carrier dynamics. Here, experimental evidence for the observation of excimers in multilayer Bi2 O2 Se nanosheets via transient absorption spectroscopy is presented. It is found that the excimer formation is the primary decay pathway of photoexcited excitons and three-stage excimer dynamics with corresponding time scales are established. Excitation-fluence-dependent excimer dynamics further suggest that the excimer is diffusive and its formation can be simply described as excitons relaxed to an excimer geometry. This work indicates the outstanding promise of unique excitonic processes in Bi2 O2 Se, which may motivate novel device designs.
Collapse
Affiliation(s)
- Junhong Yu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yadong Han
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Hang Zhang
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiang Ding
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianbo Hu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
8
|
Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022; 20:257. [PMID: 35658974 PMCID: PMC9164479 DOI: 10.1186/s12951-022-01449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembled photonic systems with well-organized spatial arrangement and engineered optical properties can be used as efficient energy materials and as effective biomedical agents. The lessons learned from natural light-harvesting antennas have inspired the design and synthesis of a series of biomimetic photonic complexes, including those containing strongly coupled dye aggregates with dense molecular packing and unique spectroscopic features. These photoactive components provide excellent features that could be coupled to multiple applications including light-harvesting, energy transfer, biosensing, bioimaging, and cancer therapy. Meanwhile, nanoscale DNA assemblies have been employed as programmable and addressable templates to guide the formation of DNA-directed multi-pigment complexes, which can be used to enhance the complexity and precision of artificial photonic systems and show the potential for energy and biomedical applications. This review focuses on the interface of DNA nanotechnology and biomimetic photonic systems. We summarized the recent progress in the design, synthesis, and applications of bioinspired photonic systems, highlighted the advantages of the utilization of DNA nanostructures, and discussed the challenges and opportunities they provide.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
Li ZQ, Zhu GL, Mo RJ, Wu MY, Ding XL, Huang LQ, Wu ZQ, Xia XH. Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal-Organic Framework Membranes. Angew Chem Int Ed Engl 2022; 61:e202202698. [PMID: 35293120 DOI: 10.1002/anie.202202698] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/11/2022]
Abstract
High ion selectivity and permeability, as two contradictory aspects for the membrane design, highly hamper the development of osmotic energy harvesting technologies. Metal-organic frameworks (MOFs) with ultra-small and high-density pores and functional surface groups show great promise in tackling these problems. Here, we propose a facile and mild cathodic deposition method to directly prepare crack-free porphyrin MOF membranes on a porous anodic aluminum oxide for osmotic energy harvesting. The abundant carboxyl groups of the functionalized porphyrin ligands together with the nanoporous structure endows the MOF membrane with high cation selectivity and ion permeability, thus a large output power density of 6.26 W m-2 is achieved. The photoactive porphyrin ligands further lead to an improvement of the power density to 7.74 W m-2 upon light irradiation. This work provides a promising strategy for the design of high-performance osmotic energy harvesting systems.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guan-Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Zhang L, Ren X, Zhao X, Zhu Y, Pang R, Cui P, Jia Y, Li S, Zhang Z. Synergetic Charge Transfer and Spin Selection in CO Oxidation at Neighboring Magnetic Single-Atom Catalyst Sites. NANO LETTERS 2022; 22:3744-3750. [PMID: 35437988 DOI: 10.1021/acs.nanolett.2c00711] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Deciphering the precise physical mechanism of interaction between an adsorbed species and a reactive site in heterogeneous catalysis is crucial for predictive design of highly efficient catalysts. Here, using first-principles calculations we identify that the two-dimensional ferromagnetic metal organic framework of Mn2C18H12 can serve as a highly efficient single-atom catalyst for spin-triplet O2 activation and CO oxidation. The underlying mechanism is via "concerted charge-spin catalysis", involving a delicate synergetic process of charge transfer, provided by the hosting Mn atom, and spin selection, preserved through active participation of its nearest neighboring Mn atoms for the crucial step of O2 activation. The synergetic mechanism is further found to be broadly applicable in O2 adsorption on magnetic X2C18H12 (X = Mn, Fe, Co, and Ni) with a well-defined linear scaling dependence between the chemical activity and spin excitation energy. The present findings provide new insights into chemical reactions wherein spin selection plays a vital role.
Collapse
Affiliation(s)
- Liying Zhang
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingju Zhao
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yandi Zhu
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rui Pang
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Jia
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Li Z, Zhu G, Mo R, Wu M, Ding X, Huang L, Wu Z, Xia X. Light‐Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhong‐Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Guan‐Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ri‐Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ming‐Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xin‐Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zeng‐Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Gorbunova YG, Enakieva YY, Volostnykh MV, Sinelshchikova AA, Abdulaeva IA, Birin KP, Tsivadze AY. Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Shibu A, Middleton C, Kwiatkowski CO, Kaushal M, Gillen JH, Walter MG. Self-Assembly-Directed Exciton Diffusion in Solution-Processable Metalloporphyrin Thin Films. Molecules 2021; 27:35. [PMID: 35011266 PMCID: PMC8746414 DOI: 10.3390/molecules27010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
The study of excited-state energy diffusion has had an important impact in the development and optimization of organic electronics. For instance, optimizing excited-state energy migration in the photoactive layer in an organic solar cell device has been shown to yield efficient solar energy conversion. Despite the crucial role that energy migration plays in molecular electronic device physics, there is still a great deal to be explored to establish how molecular orientation impacts energy diffusion mechanisms. In this work, we have synthesized a new library of solution-processable, Zn (alkoxycarbonyl)phenylporphyrins containing butyl (ZnTCB4PP), hexyl (ZnTCH4PP), 2-ethylhexyl (ZnTCEH4PP), and octyl (ZnTCO4PP) alkoxycarbonyl groups. We establish that, by varying the length of the peripheral alkyl chains on the metalloporphyrin macrocycle, preferential orientation and molecular self-assembly is observed in solution-processed thin films. The resultant arrangement of molecules consequently affects the electronic and photophysical characteristics of the metalloporphyrin thin films. The various molecular arrangements in the porphyrin thin films and their resultant impact were determined using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence emission lifetimes, and X-ray diffraction in thin films. The films were doped with C60 quencher molecules and the change in fluorescence was measured to derive a relative quenching efficiency. Using emission decay, relative quenching efficiency, and dopant volume fraction as input, insights on exciton diffusion coefficient and exciton diffusion lengths were obtained from a Monte Carlo simulation. The octyl derivative (ZnTCO4PP) showed the strongest relative fluorescence quenching and, therefore, the highest exciton diffusion coefficient (5.29 × 10-3 cm2 s-1) and longest exciton diffusion length (~81 nm). The octyl derivative also showed the strongest out-of-plane stacking among the metalloporphyrins studied. This work demonstrates how molecular self-assembly can be used to modulate and direct exciton diffusion in solution-processable metalloporphyrin thin films engineered for optoelectronic and photonic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael G. Walter
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA; (A.S.); (C.M.); (C.O.K.); (M.K.); (J.H.G.)
| |
Collapse
|
14
|
Sample AD, Guan J, Hu J, Reese T, Cherqui CR, Park JE, Freire-Fernández F, Schaller RD, Schatz GC, Odom TW. Strong Coupling Between Plasmons and Molecular Excitons in Metal-Organic Frameworks. NANO LETTERS 2021; 21:7775-7780. [PMID: 34490777 DOI: 10.1021/acs.nanolett.1c02740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This Letter describes strong coupling of densely packed molecular emitters in metal-organic frameworks (MOFs) and plasmonic nanoparticle (NP) lattices. Porphyrin-derived ligands with small transition dipole moments in an ordered MOF film were grown on Ag NP arrays. Angle-resolved optical measurements of the MOF-NP lattice system showed the formation of a polariton that is lower in energy and does not cross the uncoupled MOF Q1 band. Modeling predicted the upper polariton energy and a calculated Rabi splitting of 110 meV. The coupling strength was systematically controlled by detuning the plasmon energy by changing the refractive index of the solvents infiltrating the MOF pores. Through transient absorption spectroscopy, we found that the lower polariton decays quickly at shorter time scales (<500 ps) and slowly at longer times because of energy transfer from the upper polariton. This hybrid system demonstrates how MOFs can function as an accessible excitonic material for polariton chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | |
Collapse
|