1
|
Sun Y, Fan X, Liu H, Zhang C, Tan X, Song G. Hydrogen Sulfide-Responsive MRI Probe for Imaging Colon Cancer in Mice. Anal Chem 2025; 97:9302-9309. [PMID: 40279104 DOI: 10.1021/acs.analchem.4c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Hydrogen sulfide (H2S), a significant gaseous signaling molecule, is highly expressed in colon cancer. However, realizing highly sensitive and specific imaging of H2S in deep colon cancer tissues remains an important challenge. In order to overcome this limitation, we have developed a H2S-responsive magnetic probe (HRMP) with a high sensitivity and specificity. HRMP is synthesized using superparamagnetic iron oxide and Mn-porphyrin, coated with a hydrogen sulfide-responsive polymer. Upon reaction with H2S, the released nanoparticles aggregate, producing an enhanced transverse relaxivity (r2) through the dipolar effect. Incorporation of an ortho azide group ensures that HRMP specifically responds to H2S, reacting swiftly within 2 h to induce a change in T2 relaxation time. Additionally, by precisely tuning the feeding ratio of Mn-porphyrin to iron oxide, HRMP was endowed with high sensitivity, achieving a detection limit as low as 8.7 μM. In studies with HCT116 colon cancer, where H2S is overexpressed, HRMP generated a distinct negative contrast at the tumor site. HRMP shows potential for in vivo imaging of colon cancer, offering promise for the early diagnosis of tumors.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory for Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xingyue Fan
- State Key Laboratory for Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huiyi Liu
- State Key Laboratory for Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cheng Zhang
- State Key Laboratory for Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xianzheng Tan
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Guosheng Song
- State Key Laboratory for Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
2
|
Huang L, Lv F, Bin Y, Zhao J, Li C, Zhao S, Hu S, Zhang L. A Hydrogen Sulfide-Activated NIR-II Fluorescence/NIR-I Photoacoustic Dual-Ratiometric Nanoprobe With Unique Recognition Reaction for Precise Visual Diagnosis of Hepatitis Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501269. [PMID: 40270361 DOI: 10.1002/smll.202501269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Hydrogen sulfide (H2S) is a vital gaseous signaling molecule that plays a central role in various physiological and pathological processes. Given the complementary advantages of fluorescence (FL) and photoacoustic (PA) imaging, there is a growing demand for dual-ratiometric probes that enable precise in vivo monitoring of H2S levels. In this study, the use of 2-mercapto-1,3,4-thiadiazole (MTD) as a novel recognition group of H2S is presented for the first time, following conjugation with cyanine dyes to obtain a new PA probe Cy-MTD. To achieve dual-ratiometric imaging, Cy-MTD is incorporated into down-conversion nanoparticle (DCNP), resulting in the creation of a pioneering NIR-II FL/NIR-I PA dual-ratiometric nanoprobe DCNP@Cy-MTD. Cy-MTD undergoes the blueshift in absorption from 840 to 670 nm after reaction with H2S, enabling NIR-I ratiometric PA imaging of H2S by measuring the ratio of PA signal at 670 and 840 nm (PA670/PA840). In addition, due to the strong absorption of Cy-MTD ≈840 nm and the overlapping between the absorption spectrum of Cy-MTD and 808 nm excitation band of DCNP, the 808 nm-excited FL emission (F1550 nm,808Ex) of DCNP in DCNP@Cy-MTD nanoprobe is quenched through the competitive absorption, while it is restored upon the interaction with H2S because of the blueshift in absorption of Cy-MTD. Using the stable FL emission of DCNP under 980 nm excitation (F1550 nm,980Ex) as the reference signal, NIR-II ratiometric FL imaging (F1550 nm,808Ex/F1550 nm,980Ex) of H2S is achieved. The dual-ratiometric response features of the DCNP@Cy-MTD nanoprobe offer a significant advancement over traditional single-signal or single-modality imaging techniques. By providing enhanced accuracy and reliability, this probe allows for the diagnosis of hepatitis by monitoring the H2S, surpassing the capabilities of conventional histopathological methods, which provides a new way for more effective diagnostic strategies for liver diseases.
Collapse
Affiliation(s)
- Lixian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yidong Bin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jingjin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Caiying Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
3
|
Pieczykolan M, Dancer PA, Klein TW, Piwonski H, Rolbieski H, Maity B, Bruns OT, Cavallo L, Kiessling F, Rueping M, Banala S. Small organic fluorophores with SWIR emission detectable beyond 1300 nm. Chem Commun (Camb) 2025; 61:4820-4823. [PMID: 40033975 DOI: 10.1039/d4cc05248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
3,6-Dimethylamino fluorenone was functionalized with substituents to achieve an absorption maximum at 1012 nm and emission >1300 nm. TD-DFT calculations confirmed that the substituent orbitals contribute to narrowing the HOMO-LUMO energy gap. Imaging with an InGaAs-based SWIR camera and various longpass filters confirmed detection >1300 nm.
Collapse
Affiliation(s)
- Michal Pieczykolan
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Tjadina-Wencke Klein
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hubert Piwonski
- Biological and Environmental Science Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hannes Rolbieski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bholanath Maity
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Oliver T Bruns
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Luigi Cavallo
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| | - Magnus Rueping
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Ran Q, Huang M, Wang L, Li Y, Wu W, Liu X, Chen J, Yang M, Han K, Guo X. Integrated bioinformatics and multi-omics to investigate the mechanism of Rhododendron molle Flos-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119308. [PMID: 39746411 DOI: 10.1016/j.jep.2024.119308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Drug-induced liver injury (DILI) is an important and common adverse drug event. Rhododendron molle Flos (RMF), as one of toxic Traditional Chinese medicines (TCMs), holds a prominent position in clinical practice for treating rheumatoid arthritis. However, the toxicity of RMF limits its safe. Most of the concerns are about its rapid neurotoxicity and cardiotoxicity, with less attention paid to its hepatotoxicity, and the mechanism of which is still unclear. AIM OF THE STUDY To reveal the mechanism of RMF-induced hepatotoxicity by bioinformatics and multi-omics. MATERIALS AND METHODS Rats were intragastric administered RMF at doses of 0.8 g/kg, 0.4 g/kg, and 0.2 g/kg once daily for 2 weeks. Initially, hepatotoxicity was then evaluated using liver function enzymes, antioxidant enzymes, and histopathology. Subsequently, network toxicology, transcriptomics, and metabolomics were used to identify the genes and metabolites. In addition, molecular docking and Western blot were employed to verify toxic components and key targets. RESULTS RMF caused abnormal levels of ALT, γ-GT, TBIL, and TBA in the serum of rats, as well as abnormal levels of MDA, GSH-Px, and SOD in the liver, leading to inflammatory infiltration of liver cells, with a dose-dependent manner. RMF disordered the steroid hormone biosynthesis, pyruvate metabolism, fatty acid biosynthesis, and arachidonic acid metabolism. Six key targets were identified- UGT1A6, CYP2E1, ACOT1, ACSL5, CTH, and PKLR, along with their corresponding metabolites, namely 17β-estradiol, estriol, arachidonic acid, octadecanoic acid, and pyruvic acid. The hepatotoxicity could be attributed to five diterpenoid components, including grayanotoxin-III, rhodojaponin (RJ)-I, RJ-II, RJ-III, and RJ-V. CONCLUSIONS This study comprehensively identified the toxic components, upstream targets, and downstream metabolites of RMF-induced liver toxicity, providing a basis for evaluating and monitoring liver function in patients during clinical application.
Collapse
Affiliation(s)
- Qiang Ran
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Mengjun Huang
- National-Local Joint Engineering Research Center for Innovative Targeted Drugs, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Lijuan Wang
- Department of Pathology, Chongqing Traditional Chinese Medicine Hospital (the First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine), Chongqing, 400021, China.
| | - Yanyan Li
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Wenhui Wu
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Xia Liu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Juan Chen
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Min Yang
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Keqing Han
- Department of Pharmacy, Shaanxi Provincial Tuberculosis Prevention and Control Hospital (the Fifth People's Hospital of Shaanxi Province), Xi'an, Shanxi, 710100, China.
| | - Xiaohong Guo
- Department of Preparation Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| |
Collapse
|
5
|
Sun Y, Wang J, Zhu Y, Han T, Liu Y, Wang HY. Nanoprobes based on optical imaging techniques for detecting biomarkers in liver injury diseases. Coord Chem Rev 2025; 524:216303. [DOI: 10.1016/j.ccr.2024.216303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Wang K, Bi C, Zelenkov L, Liu X, Song M, Wang W, Makarov S, Yin W. Fluorescent Sensing for the Detection and Quantification of Sulfur-Containing Gases. ACS Sens 2024; 9:5708-5727. [PMID: 39533887 DOI: 10.1021/acssensors.4c02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sulfur-containing gases, such as H2S and SO2, play significant roles in a multitude of biological processes affecting human life and health. Precise and efficient detection of these gases is therefore crucial for advancing one's understanding of their biological roles and developing effective diagnostic strategies. Fluorescent sensing offers a highly sensitive and versatile approach for detecting these gases. This Review examines the recent advances in the fluorescent detection of H2S and SO2, highlighting the key mechanisms involved in fluorescence signal transduction, including changes in intensity and wavelength shifts. The diverse array of probe molecules employed for this purpose, including those utilizing mechanisms such as nucleophilic reactions, Förster resonance energy transfer (FRET), and sulfur affinity interactions are explored. In additional to organic sensors, the focus of the Review is particularly directed toward quantum dot (QD) systems, emphasizing their tunable optical properties that hold immense potential for fluorescence sensing. Beyond the traditional III-V QDs, we delve into the emerging fluorescence sensors based on halide perovskite QDs, upconversion nanocrystals, and other novel materials. These advanced QD systems hold promise for the development of highly sensitive and cost-effective gas detectors, paving the way for significant advances in biomedical and environmental monitoring. This Review provides a comprehensive overview of the current state-of-the-art in QD-based fluorescence sensing of sulfur-containing gases and provides a multifaceted discussion comparing organic fluorescent sensors with QD sensors, highlighting the key challenges and opportunities for the integration of fluorescence sensing as it evolves. The Review aims to facilitate further research and development of innovative sensing platforms to enable more accurate and sensitive detection of these important gases.
Collapse
Affiliation(s)
- Kehang Wang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Chenghao Bi
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Lev Zelenkov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia
| | - Xiuzhen Liu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Mingzhao Song
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Wenxin Wang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Sergey Makarov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia
| | - Wenping Yin
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| |
Collapse
|
7
|
Wan Y, Guo Z, Wu Z, Liang T, Li Z. Visualization of Diabetes Progression by an Activatable NIR-IIb Luminescent Probe. Anal Chem 2024; 96:14843-14852. [PMID: 39239835 DOI: 10.1021/acs.analchem.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Developing NIR-IIb luminescence probes with rapid visualization and a high penetration depth is essential for diabetes research. Combining a sensitizing switch with lanthanide-doped nanoparticles (LnNPs) has been employed to fabricate the NIR-IIb probes. However, these probes mainly adopt heptamethine cyanine dye as the antenna, and the NIR-IIb signal is activated by inhibiting the photoinduced electron transfer (PET) of the dye. Due to limited recognition units, this strategy makes many biomolecules undetectable, such as cysteine (Cys), which is closely related to diabetes. Herein, in this article, hemicyanine dye, NFL-OH, was verified as a new antenna to sensitize NIR-IIb emission from LnNPs. Unlike traditional cyanine dyes, hemicyanine's fluorescence intensity can also be modulated by intramolecular charge transfer (ICT), thereby expanding the range of detectable targets for NIR-IIb probes based on sensitization mechanism. Through switching the hemicyanine-sensitized NIR-IIb emission, we successfully fabricated an NFL-Cys-LnNPs' nanoprobe, which can effectively monitor Cys concentration in the liver of diabetic mice during diabetes progression and evaluate the efficacy of diabetic drugs. Our work not only presents an excellent tool for Cys imaging but also introduces new concepts for designing NIR-IIb probes.
Collapse
Affiliation(s)
- Yong Wan
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhi Guo
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhengjun Wu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
8
|
Chen X, Wu D, Chen Z. Biomedical applications of stimuli-responsive nanomaterials. MedComm (Beijing) 2024; 5:e643. [PMID: 39036340 PMCID: PMC11260173 DOI: 10.1002/mco2.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Nanomaterials have aroused great interests in drug delivery due to their nanoscale structure, facile modifiability, and multifunctional physicochemical properties. Currently, stimuli-responsive nanomaterials that can respond to endogenous or exogenous stimulus display strong potentials in biomedical applications. In comparison with conventional nanomaterials, stimuli-responsive nanomaterials can improve therapeutic efficiency and reduce the toxicity of drugs toward normal tissues through specific targeting and on-demand drug release at pathological sites. In this review, we summarize the responsive mechanism of a variety of stimulus, including pH, redox, and enzymes within pathological microenvironment, as well as exogenous stimulus such as thermal effect, magnetic field, light, and ultrasound. After that, biomedical applications (e.g., drug delivery, imaging, and theranostics) of stimuli-responsive nanomaterials in a diverse array of common diseases, including cardiovascular diseases, cancer, neurological disorders, inflammation, and bacterial infection, are presented and discussed. Finally, the remaining challenges and outlooks of future research directions for the biomedical applications of stimuli-responsive nanomaterials are also discussed. We hope that this review can provide valuable guidance for developing stimuli-responsive nanomaterials and accelerate their biomedical applications in diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| |
Collapse
|
9
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Wang L, Zhou J, Wang J, Wang X, Dong H, Zhao L, Wu J, Peng J. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Adv Healthc Mater 2024; 13:e2303710. [PMID: 38293743 DOI: 10.1002/adhm.202303710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Jian Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junchen Wu
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
11
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Lei S, Jiang K, Zhang C, Sun W, Pan Y, Wang D, Huang P, Lin J. A FRET-Based Ratiometric H 2S Sensor for Sensitive Optical Molecular Imaging in Second Near-Infrared Window. RESEARCH (WASHINGTON, D.C.) 2023; 6:0286. [PMID: 38162986 PMCID: PMC10755252 DOI: 10.34133/research.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 01/03/2024]
Abstract
Second near-infrared (NIR-II) window optical molecular imaging kicks off a new revolution in high-quality imaging in vivo, but always suffers from the hurdles of inevitable tissue autofluorescence background and NIR-II probe development. Here, we prepare a Förster resonance energy transfer-based ratiometric NIR-II window hydrogen sulfide (H2S) sensor through the combination of an H2S-responsive NIR-II cyanine dye (acceptor, LET-1055) and an H2S-inert rhodamine hybrid polymethine dye (donor, Rh930). This sensor not only exhibits high sensitivity and selectivity, but also shows rapid reaction kinetics (~20 min) and relatively low limit of detection (~96 nM) toward H2S, allowing in vivo ratiometric NIR-II fluorescence imaging of orthotopic liver and colon tumors and visualization of the drug-induced hepatic H2S fluctuations. Our findings provide the potential for advancing the feasibility of NIR-II activity-based sensing for in vivo clinical diagnosis.
Collapse
Affiliation(s)
- Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Chenqing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wei Sun
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yuantao Pan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
15
|
Zhang Q, Yang Z, Zhou H, Du J, Shang H. Electrochemical sensor for hydrogen sulfide detection using electrocatalysis-assisted amplification and chemical reaction-mediated signal enhancement. Mikrochim Acta 2023; 190:474. [PMID: 37989925 DOI: 10.1007/s00604-023-06067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/22/2023] [Indexed: 11/23/2023]
Abstract
An ultrasensitive electrochemical biosensing platform has been designed by combining electrocatalysis-assisted H2S amplification with a chemical reaction-mediated electrochemical signal-boosted system for H2S detection based on Cu-Mn(OH)2 hexagonal nanorings. The signal amplification is initiated by an electrocatalysis reaction that can grasp specific H2S substrates and further highly amplify electrochemical signals. Then, the unique chemical reaction is powered by copper ion and generates a large amount of electroactive CuxS products on the electrode surface, thus achieving the multiple amplification of H2S detection. Finally, the Cu-Mn(OH)2 loaded with plenty of electroactive CuxS can be captured on the electrode for further improving the electrochemical signal thus obtaining ultra-high sensitive determination of H2S. The established electrochemical biosensing platform displays a wide analytical range of 0.1 μM to 265 μM with a low detection limit of 0.096 μM. The satisfactory selectivity allows the electrochemical sensor to distinguish H2S from other interfering substances without any complicated pretreatment, even in complex tumor cell samples. Thus, our designed electrocatalysis-assisted amplification strategy offers a powerful analysis toolkit for the early determination of H2S-related disease in clinical diagnosis.
Collapse
Affiliation(s)
- Qinfeng Zhang
- Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Zhanglei Yang
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000, People's Republic of China
| | - Haotian Zhou
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000, People's Republic of China
| | - Jinwen Du
- Stomatological Department, Taiyuan Municipal No.2 People's Hospital, Taiyuan, 030002, People's Republic of China.
| | - Hongyuan Shang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
16
|
Chi Y, Hu Q, Yi S, Qu H, Xiao Y. A novel strategy to construct activatable silver chalcogenide quantum dots nanoprobe for NIR-Ⅱ fluorescence imaging of hypochlorous acid in vivo. Talanta 2023; 262:124668. [PMID: 37229815 DOI: 10.1016/j.talanta.2023.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
It is necessary to develop sensitive and selective probes for real-time in vivo monitoring of hypochlorous acid (HClO) which plays a significant role in physiological and pathological processes. The second near-infrared (NIR-Ⅱ) luminescent silver chalcogenide quantum dots (QDs) have shown great potential in developing activatable nanoprobe for HClO in terms of their outstanding imaging performance in the living organism. However, the limited strategy for the construction of activatable nanoprobes severely restricts their widespread applications. Herein, we proposed a novel strategy for developing an activatable silver chalcogenide QDs nanoprobe for NIR-Ⅱ fluorescence imaging of HClO in vivo. The nanoprobe was fabricated by mixing an Au-precursor solution with Ag2Te@Ag2S QDs to allow cation exchange and release Ag ions and then reducing the released Ag ions on the QDs surface to form an Ag shell for quenching of the emission of QDs. The Ag shell of QDs was oxidized and etched in the presence of HClO, resulting in the disappearance of their quenching effect on QDs and the activation of the QDs emission. The developed nanoprobe enabled highly sensitive and selective determination of HClO and imaging of HClO in arthritis and peritonitis. This study provides a novel strategy for the construction of activatable nanoprobe based on QDs and a promising tool for NIR-Ⅱ imaging of HClO in vivo.
Collapse
Affiliation(s)
- Yajie Chi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Qing Hu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Shuxiao Yi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Huijiao Qu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Yan Xiao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
17
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
18
|
Zhao S, Xue Y, Hu L, Sun F, Nie J, Chang Y. A NIR‐II Fluorescent Probe for Hydrogen Sulfide Detection Based on Blocking Intramolecular Charge Transfer. ChemistrySelect 2023. [DOI: 10.1002/slct.202300554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Huang J, Zhang X, Li S, Qu F, Huang B, Cui R, Liu Y, Hu W, Yang X, Zhang Y. Activatable Lanthanide Nanoprobes with Dye-Sensitized Second Near-Infrared Luminescence for in Vivo Inflammation Imaging. Anal Chem 2023; 95:3761-3768. [PMID: 36757879 DOI: 10.1021/acs.analchem.2c04873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Lanthanide nanoparticles exhibit unique photophysical properties and thus emerge as promising second near-infrared (NIR-II) optical agents. However, the limited luminescence brightness hampers their construction of activatable NIR-II probes. Herein, we report the synthesis of dye-sensitized lanthanide nanoprobes (NaGdF4:Nd/ICG; indocyanine green (ICG)) and their further development for in vivo activatable imaging of hypochlorite (ClO-). Dye sensitization using ICG not only shifts the optimal doping concentration of Nd3+ from 5 to 20 mol % but also leads to a 5-fold NIR-II enhancement relative to the ICG-free counterpart. Mechanistic studies reveal that such a luminescence enhancement of NaGdF4:Nd at high Nd3+ concentration is ascribed to an alleviated cross-relaxation effect due to the broad absorption of ICG and faster energy transfer process. Taking advantage of dye oxidation, the nanoprobes enable activatable NIR-II imaging of hypochlorous acid (ClO-) in a drug-induced lymphatic inflammation mouse model. This work thus provides a simple, yet effective luminescence enhancement strategy for constructing lanthanide nanoprobes at higher activator doping concentration toward activatable NIR-II molecular imaging.
Collapse
Affiliation(s)
- Jinzhao Huang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Xuefei Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Shiyu Li
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Fei Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiangliang Yang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
20
|
Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023; 59:102601. [PMID: 36630819 PMCID: PMC9841368 DOI: 10.1016/j.redox.2023.102601] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in colorectal cancer (CRC). It is produced in the colon by the catalytic synthesis of the colonocytes' enzymatic systems and the release of intestinal microbes, and is oxidatively metabolized in the colonocytes' mitochondria. Both endogenous H2S in colonic epithelial cells and exogenous H2S in intestinal lumen contribute to the onset and progression of CRC. The up-regulation of endogenous synthetases is thought to be the cause of the elevated H2S levels in CRC cells. Different diagnostic probes and combination therapies, as well as tumor treatment approaches through H2S modulation, have been developed in recent years and have become active area of investigation for the diagnosis and treatment of CRC. In this review, we focus on the specific mechanisms of H2S production and oxidative metabolism as well as the function of H2S in the occurrence, progression, diagnosis, and treatment of CRC. We also discuss the present challenges and provide insights into the future research of this burgeoning field.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Luming Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, China.
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, And Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China.
| |
Collapse
|
21
|
|
22
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Kong L, Lu W, Cao X, Wei Y, Sun J, Wang Y. The design strategies and biological applications of probes for the gaseous signaling molecule hydrogen sulfide. J Mater Chem B 2022; 10:7924-7954. [PMID: 36107014 DOI: 10.1039/d2tb01210c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the smallest and simplest biological thiol in living systems, is the third member of the family of signaling mediators. H2S participates in the regulation of a series of complex physiological and pathological functions in the body, making it a critical fulcrum that balances health and disease in human physiology. Small-molecule fluorescent probes have been proven to possess the unique advantages of high temporal and spatial resolution, good biocompatibility and high sensitivity, and thus their use is a powerful approach for monitoring the level and dynamics of H2S in living cells and organisms and better understanding its basic cellular functions. The field of small-molecule fluorescent probes for monitoring the complex biological activities of H2S in vivo has been thriving in recent years. Herein, we systematically summarize the latest developments in the field of fluorescent probes for the detection of H2S, illustrate their biological applications according to the classification of target-responsive sites, and emphasize the development direction and challenges of H2S-responsive fluorescent probes, hoping to give implications of researchers on fluorescent probes for future research.
Collapse
Affiliation(s)
- Lingxiu Kong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Wenjuan Lu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Xiaoli Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, Shandong, China
| | - Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Jiarao Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Yanfeng Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| |
Collapse
|
24
|
He Y, Pan Y, Zhao X, Fan W, Cai Y, Mou X. NIR-II Absorptive Dithienopyrrole-Thiadiazolobenzotriazole Conjugated Polymer for Photoacoustic Imaging-Guided Glioblastoma Multiforme Photothermal Therapy. Acta Biomater 2022; 152:546-561. [PMID: 36031034 DOI: 10.1016/j.actbio.2022.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
The development of new diagnostic imaging and precise treatment methods for glioblastoma multiforme (GBM) is significant to improve patients' quality of life and prolong their survival time. Herein, we proposed a photoacoustic imaging (PAI)-guided GBM high-efficient photothermal therapy (PTT) based on a second near-infrared (NIR-II) absorptive polymer (PDTP-TBZ) conjugated with intense electron donor dithienopyrrole (DTP) and strong electron acceptor thiadiazolobenzotriazole (TBZ). By nanoprecipitation, PDTP-TBZ can form into nanoparticles (PT NPs), and c(RGDfK) cyclic peptide with integrin-specific targeting was then modified on the surface of PT NPs to obtain the ability of active targeting GBM multifunctional nano-reagent (cRGD@PT NPs). Both in vitro and in vivo experiments demonstrated that cRGD@PT NPs as NIR-II GBM phototheranostic reagents can greatly improve the enrichment rate at tumor sites under PAI monitoring, and carry out precise NIR-II PTT with high effective tumor cell phototoxicity and high biological safety. Thus, cRGD@PT NPs have great potential for the future GBM phototheranostic application in clinic. STATEMENT OF SIGNIFICANCE: In this work, we successfully constructed an intense electron donor dithienopyrrole (DTP) with a strong electron acceptor thiadiazolobenzotriazole (TBZ) into a novel NIR-II optical absorptive conjugated polymer (PDTP-TBZ). Then, the c(RGDfK) cyclic peptide was modified on the surface of PT NPs to obtain multifunctional nanodiagnostic reagents (cRGD@PT NPs) that can effectively target GBM neovascularization and tumor cells. Both in vitro and in vivo experiments demonstrate that cRGD@PT NPs possess high photothermal conversion efficiency and practical photoacoustic imaging capability under 1064 nm laser irradiation. The results of this work suggested that cRGD@PT NPs have great potential in efficient NIR-II PTT guided by accurate PAI, which provide a good perspective for the treatment and diagnosis of GBM.
Collapse
Affiliation(s)
- Yichen He
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China, 310014; Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014
| | - Yi Pan
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China, 310014; Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014
| | - Xin Zhao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; College of Pharmacy, Hangzhou Medical College, Hangzhou, China, 310059
| | - Weijiao Fan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; College of Pharmacy, Hangzhou Medical College, Hangzhou, China, 310059.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China, 310014; College of Pharmacy, Hangzhou Medical College, Hangzhou, China, 310059.
| |
Collapse
|
25
|
Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022; 51:7692-7714. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China. .,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
26
|
Wu R, Chen Z, Huo H, Chen L, Su L, Zhang X, Wu Y, Yao Z, Xiao S, Du W, Song J. Ratiometric Detection of H 2S in Liver Injury by Activated Two-Wavelength Photoacoustic Imaging. Anal Chem 2022; 94:10797-10804. [PMID: 35829734 DOI: 10.1021/acs.analchem.2c01571] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metformin is commonly used for clinical treatment of type-2 diabetes, but long-term or overdose intake of metformin usually causes selective upregulation of H2S level in the liver, resulting in liver injury. Therefore, tracking the changes of H2S content in the liver would contribute to the prevention and diagnosis of liver injury. However, in the literature, there are few reports on ratiometric PA molecular probes for H2S detection in drug-induced liver injury (DILI). Accordingly, here we developed a H2S-activated ratiometric PA probe, namely BDP-H2S, based Aza-BODIPY dye for detecting the H2S upregulation of metformin-induced liver injury. Due to the intramolecular charge transfer (ICT) effect, BDP-H2S exhibited a strong PA signal at 770 nm. Following the response to H2S, its ICT effect was recovered which showed a decrement of PA770 and an enhancement of PA840. The ratiometric PA signal (PA840/PA770) showed excellent H2S selectivity response with a low limit of detection (0.59 μM). Bioimaging experiments demonstrated that the probe has been successfully used for ratiometric PA imaging of H2S in cells and metformin-induced liver injury in mice. Overall, the designed probe emerges as a powerful tool for noninvasive and accurate imaging of H2S level and tracking its distribution and variation in liver in-real time.
Collapse
Affiliation(s)
- Rongrong Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei 056001, P. R. China
| | - Lanlan Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhicun Yao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
27
|
Chen Q, Guo C, Zhou X, Su Y, Guo H, Cao M, Li J, Zhang Y, Zhao W, Gao X, Mi S, Chen D. N-acetylneuraminic acid and chondroitin sulfate modified nanomicelles with ROS-sensitive H 2S donor via targeting E-selectin receptor and CD44 receptor for the efficient therapy of atherosclerosis. Int J Biol Macromol 2022; 211:259-270. [PMID: 35513096 DOI: 10.1016/j.ijbiomac.2022.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Currently, very limited therapeutic approaches are available for the drug treatment of atherosclerosis(AS). H2S-donor is becoming a common trend in much life-threatening research. Several studies have documented that H2S-lyase is predominantly present in endothelial cells. N-Acetylneuraminic acid (SA), natural carbohydrate, binds specifically to the E-selectin receptor of endothelial cells. Meanwhile, recent studies related to Chondroitin sulfate have excellent target binding ability with CD44 receptor. We conjecture that the N-Acetylneuraminic acid and Chondroitin sulfate modified nanomicelles not only enhances the accumulation of the drug but also cleaves the H2S donor in the lesion, thus one stone two birds. Given these findings, we synthesized two kinds of nanoparticles, Carrier I (SCCF) and Carrier II (SCTM), for atherosclerosis to validate our guesses. Initially, S-allyl-L-cysteine and 4-methoxyphenylthiourea were used as H2S donors for SCCF and SCTM, respectively. After the introduction of ROS-sensitive groups. Then, micelles with N-Acetylneuraminic acid and Chondroitin sulfate were prepared to load rapamycin(RAP). Further, in atherosclerosis Oil Red O staining (ORO) results confirmed remarkable treatment effect with SCCF@RAP and SCTM@RAP. Thus, we conclude that the effect of dual-targeting nanomicelles with ROS-sensitive H2S donor based on N-Acetylneuraminic acid and Chondroitin sulfate will have a better role in atherosclerosis.
Collapse
Affiliation(s)
- Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xiudi Zhou
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jing Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Yue Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Weiyi Zhao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xin Gao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Shuqi Mi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
28
|
Qin Y, Zheng Z, Chen X, Liu Q, Ren S, Zhang W, Duan A, Zhang R. Tumor Microenvironment‐Activated Nanosystem With High Aggregation and On‐Demand Degradation for Imaging‐Guided Synergistic Hydrogenothermal Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yufei Qin
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Ziliang Zheng
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Xuejiao Chen
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Qin Liu
- Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
| | - Shilei Ren
- Information and Communication Engineering School of Information and Communication Engineering North University of China Taiyuan 030032 China
| | - Weiwei Zhang
- Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
| | - Ailin Duan
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Ruiping Zhang
- Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
| |
Collapse
|
29
|
Recent Progresses in NIR-II Luminescent Bio/Chemo Sensors Based on Lanthanide Nanocrystals. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescent bio/chemosensors are widely used in the field of biological research and medical diagnosis, with the advantages of non-invasiveness, high sensitivity, and good selectivity. In particular, luminescent bio/chemosensors, based on lanthanide nanocrystals (LnNCs) with a second near-infrared (NIR-II) emission, have attracted much attention, owing to greater penetration depth, aside from the merits of narrow emission band, abundant emission lines, and long lifetimes. In this review, NIR-II LnNCs-based bio/chemo sensors are summarized from the perspectives of the mechanisms of NIR-II luminescence, synthesis method of LnNCs, strategy of luminescence enhancement, sensing mechanism, and targeted bio/chemo category. Finally, the problems that exist in present LnNCs-based bio/chemosensors are discussed, and the future development trend is prospected.
Collapse
|
30
|
Yang L, Zhu Y, Liang L, Wang C, Ning X, Feng X. Self-Assembly of Intelligent Nanoplatform for Endogenous H 2S-Triggered Multimodal Cascade Therapy of Colon Cancer. NANO LETTERS 2022; 22:4207-4214. [PMID: 35532346 DOI: 10.1021/acs.nanolett.2c01131] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The specific in situ generation and activation of therapeutic agents with high spatiotemporal precision is expected to revolutionize cancer treatment. Here, we develop an intelligent nanoplatform (termed as NP-Cu), which is constructed by assembling photosensitizer chlorin e6 (Ce6), hypoxia-responsive prodrug banoxantrone (AQ4N) with clickable dibenzocyclooctyne (DIBO) functionalized lysine (D-K), and cyclen-Cu2+ complex, for improving combination anticancer therapy. Cyclen-Cu2+ complex-induced photodynamic therapy (PDT) quenching in NP-Cu can be effectively and selectively activated by tumor-overproduced hydrogen sulfide (H2S). More importantly, the reaction of endogenous H2S with Cu2+ can generate photothermal agent copper sulfide (CuS) for photothermal therapy (PTT). Furthermore, with the activation of PTT and PDT, intracellular hypoxic stress is amplified to trigger AQ4N-associated chemodynamic therapy (CDT), leading to light-enhanced cascade therapy of PDT, PTT and CDT. Therefore, we present a simple and practical strategy for developing pathological stimuli responsive combination therapy, which has the potential of advancing precision cancer medicine.
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Yupeng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Liuqing Liang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P.R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
31
|
Zhao S, Xu M, Liu R, Xue Y, Nie J, Chang Y. NIR-II Fluorescent Probe for Detecting Trimethylamine Based on Intermolecular Charge Transfer. Chemistry 2022; 28:e202200113. [PMID: 35324048 DOI: 10.1002/chem.202200113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/28/2022]
Abstract
A new kind of small organic NIR-II fluorophore molecule (ZS-1010) based on intermolecular charge transfer was developed as a NIR-II fluorescent probe for trimethylamine (TMA) detection, which is important for the diagnosis of cardiovascular disease, chronic kidney disease and diabetes. ZS-1010 has a strong push-pull electron system composed of electron donor unit and electron acceptor unit, exhibiting strong absorption and emission in the NIR-II region. When mixed with TMA which possesses strong electron-donating characteristics, the push-pull system of ZS-1010 will be affected along with the dipole moment change, leading to the quenching of fluorescence. This is the first example of TMA fluorescent probe in the NIR-II window showing deep penetration, fast response speed, high selectivity and pH stability.
Collapse
Affiliation(s)
- Shuai Zhao
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Manman Xu
- Department of Oncology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, P. R. China
| | - Ruixin Liu
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yonggan Xue
- Department of General Surgery, Chinese PLA General Hospital, 100053, Beijing, P. R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yincheng Chang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
32
|
A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat Commun 2022; 13:1685. [PMID: 35354794 PMCID: PMC8967875 DOI: 10.1038/s41467-022-29284-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) as an important biological gasotransmitter plays a pivotal role in many physiological and pathological processes. The sensitive and quantitative detection of H2S level is therefore crucial for precise diagnosis and prognosis evaluation of various diseases but remains a huge challenge due to the lack of accurate and reliable analytical methods in vivo. In this work, we report a smart, H2S-responsive and depleting nanoplatform (ZNNPs) for quantitative and real-time imaging of endogenous H2S for early diagnosis and treatment of H2S-associated diseases. We show that ZNNPs exhibit unexpected NIR conversion (F1070 → F720) and ratiometric photoacoustic (PA680/PA900) signal responsiveness towards H2S, allowing for sensitive and quantitative visualization of H2S in acute hepatotoxicity, cerebral hemorrhage model as well as colorectal tumors in living mice. ZNNPs@FA simultaneously scavenges the mitochondrial H2S in tumors leading to significant ATP reduction and severe mitochondrial damage, together with the activated photodynamic effect, resulting in efficient suppression of colorectal tumor growth in mice. We believe that this platform may provide a powerful tool for studying the vital impacts of H2S in related diseases.
Collapse
|
33
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Zhong Y, Yang L, Zhou Y, Peng J. Biomarker-responsive Fluorescent Probes for In Vivo Imaging of Liver Injury. Chem Asian J 2022; 17:e202200038. [PMID: 35182452 DOI: 10.1002/asia.202200038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/16/2022] [Indexed: 11/08/2022]
Abstract
Liver injury-related diseases have aroused widespread concern due to its extreme unpredictability, acute onset, and severe consequences. Nowadays, the clinical prediction and assessment of liver injury mainly focus on histopathological and serological approaches, which undergoes a tedious process and sometimes requires invasive biopsy. Over the past decades, fluorescence imaging technique have emerged as a rising star for the diagnosis of diseases owing to its noninvasiveness, high fidelity and ease of operation. On regard to liver injury, the fluorescent probes have been delicately designed to response a variety of endogenous biomolecules to precisely offer comprehensive information about the lesion site. Herein, we make a brief summary and discussion about the design strategies and applications of the recently reported fluorescent biosensors responsive to a series of biomarkers involved in the liver injury. The potential prospects and remaining challenges are also discussed to promote the progression in this field.
Collapse
Affiliation(s)
- Yang Zhong
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Lulu Yang
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, CHINA
| | - Yunyun Zhou
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Juanjuan Peng
- China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing, CHINA
| |
Collapse
|
35
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
36
|
Shen Y, Lifante J, Zabala-Gutierrez I, de la Fuente-Fernández M, Granado M, Fernández N, Rubio-Retama J, Jaque D, Marin R, Ximendes E, Benayas A. Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescence-Lifetime-Based Nanothermometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107764. [PMID: 34826883 DOI: 10.1002/adma.202107764] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Indexed: 05/03/2023]
Abstract
Temperature of tissues and organs is one of the first parameters affected by physiological and pathological processes, such as metabolic activity, acute trauma, or infection-induced inflammation. Therefore, the onset and development of these processes can be detected by monitoring deviations from basal temperature. To accomplish this, minimally invasive, reliable, and accurate measurement of the absolute temperature of internal organs is required. Luminescence nanothermometry is the ideal technology for meeting these requirements. Although this technique has lately undergone remarkable developments, its reliability is being questioned due to spectral distortions caused by biological tissues. In this work, how the use of bright Ag2 S nanoparticles featuring temperature-dependent fluorescence lifetime enables reliable and accurate measurement of the absolute temperature of the liver in mice subjected to lipopolysaccharide-induced inflammation is demonstrated. Beyond the remarkable thermal sensitivity (≈ 3% °C-1 around 37 °C) and thermal resolution obtained (smaller than 0.3 °C), the results included in this work set a blueprint for the development of new diagnostic procedures based on the use of intracorporeal temperature as a physiological indicator.
Collapse
Affiliation(s)
- Yingli Shen
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Lifante
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Irene Zabala-Gutierrez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal S/N, Madrid, 28040, Spain
| | | | - Miriam Granado
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Nuria Fernández
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal S/N, Madrid, 28040, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Antonio Benayas
- Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| |
Collapse
|
37
|
Li S, Ma Q, Wang C, Yang K, Hong Z, Chen Q, Song J, Song X, Yang H. Near-Infrared II Gold Nanocluster Assemblies with Improved Luminescence and Biofate for In Vivo Ratiometric Imaging of H 2S. Anal Chem 2022; 94:2641-2647. [PMID: 35085437 DOI: 10.1021/acs.analchem.1c05154] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasmall gold nanoclusters (AuNCs) are emerging as promising luminescent nanoprobes for bioimaging due to their fantastic photoluminescence (PL) and renal-clearable ability. However, it remains a great challenge to design them for in vivo sensitive molecular imaging in desired tissues. Herein, we have developed a strategy to tailor the PL and biofate of near-infrared II (NIR-II)-emitting AuNCs via ligand anchoring for improved bioimaging. By optimizing the ligand types in AuNCs and using Er3+-doped lanthanide (Ln) nanoparticles as models, core-satellite Ln@AuNCs assemblies were rationally constructed, which enabled 2.5-fold PL enhancement of AuNCs at 1100 nm and prolonged blood circulation compared to AuNCs. Significantly, Ln@AuNCs with dual intense NIR-II PL (from AuNCs and Er3+) can effectively accumulate in the liver for ratiometric NIR-II imaging of H2S, facilitated by H2S-mediated selective PL quenching of AuNCs. We have then demonstrated the real-time imaging evaluation of liver delivery efficacy and dynamics of two H2S prodrugs. This shows a paradigm to visualize liver H2S delivery and its prodrug screening in vivo. Note that Ln@AuNCs are body-clearable via the hepatobiliary excretion pathway, thus reducing potential long-term toxicity. Such findings may propel the engineering of AuNC nanoprobes for advancing in vivo bioimaging analysis.
Collapse
Affiliation(s)
- Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
| | - Qiuping Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
38
|
Zeng W, Wu L, Ishigaki Y, Harimoto T, Hu Y, Sun Y, Wang Y, Suzuki T, Chen H, Ye D. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H
2
S for In Vivo Imaging of Acute Hepatitis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060–0810 Japan
| | - Takashi Harimoto
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060–0810 Japan
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060–0810 Japan
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
39
|
Liu W, Bu D, Zhang H, Zhang M, Ren H, Li Z, Yu M. A mitochondrial and lysosomal targeted ratiometric probe for detecting intracellular H 2S. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:101-105. [PMID: 34937075 DOI: 10.1039/d1ay01783g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on coumarin and benzopyran derivatives, a dual-wavelength excitation ratiometric fluorescent probe, HABA, was prepared to detect H2S. The HABA probe showed good selectivity and anti-interference abilities during H2S detection. Fluorescence co-localization experiments showed that HABA had excellent localization abilities toward mitochondria and lysosomes. More importantly, HABA can not only detect exogenous H2S, but it can also detect endogenous H2S, indicating that HABA has high application potential and value in the biological field.
Collapse
Affiliation(s)
- Wenjie Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Dandan Bu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Meng Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanxian Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingming Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
40
|
Su Y, Ye L, Gu J, Zhao L, Zhou Y, Peng J. Sensing and Imaging of PPi in vivo using Lanthanide-based Second Near-infrared Luminescent Probes. J Mater Chem B 2022; 10:1055-1062. [DOI: 10.1039/d1tb02579a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pathological changes. Here, we reported a luminescent nanoprobe for the detection and imaging of PPi in vivo based on a lanthanide nanoparticle with luminescence at the second near-infrared window modified...
Collapse
|
41
|
Hu Y, Shang Z, Wang J, Hong M, Zhang R, Meng Q, Zhang Z. A phenothiazine-based turn-on fluorescent probe for the selective detection of hydrogen sulfide in food, live cells and animals. Analyst 2021; 146:7528-7536. [PMID: 34816828 DOI: 10.1039/d1an01762d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a phenothiazine-based fluorescent probe (PR) has been developed for the selective detection of hydrogen sulfide (H2S) in biosystems and monitoring H2S produced in the food spoilage process. The nucleophilic attack of H2S on the CC double bond of PRvia a Michael addition interdicted the ICT process to trigger 34-fold enhancement of the fluorescence emission. PR featured high selectivity and sensitivity (1.8 μM), low cytotoxicity and reliability at physiological pH. "Naked-eye" monitoring of H2S produced in the food spoilage process using PR was successfully accomplished. The preliminary fluorescence imaging studies showed that PR is suitable for the visualization of exogenous and endogenous H2S in living cells and live animals. Moreover, PR has been successfully applied to the visualization of H2S generation in an inflammation model. The results indicated that PR is an effective tool to monitor H2S production in the fields of biomedicine and food safety.
Collapse
Affiliation(s)
- Yaoyun Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| |
Collapse
|
42
|
Zeng W, Wu L, Ishigaki Y, Harimoto T, Hu Y, Sun Y, Wang Y, Suzuki T, Chen HY, Ye D. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H 2 S for In Vivo Imaging of Acute Hepatitis. Angew Chem Int Ed Engl 2021; 61:e202111759. [PMID: 34791772 DOI: 10.1002/anie.202111759] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Indexed: 11/12/2022]
Abstract
Accurate detection of hepatic hydrogen sulfide (H2 S) to monitor H2 S-related enzymes' activity is critical for acute hepatitis diagnosis, but remains a challenge due to the dynamic and transient nature of H2 S. Here, we report a H2 S-activatable near-infrared afterglow/MRI bimodal probe F1-GdNP, which shows an "always-on" MRI signal and "off-on" afterglow signal toward H2 S. F1-GdNP shows fast response, high sensitivity and specificity toward H2 S, permitting afterglow imaging of H2 S and evaluation of cystathionine γ-lyase (CSE)'s activity in living mice. We further employ the high spatial-resolution MRI signal of F1-GdNP to track its delivery and accumulation in liver. Importantly, F1-GdNP offers a high signal-to-background ratio (SBR=86.2±12.0) to sensitively report on the increased hepatic H2 S level in the acute hepatitis mice via afterglow imaging, which correlated well with the upregulated CSE activity in the liver, showcasing the good potential of F1-GdNP for monitoring of acute hepatitis process in vivo.
Collapse
Affiliation(s)
- Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
43
|
Li D, Pan J, Xu S, Fu S, Chu C, Liu G. Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases. BIOSENSORS 2021; 11:436. [PMID: 34821652 PMCID: PMC8615551 DOI: 10.3390/bios11110436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 05/12/2023]
Abstract
Recently, second near-infrared (NIR-II) fluorescent imaging has been widely applied in biomedical diagnosis, due to its high spatiotemporal resolution and deep tissue penetration. In contrast to the "always on" NIR-II fluorescent probes, the activatable NIR-II fluorescent probes have specific targeting to biological tissues, showing a higher imaging signal-to-background ratio and a lower detection limit. Therefore, it is of great significance to utilize disease-associated endogenous stimuli (such as pH values, enzyme existence, hypoxia condition and so on) to activate the NIR-II probes and achieve switchable fluorescent signals for specific deep bioimaging. This review introduces recent strategies and mechanisms for activatable NIR-II fluorescent probes and their applications in biosensing and bioimaging. Moreover, the potential challenges and perspectives of activatable NIR-II fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Dong Li
- Correspondence: (D.L.); (G.L.)
| | | | | | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging, Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China; (J.P.); (S.X.); (S.F.); (C.C.)
| |
Collapse
|