1
|
Ghosh S, Chittari BL. Orbital Hall conductivity in a Graphene Haldane and Haldane Haldane bilayers. Sci Rep 2025; 15:11085. [PMID: 40169818 PMCID: PMC11962152 DOI: 10.1038/s41598-025-94773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
We investigate the orbital Hall conductivity in bilayer graphene (G/G) by modifying one or both the layers as Haldane type ([Formula: see text] : Graphene/Haldane and [Formula: see text] : Haldane/Haldane) with the inclusion of next nearest neighbour (NNN) hopping strength ([Formula: see text]) and flux (ϕ). It is observed that the low energy bands of [Formula: see text] and [Formula: see text] are isolated with a gap at charge neutrality with the next nearest neighbour (NNN) hopping term [Formula: see text]. The time reversal (TR) symmetry breaking with [Formula: see text] induces a large orbital magnetic moment ([Formula: see text]) for the [Formula: see text] band in [Formula: see text] and [Formula: see text] bilayers. This TR symmetry breaking, modulated by the [Formula: see text] strength, leads to the emergence of Orbital Ferromagnetism and Valley Orbital Magnetism within the BZ for the Haldane single layer as well for both [Formula: see text] and [Formula: see text]. We show that for the applied longitudinal electric fields, the intrinsic angular momentum ([Formula: see text]) gives the orbital current ([Formula: see text]) along a transverse direction and generates the orbital Hall conductivity (OHC). We further show that the orbital magnetic polarity leads the Haldane single layer to Orbital Chern Insulator. Interestingly, the orbital Hall conductivities are finite and exhibit a large plateau in the gap over the occupied bands. Moreover, the accumulation of orbital magnetic moment of the bands in Haldane graphene bilayer shows Orbital Hall Insulator and Orbital Chern Insulators with large plateaus. Similarly, we show that in the hetero-bilayers, one of the layers of the Haldane type generates the orbital magnetism and induces the OHC. We conclude that the isolated bands in Haldane graphene bilayers with external stimuli are of an orbital nature and have various orbital Hall phases.
Collapse
Affiliation(s)
- Sovan Ghosh
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Bheema Lingam Chittari
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
2
|
Sánchez Sánchez M, Díaz I, González J, Stauber T. Nematic versus Kekulé Phases in Twisted Bilayer Graphene under Hydrostatic Pressure. PHYSICAL REVIEW LETTERS 2024; 133:266603. [PMID: 39879033 DOI: 10.1103/physrevlett.133.266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/31/2025]
Abstract
We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime. We arrive then at the prediction that the superconductivity should be Ising-like in the hole-doped nematic regime, with spin-valley locking, and spin-triplet in the electron-doped regime.
Collapse
Affiliation(s)
| | - Israel Díaz
- Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| | - José González
- Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
| | - Tobias Stauber
- Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| |
Collapse
|
3
|
Li SY, Xu Z, Wang Y, Han Y, Watanabe K, Taniguchi T, Song A, Ma TB, Gao HJ, Jiang Y, Mao J. Quasiperiodic Moiré Reconstruction and Modulation of Electronic Properties in Twisted Bilayer Graphene Aligned with Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS 2024; 133:196401. [PMID: 39576896 DOI: 10.1103/physrevlett.133.196401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 11/24/2024]
Abstract
Twisted van der Waals systems have emerged as intriguing arenas for exploring exotic strongly correlated and topological physics, with structural reconstruction and strain playing essential roles in determining their electronic properties. In twisted bilayer graphene aligned with hexagonal boron nitride (TBG/h-BN), the interplay between the two sets of moiré patterns from graphene-graphene (G-G) and graphene-h-BN (G-h-BN) interfaces can trigger notable moiré pattern reconstruction (MPR). Here, we present the quasiperiodic MPR in the TBG/h-BN with two similar moiré wavelengths, wherein the MPR results from the incommensurate mismatch between the wavelengths of the G-G and G-h-BN moiré patterns. The short-range, nearly ordered moiré super-superstructures deviate from moiré quasicrystal and are accompanied by inhomogeneous strain, thereby inducing spatially variable energy separations between the Van Hove singularities (VHs) in the band structures of the TBG near the magic angle. By tuning the carrier densities in our sample, correlated gaps at specific AA sites are observed, uncovering the quantum-dot-like behavior and incoherent characteristics of the AA sites in the TBG. Our findings would give new hints on the microscopic mechanisms underlying the abundant novel quantum phases in the TBG/h-BN.
Collapse
|
4
|
Yu H, Heine T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. SCIENCE ADVANCES 2024; 10:eadq7954. [PMID: 39356753 DOI: 10.1126/sciadv.adq7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Ferromagnetism and antiferromagnetism require robust long-range magnetic ordering, which typically involves strongly interacting spins localized at transition metal atoms. However, in metal-free systems, the spin orbitals are largely delocalized, and weak coupling between the spins in the lattice hampers long-range ordering. Metal-free magnetism is of fundamental interest to physical sciences, unlocking unprecedented dimensions for strongly correlated materials and biocompatible magnets. Here, we present a strategy to achieve strong coupling between spin centers of planar radical monomers in π-conjugated two-dimensional (2D) polymers and rationally control the orderings. If the π-states in these triangulene-based 2D polymers are half-occupied, then we predict that they are antiferromagnetic Mott-Hubbard insulators. Incorporating a boron or nitrogen heteroatom per monomer results in Stoner ferromagnetism and half-metallicity, with the Fermi level located at spin-polarized Dirac points. An unprecedented antiferromagnetic half-semiconductor is observed in a binary boron-nitrogen-centered 2D polymer. Our findings pioneer Stoner and Mott-Hubbard magnetism emerging in the electronic π-system of crystalline-conjugated 2D polymers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Centrum for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
5
|
Bhowmik S, Ghosh A, Chandni U. Emergent phases in graphene flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:096401. [PMID: 39059412 DOI: 10.1088/1361-6633/ad67ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.
Collapse
Affiliation(s)
- Saisab Bhowmik
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U Chandni
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Melchakova IA, Oyeniyi GT, Polyutov SP, Avramov PV. Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes. MICROMACHINES 2023; 14:1889. [PMID: 37893326 PMCID: PMC10609095 DOI: 10.3390/mi14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Advanced two-dimensional spin-polarized heterostructures based on twisted (TBG) and nanoporous (NPBG) bilayer graphenes doped with Eu ions were theoretically proposed and studied using Periodic Boundary Conditions Density Functional theory electronic structure calculations. The significant polarization of the electronic states at the Fermi level was discovered for both Eu/NPBG(AA) and Eu/TBG lattices. Eu ions' chemi- and physisorption to both graphenes may lead to structural deformations, drop of symmetry of low-dimensional lattices, interlayer fusion, and mutual slides of TBG graphene fragments. The frontier bands in the valence region at the vicinity of the Fermi level of both spin-polarized 2D Eu/NPBG(AA) and Eu/TBG lattices clearly demonstrate flat dispersion laws caused by localized electronic states formed by TBG Moiré patterns, which could lead to strong electron correlations and the formation of exotic quantum phases.
Collapse
Affiliation(s)
- Iu. A. Melchakova
- School of Physics and Engineering, ITMO University, 197101 St. Petersburg, Russia;
| | - G. T. Oyeniyi
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - S. P. Polyutov
- International Research Center of Spectroscopy and Quantum Chemistry (IRC SQC), Siberian Federal University, Svobodniy pr. 79/10, 600041 Krasnoyarsk, Russia;
| | - P. V. Avramov
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
7
|
Du F, Zheng K, Zeng S, Yuan Y. Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1271-1284. [PMID: 39677592 PMCID: PMC11636415 DOI: 10.1515/nanoph-2022-0798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 12/17/2024]
Abstract
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
Collapse
Affiliation(s)
- Fusheng Du
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
| | - Kai Zheng
- School of Civil Aviation, Northwestern Polytechnical University, Xi’an, Shanxi, 710072, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-ERL 7004, Université de Technologie de Troyes, Troyes, 10000, France
| | - Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
8
|
Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene. Nat Commun 2022; 13:6468. [PMID: 36309518 PMCID: PMC9617879 DOI: 10.1038/s41467-022-34192-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
Twisted double bilayer graphene (tDBG) comprises two Bernal-stacked bilayer graphene sheets with a twist between them. Gate voltages applied to top and back gates of a tDBG device tune both the flatness and topology of the electronic bands, enabling an unusual level of experimental control. Metallic states with broken spin and valley symmetries have been observed in tDBG devices with twist angles in the range 1.2–1.3°, but the topologies and order parameters of these states have remained unclear. We report the observation of an anomalous Hall effect in the correlated metal state of tDBG, with hysteresis loops spanning hundreds of mT in out-of-plane magnetic field (B⊥) that demonstrate spontaneously broken time-reversal symmetry. The B⊥ hysteresis persists for in-plane fields up to several Tesla, suggesting valley (orbital) ferromagnetism. At the same time, the resistivity is strongly affected by even mT-scale values of in-plane magnetic field, pointing to spin-valley coupling or to a direct orbital coupling between in-plane field and the valley degree of freedom. Twisted double bilayer graphene (tDBG) comprises two Bernal-stacked bilayer graphene sheets with a twist between them. Here, the authors report a strong anomalous Hall effect in the correlated-metal regime of tDBG, indicating time reversal symmetry breaking from orbital ferromagnetism, likely associated with valley polarization.
Collapse
|
9
|
Lin JX, Zhang YH, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li JIA. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 2022; 375:437-441. [PMID: 34990215 DOI: 10.1126/science.abh2889] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Strong electron correlation and spin-orbit coupling (SOC) can have a profound influence on the electronic properties of materials. We examined their combined influence on a two-dimensional electronic system at the atomic interface between magic-angle twisted bilayer graphene and a tungsten diselenide crystal. We found that strong electron correlation within the moiré flatband stabilizes correlated insulating states at both quarter and half filling, and that SOC transforms these Mott-like insulators into ferromagnets, as evidenced by a robust anomalous Hall effect with hysteretic switching behavior. The coupling between spin and valley degrees of freedom could be demonstrated through control of the magnetic order with an in-plane magnetic field or a perpendicular electric field. Our findings establish an experimental knob to engineer topological properties of moiré bands in twisted bilayer graphene and related systems.
Collapse
Affiliation(s)
- Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, RI 02912, USA
| | - Ya-Hui Zhang
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Erin Morissette
- Department of Physics, Brown University, Providence, RI 02912, USA
| | - Zhi Wang
- Department of Physics, Brown University, Providence, RI 02912, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Daniel Rhodes
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - J I A Li
- Department of Physics, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Chen G, Sharpe AL, Fox EJ, Wang S, Lyu B, Jiang L, Li H, Watanabe K, Taniguchi T, Crommie MF, Kastner MA, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F. Tunable Orbital Ferromagnetism at Noninteger Filling of a Moiré Superlattice. NANO LETTERS 2022; 22:238-245. [PMID: 34978444 DOI: 10.1021/acs.nanolett.1c03699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The flat bands resulting from moiré superlattices exhibit fascinating correlated electron phenomena such as correlated insulators, ( Nature 2018, 556 (7699), 80-84), ( Nature Physics 2019, 15 (3), 237) superconductivity, ( Nature 2018, 556 (7699), 43-50), ( Nature 2019, 572 (7768), 215-219) and orbital magnetism. ( Science 2019, 365 (6453), 605-608), ( Nature 2020, 579 (7797), 56-61), ( Science 2020, 367 (6480), 900-903) Such magnetism has been observed only at particular integer multiples of n0, the density corresponding to one electron per moiré superlattice unit cell. Here, we report the experimental observation of ferromagnetism at noninteger filling (NIF) of a flat Chern band in a ABC-TLG/hBN moiré superlattice. This state exhibits prominent ferromagnetic hysteresis behavior with large anomalous Hall resistivity in a broad region of densities centered in the valence miniband at n = -2.3n0. We observe that, not only the magnitude of the anomalous Hall signal, but also the sign of the hysteretic ferromagnetic response can be modulated by tuning the carrier density and displacement field. Rotating the sample in a fixed magnetic field demonstrates that the ferromagnetism is highly anisotropic and likely purely orbital in character.
Collapse
Affiliation(s)
- Guorui Chen
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aaron L Sharpe
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Quantum and Electronic Materials Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Eli J Fox
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Shaoxin Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Bosai Lyu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Jiang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Hongyuan Li
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marc A Kastner
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Goldhaber-Gordon
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|