1
|
Olshin PK, Park WW, Kim YJ, Choi YJ, Mamonova DV, Kolesnikov IE, Afanaseva EV, Kwon OH. Boltzmann-Distribution-Driven Cathodoluminescence Thermometry in In Situ Transmission Electron Microscopy. ACS NANO 2024; 18:33441-33451. [PMID: 39604087 DOI: 10.1021/acsnano.4c10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nanothermometry in in situ transmission electron microscopy (TEM) is useful for comprehending the functioning mechanisms of the heterogeneous matter through real-time observations. Herein, we introduce a Boltzmann-distribution-driven cathodoluminescence (CL) nanothermometry for in situ local temperature probing in TEM. The population distribution across the close-lying Stark sublevels of dysprosium ions in an yttrium vanadate matrix follows the Boltzmann distribution, enabling the use of the CL-intensity ratio as a thermometry over a wide temperature range of 103-435 K with a relative sensitivity exceeding 3% K-1 and precision of ±2%. Superior to other CL-based thermometries, the present approach is independent of electron-beam parameters and dopant concentration, extending the robustness and applicability of CL-based nanothermometry in electron microscopy. We further demonstrate the real-time mapping of the temperature distribution across a TEM grid under laser irradiation.
Collapse
Affiliation(s)
- Pavel K Olshin
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Choi
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daria V Mamonova
- Department of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Afanaseva
- Department of Chemistry, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Borghi MTA, Wilson NR. Cathodoluminescence from interlayer excitons in a 2D semiconductor heterobilayer. NANOTECHNOLOGY 2024; 35:465203. [PMID: 39158548 DOI: 10.1088/1361-6528/ad70b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Photoluminescence has widely been used to study excitons in semiconducting transition metal dichalcogenide (MX2) monolayers, demonstrating strong light-matter interactions and locked spin and valley degrees of freedom. In heterobilayers composed of overlapping monolayers of two different MX2, an interlayer exciton can form, with the hole localised in one layer and the electron in the other. These interlayer excitons are long-lived, field-tunable, and can be trapped by moiré patterns formed at small twist angles between the layers. Here we demonstrate that emission from radiative recombination of interlayer excitons can be observed by cathodoluminescence from a WSe2/MoSe2heterobilayer encapsulated in hexagonal boron nitride. The higher spatial resolution of cathodoluminescence, compared to photoluminescence, allows detailed analysis of sample heterogeneity at the 100 s of nm lengthscales over which twist angles tend to vary in dry-transfer fabricated heterostructures.
Collapse
Affiliation(s)
- Matteo T A Borghi
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Bonnet N, Baaboura J, Castioni F, Woo SY, Ho CH, Watanabe K, Taniguchi T, Tizei LHG, Coenen T. Cathodoluminescence emission and electron energy loss absorption from a 2D transition metal dichalcogenide in van der Waals heterostructures. NANOTECHNOLOGY 2024; 35:405702. [PMID: 38604153 DOI: 10.1088/1361-6528/ad3d62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Nanoscale variations of optical properties in transition metal dichalcogenide (TMD) monolayers can be explored with cathodoluminescence (CL) and electron energy loss spectroscopy (EELS) using electron microscopes. To increase the CL emission intensity from TMD monolayers, the MoSe2flakes are encapsulated in hexagonal boron nitride (hBN), creating van der Waals (VdW) heterostructures. Until now, the studies have been exclusively focused on scanning transmission electron microscopy (STEM-CL) or scanning electron microscopy (SEM-CL), separately. Here, we present results, using both techniques on the same sample, thereby exploring a large acceleration voltage range. We correlate the CL measurements with STEM-EELS measurements acquired with different energy dispersions, to access both the low-loss region at ultra-high spectral resolution, and the core-loss region. This provides information about the weight of the various absorption phenomena including the direct TMD absorption, the hBN interband transitions, the hBN bulk plasmon, and the core losses of the atoms present in the heterostructure. The S(T)EM-CL measurements from the TMD monolayer only show emission from the A exciton. Combining the STEM-EELS and S(T)EM-CL measurements, we can reconstruct different decay pathways leading to the A exciton CL emission. The comparison with SEM-CL shows that this is also a good technique for TMD heterostructure characterization, where the reduced demands on sample preparation are appealing. To demonstrate the capabilities of SEM-CL imaging, we also measured on a SiO2/Si substrate, quintessential in the sample preparation of two-dimensional materials, which is electron-opaque and can only be measured in SEM-CL. The CL-emitting defects of SiO2make this substrate challenging to use, but we demonstrate that this background can be suppressed by using lower electron energy.
Collapse
Affiliation(s)
- Noémie Bonnet
- Delmic B.V., Kanaalweg 4, 2628 EB Delft, The Netherlands
| | - Jassem Baaboura
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Florian Castioni
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Steffi Y Woo
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Toon Coenen
- Delmic B.V., Kanaalweg 4, 2628 EB Delft, The Netherlands
| |
Collapse
|
4
|
Woo SY, Shao F, Arora A, Schneider R, Wu N, Mayne AJ, Ho CH, Och M, Mattevi C, Reserbat-Plantey A, Moreno Á, Sheinfux HH, Watanabe K, Taniguchi T, Michaelis de Vasconcellos S, Koppens FHL, Niu Z, Stéphan O, Kociak M, García de Abajo FJ, Bratschitsch R, Konečná A, Tizei LHG. Engineering 2D Material Exciton Line Shape with Graphene/ h-BN Encapsulation. NANO LETTERS 2024; 24:3678-3685. [PMID: 38471109 DOI: 10.1021/acs.nanolett.3c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.
Collapse
Affiliation(s)
- Steffi Y Woo
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Fuhui Shao
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Ashish Arora
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, 411008 Pune, India
| | - Robert Schneider
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| | - Nianjheng Wu
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Andrew J Mayne
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Mauro Och
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Cecilia Mattevi
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Antoine Reserbat-Plantey
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- Université Côte d'Azur, CNRS, CRHEA, 06560 Valbonne, Sophia-Antipolis, France
| | - Álvaro Moreno
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Hanan Herzig Sheinfux
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | - Frank H L Koppens
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Zhichuan Niu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Odile Stéphan
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - F Javier García de Abajo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Rudolf Bratschitsch
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| | - Andrea Konečná
- Central European Institute of Technology, Brno University of Technology, Brno 612 00, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
5
|
Kang M, Kim SJ, Joo H, Koo Y, Lee H, Lee HS, Suh YD, Park KD. Nanoscale Manipulation of Exciton-Trion Interconversion in a MoSe 2 Monolayer via Tip-Enhanced Cavity-Spectroscopy. NANO LETTERS 2024; 24:279-286. [PMID: 38117534 DOI: 10.1021/acs.nanolett.3c03920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Emerging light-matter interactions in metal-semiconductor hybrid platforms have attracted considerable attention due to their potential applications in optoelectronic devices. Here, we demonstrate plasmon-induced near-field manipulation of trionic responses in a MoSe2 monolayer using tip-enhanced cavity-spectroscopy (TECS). The surface plasmon-polariton mode on the Au nanowire can locally manipulate the exciton (X0) and trion (X-) populations of MoSe2. Furthermore, we reveal that surface charges significantly influence the emission and interconversion processes of X0 and X-. In the TECS configuration, the localized plasmon significantly affects the distributions of X0 and X- due to the modified radiative decay rate. Additionally, within the TECS cavity, the electric doping effect and hot electron generation enable dynamic interconversion between X0 and X- at the nanoscale. This work advances our understanding of plasmon-exciton-hot electron interactions in metal-semiconductor-metal hybrid structures, providing a foundation for an optimal trion-based nano-optoelectronic platform.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Su Jin Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Shima K, Cheng TS, Mellor CJ, Beton PH, Elias C, Valvin P, Gil B, Cassabois G, Novikov SV, Chichibu SF. Cathodoluminescence spectroscopy of monolayer hexagonal boron nitride. Sci Rep 2024; 14:169. [PMID: 38167439 PMCID: PMC10762211 DOI: 10.1038/s41598-023-50502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Cathodoluminescence (CL) spectroscopy is a suitable technique for studying the luminescent properties of optoelectronic materials because CL has no limitation on the excitable bandgap energy and eliminates ambiguous signals due to simple light scattering and resonant Raman scattering potentially involved in the photoluminescence spectra. However, direct CL measurements of atomically thin two-dimensional materials have been difficult due to the small excitation volume that interacts with high-energy electron beams. Herein, distinct CL signals from a monolayer hexagonal BN (hBN), namely mBN, epitaxial film grown on a graphite substrate are shown by using a CL system capable of large-area and surface-sensitive excitation. Spatially resolved CL spectra at 13 K exhibited a predominant 5.5-eV emission band, which has been ascribed to originate from multilayered aggregates of hBN, markedly at thicker areas formed on the step edges of the substrate. Conversely, a faint peak at 6.04 ± 0.01 eV was routinely observed from atomically flat areas, which is assigned as being due to the recombination of phonon-assisted direct excitons of mBN. The CL results support the transition from indirect bandgap in bulk hBN to direct bandgap in mBN. The results also encourage one to elucidate emission properties of other low-dimensional materials by using the present CL configuration.
Collapse
Grants
- Crossover Alliance to Create the Future with People, Intelligence, and Materials Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- Crossover Alliance to Create the Future with People, Intelligence, and Materials Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- EP/K040243/1 The Engineering and Physical Sciences Research Council UK
- EP/P019080/1 The Engineering and Physical Sciences Research Council UK
- EP/V05323X/1 The Engineering and Physical Sciences Research Council UK
Collapse
Affiliation(s)
- Kohei Shima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.
| | - Tin S Cheng
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Christopher J Mellor
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter H Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Christine Elias
- Laboratoire Charles Coulomb, UMR5221 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Pierre Valvin
- Laboratoire Charles Coulomb, UMR5221 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Bernard Gil
- Laboratoire Charles Coulomb, UMR5221 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Guillaume Cassabois
- Laboratoire Charles Coulomb, UMR5221 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Sergei V Novikov
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Shigefusa F Chichibu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
7
|
Dang Z, Chen Y, Fang Z. Cathodoluminescence Nanoscopy: State of the Art and Beyond. ACS NANO 2023; 17:24431-24448. [PMID: 38054434 DOI: 10.1021/acsnano.3c07593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cathodoluminescence (CL) nanoscopy is proven to be a powerful tool to explore nanoscale optical properties, whereby free electron beams achieve a spatial resolution far beyond the diffraction limit of light. With developed methods for the control of electron beams and the collection of light, the dimension of information that CL can access has been expanded to include polarization, momentum, and time, holding promise to provide invaluable insights into the study of materials and optical near-field dynamics. With a focus on the burgeoning field of CL nanoscopy, this perspective outlines the recent advancements and applications of this technique, as illustrated by the salient experimental works. In addition, as an outlook for future research, several appealing directions that may bring about developments and discoveries are highlighted.
Collapse
Affiliation(s)
- Zhibo Dang
- School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Yuxiang Chen
- School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Zheyu Fang
- School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
8
|
Li X, Huang W, Krajnc A, Yang Y, Shukla A, Lee J, Ghasemi M, Martens I, Chan B, Appadoo D, Chen P, Wen X, Steele JA, Hackbarth HG, Sun Q, Mali G, Lin R, Bedford NM, Chen V, Cheetham AK, Tizei LHG, Collins SM, Wang L, Hou J. Interfacial alloying between lead halide perovskite crystals and hybrid glasses. Nat Commun 2023; 14:7612. [PMID: 37993424 PMCID: PMC10665442 DOI: 10.1038/s41467-023-43247-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion "alloying" layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices.
Collapse
Affiliation(s)
- Xuemei Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wengang Huang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Yuwei Yang
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Atul Shukla
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jaeho Lee
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Isaac Martens
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Julian A Steele
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Haira G Hackbarth
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
9
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Auad Y, Varkentina N, Woo SY, Tencé M, Blazit JD, Li X, Zobelli A, Walls M, Tizei LHG, Kociak M, Stéphan O. Recent Advances in Spatially-resolved Spectroscopy Combining Photon and Monochromated Electron Beams in a STEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:624. [PMID: 37613085 DOI: 10.1093/micmic/ozad067.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Yves Auad
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Nadezda Varkentina
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Steffi Y Woo
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Marcel Tencé
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Jean-Denis Blazit
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Xiaoyan Li
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Alberto Zobelli
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Michael Walls
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Odile Stéphan
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| |
Collapse
|
11
|
Tizei LHG. Nanosecond Temporal Correlations Between Electron Spectroscopies to Explore Excitation Dynamics in Nanomaterials. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:380-381. [PMID: 37613319 DOI: 10.1093/micmic/ozad067.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Luiz H G Tizei
- UParis-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| |
Collapse
|
12
|
Ramsden H, Sarkar S, Wang Y, Zhu Y, Kerfoot J, Alexeev EM, Taniguchi T, Watanabe K, Tongay S, Ferrari AC, Chhowalla M. Nanoscale Cathodoluminescence and Conductive Mode Scanning Electron Microscopy of van der Waals Heterostructures. ACS NANO 2023. [PMID: 37319105 DOI: 10.1021/acsnano.3c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
van der Waals heterostructures (vdW-HSs) integrate dissimilar materials to form complex devices. These rely on the manipulation of charges at multiple interfaces. However, at present, submicrometer variations in strain, doping, or electrical breakages may exist undetected within a device, adversely affecting macroscale performance. Here, we use conductive mode and cathodoluminescence scanning electron microscopy (CM-SEM and SEM-CL) to investigate these phenomena. As a model system, we use a monolayer WSe2 (1L-WSe2) encapsulated in hexagonal boron nitride (hBN). CM-SEM allows for quantification of the flow of electrons during the SEM measurements. During electron irradiation at 5 keV, up to 70% of beam electrons are deposited into the vdW-HS and can subsequently migrate to the 1L-WSe2. This accumulation of charge leads to dynamic doping of 1L-WSe2, reducing its CL efficiency by up to 30% over 30 s. By providing a path for excess electrons to leave the sample, near full restoration of the initial CL signal can be achieved. These results indicate that the trapping of charges in vdW-HSs during electron irradiation must be considered, in order to obtain and maintain optimal performance of vdW-HS devices during processes such as e-beam lithography or SEM. Thus, CM-SEM and SEM-CL form a toolkit through which nanoscale characterization of vdW-HS devices can be performed, allowing electrical and optical properties to be correlated.
Collapse
Affiliation(s)
- Hugh Ramsden
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Soumya Sarkar
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Yan Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Yiru Zhu
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - James Kerfoot
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| |
Collapse
|
13
|
López LEP, Rosławska A, Scheurer F, Berciaud S, Schull G. Tip-induced excitonic luminescence nanoscopy of an atomically resolved van der Waals heterostructure. NATURE MATERIALS 2023; 22:482-488. [PMID: 36928383 DOI: 10.1038/s41563-023-01494-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The electronic and optical properties of van der Waals heterostructures are strongly influenced by the structuration and homogeneity of their nano- and atomic-scale environments. Unravelling this intimate structure-property relationship is a key challenge that requires methods capable of addressing the light-matter interactions in van der Waals materials with ultimate spatial resolution. Here we use a low-temperature scanning tunnelling microscope to probe-with atomic-scale resolution-the excitonic luminescence of a van der Waals heterostructure, made of a transition metal dichalcogenide monolayer stacked onto a few-layer graphene flake supported by a Au(111) substrate. Sharp emission lines arising from neutral, charged and localized excitons are reported. Their intensities and emission energies vary as a function of the nanoscale topography of the van der Waals heterostructure, explaining the variability of the emission properties observed with diffraction-limited approaches. Our work paves the way towards understanding and controlling optoelectronic phenomena in moiré superlattices with atomic-scale resolution.
Collapse
Affiliation(s)
- Luis E Parra López
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Anna Rosławska
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Stéphane Berciaud
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France.
| | - Guillaume Schull
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France.
| |
Collapse
|
14
|
Huang GY, Lin L, Zhao S, Li W, Deng X, Zhang S, Wang C, Li XZ, Zhang Y, Fang HH, Zou Y, Li P, Bai B, Sun HB, Fu T. All-Optical Reconfigurable Excitonic Charge States in Monolayer MoS 2. NANO LETTERS 2023; 23:1514-1521. [PMID: 36730120 DOI: 10.1021/acs.nanolett.2c04850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excitons are quasi-particles composed of electron-hole pairs through Coulomb interaction. Due to the atomic-thin thickness, they are tightly bound in monolayer transition metal dichalcogenides (TMDs) and dominate their optical properties. The capability to manipulate the excitonic behavior can significantly influence the photon emission or carrier transport performance of TMD-based devices. However, on-demand and region-selective manipulation of the excitonic states in a reversible manner remains challenging so far. Herein, harnessing the coordinated effect of femtosecond-laser-driven atomic defect generation, interfacial electron transfer, and surface molecular desorption/adsorption, we develop an all-optical approach to manipulate the charge states of excitons in monolayer molybdenum disulfide (MoS2). Through steering the laser beam, we demonstrate reconfigurable optical encoding of the excitonic charge states (between neutral and negative states) on a single MoS2 flake. Our technique can be extended to other TMDs materials, which will guide the design of all-optical and reconfigurable TMD-based optoelectronic and nanophotonic devices.
Collapse
Affiliation(s)
- Guan-Yao Huang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Shuang Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou310024, China
| | - Wenbin Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou310024, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing100084, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Yan Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Benfeng Bai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Tairan Fu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
15
|
Reidy K, Majchrzak PE, Haas B, Thomsen JD, Konečná A, Park E, Klein J, Jones AJH, Volckaert K, Biswas D, Watson MD, Cacho C, Narang P, Koch CT, Ulstrup S, Ross FM, Idrobo JC. Direct Visualization of Subnanometer Variations in the Excitonic Spectra of 2D/3D Semiconductor/Metal Heterostructures. NANO LETTERS 2023; 23:1068-1076. [PMID: 36637381 DOI: 10.1021/acs.nanolett.2c04749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.
Collapse
Affiliation(s)
- Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Benedikt Haas
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Joachim Dahl Thomsen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrea Konečná
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Eugene Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julian Klein
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfred J H Jones
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Klara Volckaert
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Deepnarayan Biswas
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Matthew D Watson
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Cephise Cacho
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Prineha Narang
- College of Letters and Science, Physical Sciences, UCLA, Los Angeles, California 90095, United States
| | - Christoph T Koch
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Søren Ulstrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juan Carlos Idrobo
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Peña Román RJ, Bretel R, Pommier D, Parra López LE, Lorchat E, Boer-Duchemin E, Dujardin G, Borisov AG, Zagonel LF, Schull G, Berciaud S, Le Moal E. Tip-Induced and Electrical Control of the Photoluminescence Yield of Monolayer WS 2. NANO LETTERS 2022; 22:9244-9251. [PMID: 36458911 DOI: 10.1021/acs.nanolett.2c02142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The photoluminescence (PL) of monolayer tungsten disulfide (WS2) is locally and electrically controlled using the nonplasmonic tip and tunneling current of a scanning tunneling microscope (STM). The spatial and spectral distribution of the emitted light is determined using an optical microscope. When the STM tip is engaged, short-range PL quenching due to near-field electromagnetic effects is present, independent of the sign and value of the bias voltage applied to the tip-sample tunneling junction. In addition, a bias-voltage-dependent long-range PL quenching is measured when the sample is positively biased. We explain these observations by considering the native n-doping of monolayer WS2 and the charge carrier density gradients induced by electron tunneling in micrometer-scale areas around the tip position. The combination of wide-field PL microscopy and charge carrier injection using an STM opens up new ways to explore the interplay between excitons and charge carriers in two-dimensional semiconductors.
Collapse
Affiliation(s)
- Ricardo Javier Peña Román
- Institute of Physics "Gleb Wataghin", Department of Applied Physics, State University of Campinas-UNICAMP, 13083-859 Campinas, Brazil
| | - Rémi Bretel
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Delphine Pommier
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Luis Enrique Parra López
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Etienne Lorchat
- Physics & Informatics (PHI) Laboratories, NTT Research, Inc., Sunnyvale, California 94085, United States
| | - Elizabeth Boer-Duchemin
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Gérald Dujardin
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Andrei G Borisov
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Luiz Fernando Zagonel
- Institute of Physics "Gleb Wataghin", Department of Applied Physics, State University of Campinas-UNICAMP, 13083-859 Campinas, Brazil
| | - Guillaume Schull
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Stéphane Berciaud
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Eric Le Moal
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| |
Collapse
|
17
|
Varkentina N, Auad Y, Woo SY, Zobelli A, Bocher L, Blazit JD, Li X, Tencé M, Watanabe K, Taniguchi T, Stéphan O, Kociak M, Tizei LHG. Cathodoluminescence excitation spectroscopy: Nanoscale imaging of excitation pathways. SCIENCE ADVANCES 2022; 8:eabq4947. [PMID: 36206335 PMCID: PMC9544325 DOI: 10.1126/sciadv.abq4947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Following optical excitations' life span from creation to decay into photons is crucial in understanding materials photophysics. Macroscopically, this is studied using optical techniques, such as photoluminescence excitation spectroscopy. However, excitation and emission pathways can vary at nanometer scales, preventing direct access, as no characterization technique has the relevant spatial, spectral, and time resolution. Here, using combined electron spectroscopies, we explore excitations' creation and decay in two representative optical materials: plasmonic nanoparticles and luminescent two-dimensional layers. The analysis of the energy lost by an exciting electron that is coincident in time with a visible-ultraviolet photon unveils the decay pathways from excitation toward light emission. This is demonstrated for phase-locked (coherent) interactions (localized surface plasmons) and non-phase-locked ones (point defect excited states). The developed cathodoluminescence excitation spectroscopy images energy transfer pathways at the nanometer scale, widening the available toolset to explore nanoscale materials.
Collapse
Affiliation(s)
- Nadezda Varkentina
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Yves Auad
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Steffi Y. Woo
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Alberto Zobelli
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Laura Bocher
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Jean-Denis Blazit
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Xiaoyan Li
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Marcel Tencé
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Odile Stéphan
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Luiz H. G. Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| |
Collapse
|
18
|
Reidy K, Thomsen JD, Lee HY, Zarubin V, Yu Y, Wang B, Pham T, Periwal P, Ross FM. Mechanisms of Quasi van der Waals Epitaxy of Three-Dimensional Metallic Nanoislands on Suspended Two-Dimensional Materials. NANO LETTERS 2022; 22:5849-5858. [PMID: 35852159 DOI: 10.1021/acs.nanolett.2c01682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding structure at the interface between two-dimensional (2D) materials and 3D metals is crucial for designing novel 2D/3D heterostructures and improving the performance of many 2D material devices. Here, we quantify and discuss the 2D/3D interface structure and the 3D morphology in several materials systems. We first deposit faceted Au nanoislands on graphene and transition metal dichalcogenides, using measurements of the equilibrium island shape to determine values for the 2D/Au interface energy and examining the role of surface reconstructions, chemical identity, and defects on the grown structures. We then deposit the technologically relevant metals Ti and Nb under conditions where kinetic rather than thermodynamic factors govern growth. We describe a transition from dendritic to faceted islands as a function of growth temperature and discuss the factors determining island shape in these materials systems. Finally, we show that suspended 2D materials enable the fabrication of a novel type of 3D/2D/3D heterostructure and discuss the growth mechanism. We suggest that emerging nanodevices will utilize versatile fabrication of 2D/3D heterostructures with well-characterized interfaces and morphologies.
Collapse
Affiliation(s)
- Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joachim Dahl Thomsen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hae Yeon Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vera Zarubin
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Yu
- Raith America Inc., International Applications Center, 300 Jordan Road, Troy, New York 12180, United States
| | - Baoming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thang Pham
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Priyanka Periwal
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Francaviglia L, Zipfel J, Carlstroem J, Sridhar S, Riminucci F, Blach D, Wong E, Barnard E, Watanabe K, Taniguchi T, Weber-Bargioni A, Ogletree DF, Aloni S, Raja A. Optimizing cathodoluminescence microscopy of buried interfaces through nanoscale heterostructure design. NANOSCALE 2022; 14:7569-7578. [PMID: 35502865 DOI: 10.1039/d1nr08082b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mapping the optical response of buried interfaces with nanoscale spatial resolution is crucial in several systems where an active component is embedded within a buffer layer for structural or functional reasons. Here, we demonstrate that cathodoluminescence microscopy is not only an ideal tool for visualizing buried interfaces, but can be optimized through heterostructure design. We focus on the prototypical system of monolayers of semiconducting transition metal dichalcogenide sandwiched between hexagonal boron nitride layers. We leverage the encapsulating layers to tune the nanoscale spatial resolution achievable in cathodoluminescence mapping while also controlling the brightness of the emission. Thicker encapsulation layers result in a brighter emission while thinner ones enhance the spatial resolution at the expense of the signal intensity. We find that a favorable trade-off between brightness and resolution is achievable up to about ∼100 nm of total encapsulation. Beyond this value, the brightness gain is marginal, while the spatial resolution enters a regime that is achievable by diffraction-limited optical microscopy. By preparing samples of varying encapsulation thickness, we are able to determine a surprisingly isotropic exciton diffusion length of >200 nm within the hexagonal boron nitride which is the dominant factor that determines spatial resolution. We further demonstrate that we can overcome the exciton diffusion-limited spatial resolution by using spectrally distinct signals, which is the case for nanoscale inhomogeneities within monolayer transition metal dichalcogenides.
Collapse
Affiliation(s)
- Luca Francaviglia
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Jonas Zipfel
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Johan Carlstroem
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Sriram Sridhar
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Fabrizio Riminucci
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
- Dipartimento di Fisica, Università del Salento, Strada Provinciale Lecce-Monteroni, Campus Ecotekne, Lecce, 73100, Italy
| | - Daria Blach
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN 47909, USA
| | - Ed Wong
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Edward Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | - D Frank Ogletree
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Shaul Aloni
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| | - Archana Raja
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.
| |
Collapse
|