1
|
Li Q, Zhu Y, Pan T, Zhang G, Pang H. Covalent organic framework nanomaterials: Syntheses, architectures, and applications. Adv Colloid Interface Sci 2025; 339:103427. [PMID: 39929054 DOI: 10.1016/j.cis.2025.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2024] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Covalent Organic Frameworks (COFs) are characterized by high thermochemical stability, low backbone density, well-controlled physical and chemical properties, large specific surface volume and porosity, permanently open pore structure, and various synthesis strategies. These remarkable attributes confer COFs with significant potential for a myriad of applications ranging from catalysis technology, gas separation and storage, optoelectronic materials, environmental and energy sciences, and biomedical development. There are many synthetic design methods for COF materials, and dynamic covalent chemistry is the scientific basis of COF materials-oriented design, which gives the error correction ability of the covalent assembly process, and is the key to obtaining crystallization and stability at the same time. However, "crystallinity" and "stability" in the synthesis and preparation of COF materials are often like "You can't have your cake and eat it, too": on the one hand, the reversible covalent bonds used in the synthesis of highly crystalline COF framework are easy to decompose under extreme conditions, which greatly limits its application scenarios; On the other hand, although highly stable COF materials can be prepared by using irreversible covalent bonds, it is usually poor crystalline and difficult to have high performance. In addition, the strict deoxygenation operation required for synthesizing COF materials also limits its macro preparation and large-scale application. Therefore, the synthesis strategy and efficient preparation of highly stable and crystalline COF materials are a major obstacle to the practical application of this field. This paper describes the four structures of COF materials, as well as their synthesis methods, electrical energy-storing electrocatalysis, and significant environmental protection applications. The future directions, prospects, and possible barriers to the development of these materials are envisioned in.
Collapse
Affiliation(s)
- Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Yuanyuan Zhu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Lei D, Zhu Y, Lou LL, Liu Z. Covalent organic framework membranes for lithium extraction: facilitated ion transport strategies to enhance selectivity. MATERIALS HORIZONS 2025. [PMID: 40302559 DOI: 10.1039/d5mh00457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The surging global demand for lithium, driven by the proliferation of electric vehicles and energy storage technologies, has exposed significant limitations in conventional lithium extraction methods, including inefficiency and environmental harm. Covalent organic frameworks (COFs) have emerged as a promising platform to address this challenge and enable more sustainable lithium extraction, owing to their unique advantages such as precisely tunable pore sizes, robust stability, and the ability to incorporate functional binding sites for selective ion transport. This review focuses on structural design and functionalization strategies in COFs to optimize lithium-ion separation, highlighting how pore confinement effects, tailored interlayer stacking arrangements, and strategic functional group modifications can dramatically enhance Li+ selectivity over competing ions present in brine solutions. A particular emphasis is placed on the fundamental energy barriers associated with lithium-ion transport. In particular, we discuss how appropriately designed pore environments and lithium-binding functional groups reduce the dehydration energy required for Li+ to enter and traverse COF nanochannels, thereby facilitating faster and more selective Li+ conduction. We also survey recent advancements in COF-based lithium separation technologies, such as high-performance COF membranes and sorbents for extracting lithium from brines and seawater, evaluating their potential, as well as remaining challenges, for sustainable industrial implementation. This review provides a comprehensive understanding of how advanced COF engineering can enable efficient and selective lithium-ion transport, offering valuable insights for the development of next-generation lithium extraction materials and technologies.
Collapse
Affiliation(s)
- Da Lei
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China.
| | - Yongjie Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China.
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China.
| |
Collapse
|
3
|
Chen J, Tang Z, Zhu D, Sheng L, Li Z, Yang Y, Wang J, Tang Y, He X, Xu H. Three-Dimensional Covalent Organic Framework for Efficient Hydrogen Storage through Polarization-Wall Engineering. NANO LETTERS 2025; 25:6268-6275. [PMID: 40178885 DOI: 10.1021/acs.nanolett.5c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Covalent organic frameworks (COFs), characterized by high surface areas and tunable pore structures/environments, are regarded as a promising alternative to physisorption H2 storage materials. However, their interaction with hydrogen is often too weak, necessitating the exploration of strategies to enhance sorption heat. Herein, we strengthened the adsorption induction of COF on H2 through a polarized wall engineering. The fluorine groups on the pore wall of three-dimensional COFs polarize their surrounding regions, resulting in high sorption heat sites. Due to the enhanced H2 sorption heat, the total H2 uptake of 3D-F-COF is up to to 5.96 wt % at 77 K and 90 bar. Moreover, the H2 adsorption enhancement effect of the polar group does not involve chemisorption, and the material exhibits excellent cycling stability. These results reveal that modulating the H2 sorption heat by incorporating polar groups is a promising strategy for achieving efficient H2 storage in porous materials.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhuozhuo Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Da Zhu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Li Sheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zonglong Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Lyu B, Jiang J, Jiang Z. Molecular Design of Positively Charged 3D Covalent-Organic Framework Membranes for Li +/Mg 2+ Separation. SMALL METHODS 2025; 9:e2401537. [PMID: 39737642 DOI: 10.1002/smtd.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Indexed: 01/01/2025]
Abstract
3D covalent-organic framework (3D COF) membranes have unique features such as smaller pore sizes and more interconnected networks compared with 2D COF counterparts. However, the complicated and unmanageable fabrication hinders their rapid development. Molecular simulation, which can efficiently explore the structure-performance relationship of membranes, holds great promise in accelerating the development of 3D COF membranes. In this study, a series of 3D-COF membranes (TFPM-Pa-X) is designed with different charge densities (fully charged, partially charged, and neutral) and interpenetration numbers (2-, 3-, 4-, and 5-fold), subsequently investigate their contributions to Li+/Mg2+ separation through molecular simulation. Membrane morphology and pore size are found to strongly depend on the charged density and interpenetration number. The pore size and Cl- ion density play a crucial role in governing membrane separation performance. TFPM-Pa-X membrane with a smaller interpenetration number and a higher charge density promotes Li+/Mg2+ separation. The fully charged 2-fold interpenetrated membrane has superior performance in breaking the trade-off between the flux of Li+ (JLi +) and the selectivity of Li+ over Mg2+ (SLi + /Mg 2+). This study may facilitate the rational design of new 3D COF membranes for high-performance ion separation.
Collapse
Affiliation(s)
- Bohui Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
5
|
Shi X, Li H, Chen T, Ren J, Zhao W, Patra BC, Kang C, Zhang Z, Zhao D. Precise Separation of Complex Ultrafine Molecules through Solvating Two-Dimensional Covalent Organic Framework Membranes. Angew Chem Int Ed Engl 2025; 64:e202421661. [PMID: 39623892 DOI: 10.1002/anie.202421661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Isoporous nanomaterials, with their proven potential for accurate molecular sieving, are of substantial interest in propelling sustainable membrane techniques. Covalent organic frameworks (COFs) are prominent due to their customizable isopores and chemistry. Still, the discrepancy in experimental and theoretical structures poses a challenge to developing COF membranes for molecular separations. Here, we report high-selectivity sieving of complex ultrafine molecules through solvating pore-to-pore-aligned two-dimensional COF membranes. Our structurally oriented membrane shows reversible interlayer expansion with intralayer shift in response to solvent exposure. This dynamic deformation induced by solvents leads to a reduction in the aperture of the membrane's sieving pores, which correlates with the number of COF layers. The resultant membranes yield largely improved molecular selectivity to discriminate binary and trinary complex mixtures, exceeding the conventional COF membranes. The membrane's robustness against solvents and physical aging permits extremely stable microporosity and reliable operation for over 3000 h. This exceptional performance positions our membrane as an alternative to enriching and purifying value-added chemicals, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Ting Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Bidhan Chandra Patra
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
6
|
Yang F, Guo J, Han C, Huang J, Zhou Z, Sun SP, Zhang Y, Shao L. Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration. SCIENCE ADVANCES 2024; 10:eadr9260. [PMID: 39661688 PMCID: PMC11633759 DOI: 10.1126/sciadv.adr9260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Although covalent organic frameworks (COFs) demonstrate notable potential for developing advanced separation membranes, contemporary COF membranes still lack controlled stacking and highly efficient sieving. Here, Turing-architecture COF membranes were constructed by engineering a reaction-diffusion assembly process via heterogeneous nucleation synthesis with tannic acid (TA). TA covalently binds with amine monomers to form a composite precursor with increased reactivity and decreased diffusivity. This altered the pathway of Schiff base reactions with aldehyde monomers, fulfilling suitable reaction-diffusion conditions, and ultimately formed the labyrinthine stripe or spot-patterned Turing COF film with controlled stacking and uniform pore structure. This endows our COF membrane with highly efficient molecule sieving ability for organic solvent nanofiltration while exhibiting a flux that is 621% greater than that of commercial membranes. Thus, this study provides a paradigm for the in situ synthesis of highly efficient COF membranes for diversely sustainable separations.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jing Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Chengzhe Han
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, PR China
| | - Junhui Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Zhiwei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Suzhou Future Membrane Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yanqiu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
7
|
Sobczak SK, Drwęska J, Gromelska W, Roztocki K, Janiak AM. Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402486. [PMID: 39380355 DOI: 10.1002/smll.202402486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Precise control of the void environment, achieved through multiple functional groups and enhanced by structural adaptations to guest molecules, stands at the forefront of scientific inquiry. Flexible multivariate open framework materials (OFMs), including covalent organic frameworks and metal-organic frameworks, meet these criteria and are expected to play a crucial role in gas storage and separation, pollutant removal, and catalysis. Nevertheless, there is a notable lack of critical evaluation of achievements in their chemistry and future prospects for their development or implementation. To provide a comprehensive historical context, the initial discussion explores into the realm of "classical" flexible OFMs, where their origin, various modes of flexibility, similarities to proteins, advanced tuning methods, and recent applications are explored. Subsequently, multivariate flexible materials, the methodologies involved in their synthesis, and horizons of their application are focussed. Furthermore, the reader to the concept of spatial distribution is introduced, providing a brief overview of the latest reports that have contributed to its elucidation. In summary, the critical review not only explores the landscape of multivariate flexible materials but also sheds light on the obstacles that the scientific community must overcome to fully unlock the potential of this fascinating field.
Collapse
Affiliation(s)
- Szymon K Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Joanna Drwęska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Wiktoria Gromelska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Agnieszka M Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
8
|
Wu X, Cheng P, Cai C, Tian M, Zhang Y, der Bruggen BV, Zhu J. Physical and Chemical Dual Confinement Promotes Controllable Synthesis of Loose-Structured Azine-Linked Nanofilms for Fast Molecular Separation. NANO LETTERS 2024; 24:14797-14805. [PMID: 39501765 DOI: 10.1021/acs.nanolett.4c04326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Thin-film composite (TFC) membranes, featuring nanoscale film thickness and customizable pore structures, hold promise for solute-solute separations. However, achieving on-demand molecular sieving requires fine control over the membrane microstructure. Here, the concept of physical and chemical dual confinement (PCDC) is introduced to fabricate loose-structured TFC membranes via confined interfacial polymerization (IP). This concept leverages the synergistic effects of physically restricted monomer diffusion and a chemically inhibited reaction to achieve controlled nanofilm growth. Dorsal addition of the aqueous phase to the hydrogel reduces the diamine diffusion via electrostatic and H-bonding interactions within its nanopores. The prepassivation of hydrazine using acid protonation effectively weakens its ability for nucleophilic reactivity. This confined IP between twisted TFPA and short-chain hydrazine yielded loosely structured azine-linked nanofilms, which displayed a high permeability of 53.4 LMH bar-1 and effective differentiation of binary mixtures. This PCDC concept offers a useful guideline to finely tailor polymeric nanofilms for precise separations.
Collapse
Affiliation(s)
- Xingming Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Penglin Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanqi Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miaomiao Tian
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Sun Q, Song Z, Du J, Yao A, Liu L, He W, Hassan SU, Guan J, Liu J. Covalent Organic Framework Membranes with Regulated Orientation for Monovalent Cation Sieving. ACS NANO 2024; 18:27065-27076. [PMID: 39308162 DOI: 10.1021/acsnano.4c10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Continuous covalent organic framework (COF) thin membranes have garnered broad concern over the past few years due to their merits of low energy requirements, operational simplicity, ecofriendliness, and high separation efficiency in the application process. This study marks the first instance of fabricating two distinct, self-supporting COF membranes from identical building blocks through solvent modulation. Notably, the precision of the COF membrane's separation capabilities is substantially enhanced by altering the pore alignment from a random to a vertical orientation. Within these confined channels, the membrane with vertically aligned pores and micron-scale stacking thickness demonstrates rapid and selective transportation of Li+ ions over Na+ and K+ ions, achieving Li+/K+ and Li+/Na+ selectivity ratios of 38.7 and 7.2, respectively. This research not only reveals regulated orientation and layer stacking in COF membranes via strategic solvent selection but also offers a potent approach for developing membranes specialized in Li+ ion separation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Wen He
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
10
|
Liu H, Tian F, Gao B, Wang W, Bai Y, Zhang C, Dong L. 3D Covalent Organic Framework Membranes for Molecular Separations. Chemistry 2024:e202402876. [PMID: 39350485 DOI: 10.1002/chem.202402876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 11/06/2024]
Abstract
Membrane separation has become an indispensable separation technology in social production, playing an important role in drug production, mineral exploitation, water purification, etc. The key core of membranes lies in achieving efficient and precise sieving between substances. As a result, a typical trade-off arises: highly permeable membranes usually sacrifice selectivity and vice versa. To address this dilemma, long-term research has focused on comprehensive understanding and modelling of synthetic membranes at various scales. A significant advancement in this arena is the advent of three-dimensional covalent organic framework (3D COF) membranes, a novel category of long-range ordered porous organic polymer materials. Characterized by an abundance of interconnected channels, diverse pore wall properties, tunable structures, and robust thermal and chemical resilience, 3D COF membranes offer a promising approach for efficient substance separation. This review undertakes a meticulous investigation of the synthesis and physicochemical properties of 3D COF membranes, accentuating the underlying design principles, fabrication methods, and application attempts. A comprehensive assessment of their research trajectory and current standing in the field of membrane processes is provided. The review culminates in a forward-looking outlook, summarizing future research directions and highlighting the substantial potential of this innovative work to shape the future of efficient membrane separation processes.
Collapse
Affiliation(s)
- Haohao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Feng Tian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bingbing Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wentao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Luo Y, Zhai B, Li M, Zhou W, Yang J, Shu Y, Fang Y. Self-adhesive, surface adaptive, regenerable SERS substrates for in-situ detection of urea on bio-surfaces. J Colloid Interface Sci 2024; 660:513-521. [PMID: 38262178 DOI: 10.1016/j.jcis.2024.01.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Wearable SERS substrates have gained substantial attention for health monitoring and other applications. Current designs often rely on conventional polymer substrates, leading to discomfort and complexity due to the need of additional adhesive layers. To address the issues, we fabricate a flexible, uniform, ultrathin, transparent and porous SERS substrate via depositing Ag nanoparticles (AgNPs) onto the CdS nanowires (CdSNWs) grown on the surface of a prepared nanofilm (AgNPs-CdSNWs/nanofilm). Unlike the wearable SERS substrates reported in literature, the one presented in this work is self-adhesive to a variety of surfaces, which simplifies structure, enhances comfort and improves performance. Importantly, the new SERS substrate as developed is highly stable and reusable. Artificial sample tests revealed that the substrate showed a great enhancement factor (EF) of 4.2 × 107 and achieved a remarkable detection limit (DL) of 1.0 × 10-14 M for rhodamine 6G (R6G), which are among the highest records observed in wearable SERS substrates reported in literature. Moreover, the substrate enables at real-time and in-situ reliable monitoring of urea dynamics in human sweat and plant leaves, indicating its applicability for health analysis and in precision agriculture.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wenjingli Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Zuo H, Lyu B, Yao J, Long W, Shi Y, Li X, Hu H, Thomas A, Yuan J, Hou B, Zhang W, Liao Y. Bioinspired Gradient Covalent Organic Framework Membranes for Ultrafast and Asymmetric Solvent Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305755. [PMID: 38227620 DOI: 10.1002/adma.202305755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function-related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much-enhanced flux (10-18 times) of the "large-to-small" pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar-1) and polar (methanol ≈175.93 LMH bar-1) solvents, together with narrow molecular weight cut-off (MWCO, 472 g mol-1) and molecular weight retention onset (MWRO, <182 g mol-1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.
Collapse
Affiliation(s)
- Hongyu Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Baokang Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaao Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenhua Long
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinghao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technical University of Berlin, Sekretariat BA 2, 4010623, Hardenbergstr, Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Wales CF24 3AA, Cardiff, CF10 3AT, UK
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Puthukkudi A, Nath S, Shee P, Dutta A, Rajput CV, Bommakanti S, Mohapatra J, Samal M, Anwar S, Pal S, Biswal BP. Terahertz Conductivity of Free-Standing 3D Covalent Organic Framework Membranes Fabricated via Triple-Layer-Dual Interfacial Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312960. [PMID: 38146892 DOI: 10.1002/adma.202312960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Processable covalent organic framework membranes (COFM) are emerging as potential semiconducting materials for device applications. Nevertheless, the fabrication of crystalline and free-standing 3D COFMs is challenging. In this work, a unique time and solvent-efficient triple-layer-dual interfacial (TLDI) approach for the simultaneous synthesis of two 3D COFMs from a single system is developed. Besides, for the first time, the optical conductivity of these free-standing 3D COFMs is analyzed using terahertz (THz) spectroscopy in transmission mode. Interestingly, these membranes show excellent transmittance at THz frequencies with very high intrinsic THz conductivities. The evaluated scattering time and plasma frequency of the free carriers of the COFMs are highly promising for future applications in optoelectronic devices in THz frequencies.
Collapse
Affiliation(s)
- Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Payel Shee
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Arpita Dutta
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chetan V Rajput
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Mahalaxmi Samal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Sharmistha Anwar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India
| | - Shovon Pal
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| |
Collapse
|
15
|
Yan Z, Zhang L, Sang Y, Li D, Wang J, Wang J, Zhang Y. Polymer carbon nitride nanosheet-based lamellar membranes inspired by "couple hardness with softness" for ultrafast molecular separation in organic solvents. MATERIALS HORIZONS 2024; 11:923-929. [PMID: 38180454 DOI: 10.1039/d3mh01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Membranes with ultrafast molecular separation ability in organic solvents can offer unprecedented opportunities for efficient and low-cost solvent recovery in industry. Herein, a graphene-like polymer carbon nitride nanosheet (PCNN) with a low-friction surface was applied as the main membrane building block to boost the ultrafast transport of the solvent. Meanwhile, inspired by the concept of "couple hardness with softness", soft and flexible graphene oxide (GO) was chosen to fix the random stack of the rigid PCNN and tailor the lamellar structure of the PCNN membrane. The optimal PCNN/GO lamellar membrane shows a remarkable methanol permeance of 435.5 L m-2 h-1 bar-1 (four times higher than that of the GO membrane) while maintaining a high rejection for reactive black (RB, 98.9% in ethanol). Molecular dynamics simulations were conducted to elucidate the ultrafast transport mechanism of the PCNN/GO membrane. This study reveals that PCNN is a promising building block for lamellar membranes and may open up new avenues for high-performance molecular separation membranes.
Collapse
Affiliation(s)
- Zhipeng Yan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Liuqian Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yudong Sang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
16
|
Huang L, Wu H, Ding L, Caro J, Wang H. Shearing Liquid-Crystalline MXene into Lamellar Membranes with Super-Aligned Nanochannels for Ion Sieving. Angew Chem Int Ed Engl 2024; 63:e202314638. [PMID: 38009764 DOI: 10.1002/anie.202314638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Ion-selective membranes are crucial in various chemical and physiological processes. Numerous studies have demonstrated progress in separating monovalent/multivalent ions, but efficient monovalent/monovalent ion sieving remains a great challenge due to their same valence and similar radii. Here, this work reports a two-dimensional (2D) MXene membrane with super-aligned slit-shaped nanochannels with ultrahigh monovalent ion selectivity. The MXene membrane is prepared by applying shear forces to a liquid-crystalline (LC) MXene dispersion, which is conducive to the highly-ordered stacking of the MXene nanosheets. The obtained LC MXene membrane (LCMM) exhibits ultrahigh selectivities toward Li+ /Na+ , Li+ /K+ , and Li+ /Rb+ separation (≈45, ≈49, and ≈59), combined with a fast Li+ transport with a permeation rate of ≈0.35 mol m-2 h-1 , outperforming the state-of-the-art membranes. Theoretical calculations indicate that in MXene nanochannels, the hydrated Li+ with a tetrahedral shape has the smallest diameter among the monovalent ions, contributing to the highest mobility. Besides, the weakest interaction is found between hydrated Li+ and MXene channels which also contributes to the ultrafast permeation of Li+ through the super-aligned MXene channels. This work demonstrates the capability of MXene membranes in monovalent ion separation, which also provides a facile and general strategy to fabricate lamellar membranes in a large scale.
Collapse
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoyu Wu
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3 A, 30167, Hannover, Deutschland
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Cai Y, Yu Y, Wu J, Qu J, Hu J, Tian D, Li J. Recent advances of pure/independent covalent organic framework membrane materials: preparation, properties and separation applications. NANOSCALE 2024; 16:961-977. [PMID: 38108437 DOI: 10.1039/d3nr05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Covalent organic frameworks (COF) are porous crystalline polymers connected by covalent bonds. Due to their inherent high specific surface area, tunable pore size, and good stability, they have attracted extensive attention from researchers. In recent years, COF membrane materials developed rapidly, and a large amount of research work has been presented on the preparation methods, properties, and applications of COF membranes. This review focuses on the research on independent/pure continuous COF membranes. First, based on the membrane formation mechanism, COF membrane preparation methods are categorized into two main groups: bottom-up and top-down. Four methods are presented, namely, solvothermal, interfacial polymerization, steam-assisted conversion, and layer by layer. Then, the aperture, hydrophilicity/hydrophobicity and surface charge properties of COF membranes are summarized and outlined. According to the application directions of gas separation, water treatment, organic solvent nanofiltration, pervaporation and energy, the latest research results of COF membranes are presented. Finally, the challenges and future directions of COF membranes are summarized and an outlook provided. It is hoped that this work will inspire and motivate researchers in related fields.
Collapse
Affiliation(s)
- Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
18
|
Ju T, Liu M, Shi X, Xiao A, Zhang Z, Wang J, Zhang Y, Wang Y. Chemically Asymmetric Polymers Manipulate the Crystallization of Two-Dimensional Covalent Organic Frameworks to Synthesize Processable Nanosheets. ACS NANO 2023. [PMID: 37976399 DOI: 10.1021/acsnano.3c07743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanosheets derived from two-dimensional covalent organic frameworks (2D COFs) are increasingly desirable in various fields. While breakthroughs in the chemical and physical delamination of 2D COFs are rising, precisely regulating the growth of the COF nanosheets has not been realized yet. Herein, we report an effective strategy of polymer-manipulated crystallization to accurately control the growth of COF nanosheets. Chemically asymmetric polyvinylpyrrolidone (PVP) is developed as the manipulator that selectively interacts with the aldehydes and (100) facet to induce anisotropic growth of COFs. The number of PVP constitutional units determines this specific interaction, leading to molecularly thin but thickness-controllable nanosheets with excellent dispersity. We process these nanosheets into robust A4-sized membranes for ultraselective molecular separation. The membrane intercalated with long-chain PVP demonstrates largely improved performance, surpassing the reported COF membranes. This work reports a strategy for anisotropically crystallizing 2D COFs to yield processable nanosheets toward practical applications.
Collapse
Affiliation(s)
- Tong Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
19
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
20
|
Zhu T, Kong Y, Lyu B, Cao L, Shi B, Wang X, Pang X, Fan C, Yang C, Wu H, Jiang Z. 3D covalent organic framework membrane with fast and selective ion transport. Nat Commun 2023; 14:5926. [PMID: 37739946 PMCID: PMC10517170 DOI: 10.1038/s41467-023-41555-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
3D ionic covalent organic framework (COF) membranes, which are envisioned to be able to break the trade-off between ion conductivity and ion selectivity, are waiting for exploitation. Herein, we report the fabrication of a 3D sulfonic acid-functionalized COF membrane (3D SCOF) for efficient and selective ion transport, using dual acid-mediated interfacial polymerization strategy. The 3D SCOF membranes possess highly interconnected ion transport channels, ultramicroporous pore sizes (0.97 nm), and abundant sulfonate groups (with a high ion exchange capacity of 4.1 mmol g-1), leading to high proton conductivity of 843 mS cm-1 at 90 °C. When utilized in osmotic energy conversion, a high power density of 21.2 W m-2, and a remarkable selectivity of 0.976 and thus an exceptional energy conversion efficiency of 45.3% are simultaneously achieved. This work provides an alternative approach to 3D ionic COF membranes and promotes the applications of 3D COFs in ion transport and separation.
Collapse
Affiliation(s)
- Tianhao Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Bohui Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiao Pang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Chao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
21
|
Yin H, Zhen Z, Ning W, Zhang L, Xiang Y, Ye N. Three-dimensional fluorinated covalent organic frameworks coated capillary for the separation of fluoroquinolones by capillary electrochromatography. J Chromatogr A 2023; 1706:464234. [PMID: 37523908 DOI: 10.1016/j.chroma.2023.464234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
In this work, a three-dimensional fluorinated covalent organic frameworks (3D FCOFs) JUC-515 was synthesized from tetra(4-aminophenyl)methane (TAM) and 2,3,5,6-tetrafluoroterephthalol (TFA) by an ionic liquid method. JUC-515 was introduced into the capillary column and bonded to the inner wall of the capillary column by chemical bonding. Through a variety of characterization results, JUC-515 was successfully synthesized and introduced into the capillary column. The effects of buffer solution concentration, organic additive content and pH of the buffer solution on the separation of fluoroquinolones (FQs) were investigated in detail. The JUC-515-coated capillary column showed good resolution (>1.5) and reproducibility. The relative standard deviations (RSDs) of the retention time for intraday, interday, column-to-column and interbatch precision were less than 0.88%, 2.45%, 2.74% and 3.32%, respectively. The RSDs of the peak area for intraday, interday, column-to-column and interbatch precision were less than 3.79%, 4.31%, 3.33% and 5.62%, respectively. The JUC-515-coated capillary column could be used no less than 150 times. The results showed that the JUC-515-coated capillary column had good separation performance. In addition, by separating fluorinated β-phenylalanine analogs, β-phenylalanine and trifluoromethyl β-phenylalanine analogs, the separation mechanism based on fluorine interactions was discussed. In conclusion, JUC-515 had good potential as a stationary phase for capillary electrochromatography.
Collapse
Affiliation(s)
- Han Yin
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Ziyi Zhen
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Weijie Ning
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China.
| |
Collapse
|
22
|
Fan H, Wang H, Peng M, Meng H, Mundstock A, Knebel A, Caro J. Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation. ACS NANO 2023; 17:7584-7594. [PMID: 37026681 PMCID: PMC10134499 DOI: 10.1021/acsnano.2c12774] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.
Collapse
Affiliation(s)
- Hongwei Fan
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Haoran Wang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Manhua Peng
- Key
Laboratory of Power Station Energy Transfer Conversion and System,
Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hong Meng
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Alexander Mundstock
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Alexander Knebel
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Jürgen Caro
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| |
Collapse
|
23
|
Ha R, Liu F, Li J, He M, Lan J, Wang B, Sun J, Liu X, Ding X, Shi W. Calix[4]arene-Decorated Covalent Organic Framework Conjugates for Lithium Isotope Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5657-5666. [PMID: 36662029 DOI: 10.1021/acsami.2c20309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium isotope separation has attracted extensive interest due to its important role in fusion and fission reactions. Up to now, it is still a great challenge to separate lithium isotopes (6Li and 7Li) in an efficient manner due to the low capture ability for lithium ions of related materials and highly similar physicochemical properties between lithium isotopes. In this work, three calix[4]arene-decorated crystalline covalent organic frameworks (COFs) with wave-like extension and AA-stacking configuration were designed and utilized for lithium adsorption and its isotope separation. Experimental studies show that these COFs exhibit an outstanding lithium adsorption capacity up to 94.66 mg·g-1, which is about 2 times beyond that of adsorbents reported in the literature. The high adsorption capacity of COFs could be attributed to the abundant adsorption sites from calix[4]arene unit. More importantly, this study demonstrates for the first time that calixarene groups can separate lithium isotopes with an excellent separation factor up to 1.053 ± 0.002, comparable to the most successful solid-phase lithium separation adsorbent. The calculation based on density functional theory showed that calixarene played an important role in the lithium adsorption. Interestingly, the lithium isotope separation performance is mainly affected by the amine bridging units. This work demonstrated that calixarene COFs are promising adsorbents for lithium isotope separation.
Collapse
Affiliation(s)
- Rui Ha
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Jie Li
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Meng He
- College of New Energy, Xi'an Shiyou University, Xi'an710065P. R. China
| | - Jianhui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350P. R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Xue Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049P. R. China
| |
Collapse
|
24
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
25
|
Guan X, Chen F, Qiu S, Fang Q. Three-Dimensional Covalent Organic Frameworks: From Synthesis to Applications. Angew Chem Int Ed Engl 2023; 62:e202213203. [PMID: 36253336 DOI: 10.1002/anie.202213203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.
Collapse
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Li Y, Feng J, Zhang Y, Wang C, Hao J, Wang Y, Xu Y, Cheng X. Covalent organic frameworks@ZIF-67 derived novel nanocomposite catalyst effectively activated peroxymonosulfate to degrade organic pollutants. CHEMOSPHERE 2023; 311:137038. [PMID: 36323385 DOI: 10.1016/j.chemosphere.2022.137038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Metal organic frameworks-Covalent organic frameworks (MOFs-COFs) nanocomposites could improve the catalytic performance. Herein, a novel nanocomposite catalyst (CC@Co3O4) derived from MOFs-COFs (COF@ZIF-67) was prepared on peroxymonosulfate (PMS) activation for bisphenol A (BPA) and rhodamine B (RhB) degradation. Owing to the Co species, oxygen vacancy (OV), surface hydroxyl (-OH), graphite N and ketone groups (C=O), the CC@Co3O4 exhibited higher catalytic degradation performance and total organic carbon (TOC) for BPA (93.8% and 22.3%) and RhB (98.2% and 82.5%) with a small quantity of catalyst (0.10 g/L) and low concentration of PMS (0.20 g/L) even without pH adjustment. Sulfate radicals (•SO4-), hydroxyl radicals (•OH), single oxygen (1O2), superoxide radicals (•O2-) and electron transfer process were all involved in the degradation of BPA and RhB. Among them, the degradation of BPA and RhB mainly depended on •O2- and 1O2, respectively. Meanwhile, the degradation pathways of BPA and RhB were proposed, and the biotoxicity of the degradation products was evaluated by freshwater chlorella. The results illustrated that the degradation products were environmentally friendly to organisms. In addition, the role of COF in the nanocomposites was also studied. The addition of COF remarkably improved the catalytic performance of CC@Co3O4 due to the faster electron transfer, more graphite N and C=O. Overall, this work may open the door to the development of COF-based catalysts in the field of water pollutant remediation.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Jingbo Feng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Yan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Chen Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Junjie Hao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, PR China
| | - Yukun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Yinyin Xu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
27
|
Wang R, Zhou Y, Zhang Y, Xue J, Caro J, Wang H. Ultrathin Covalent Organic Framework Membranes Prepared by Rapid Electrophoretic Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204894. [PMID: 36050902 DOI: 10.1002/adma.202204894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COFs) are a disruptive material platform for various novel applications including nanofiltration for water purification due to their excellent physicochemical features. Nevertheless, the currently available approaches for preparing COF membranes need stringent synthesis conditions, prolonged fabrication time, and tedious post-processing, leading to poor productivity. Herein, a simple and efficient layer-by-layer stacking assembly strategy is developed based on electrophoretic deposition (EPD) to rapidly generate ionic COF membranes due to the uniform driving force for nanosheet assembly. A new two-cell EPD design avoids the usual EPD problems such as bubbles and acidic/alkaline microenvironments in the near-electrode region in aqueous EPD processes. Ultrathin COF membranes with homogenous structures can be produced within several minutes. Consequently, the prepared COF membranes exhibit outstanding permselectivity and possess good stability and anti-pressure ability due to their uniform architecture and unique chemical composition.
Collapse
Affiliation(s)
- Rui Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yisa Zhou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ya Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian Xue
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3A, 30167, Hannover, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Ruidas S, Das A, Kumar S, Dalapati S, Manna U, Bhaumik A. Non‐Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for Crude‐Oil‐in‐Water Emulsion Separation. Angew Chem Int Ed Engl 2022; 61:e202210507. [DOI: 10.1002/anie.202210507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Avijit Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Saurav Kumar
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Sasanka Dalapati
- Department of Materials Science, School of Technology Central University of Tamil Nadu (CUTN) Thiruvarur 610005 Tamil Nadu India
| | - Uttam Manna
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Asim Bhaumik
- School of Materials Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
29
|
Zhang Y, Yang F, Qin S, Huang J, Yang X, Wang W, Li Y, Wu C, Shao L. Deprotonated tannic acid regulating pyrrole polymerization to enhance nanofiltration performance for molecular separations under both aqueous and organic solvent environments. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Wu Y, Wang Y, Xu F, Qu K, Dai L, Cao H, Xia Y, Lei L, Huang K, Xu Z. Solvent-induced interfacial polymerization enables highly crystalline covalent organic framework membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Shi X, Zhang Z, Yin C, Zhang X, Long J, Zhang Z, Wang Y. Design of Three‐Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angew Chem Int Ed Engl 2022; 61:e202207559. [DOI: 10.1002/anie.202207559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Zhipeng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Xin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Jianghai Long
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | | | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| |
Collapse
|
32
|
Ruidas S, Das A, Kumar S, Dalapati S, Manna U, Bhaumik A. Non‐Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for Crude‐Oil‐in‐Water Emulsion Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Santu Ruidas
- Indian Association for the Cultivation of Science School of Materials Sciences 2A & 2B Raja S C Mullick Road, Jadavpur 700032 Kolkata INDIA
| | - Avijit Das
- Indian Institute of Technology Guwahati Dapartment of Chemistry INDIA
| | - Saurav Kumar
- Indian Institute of Technology Guwahati Dapartment of Chemistry INDIA
| | - Sasanka Dalapati
- Central University of Tamil Nadu Department of Materials Science INDIA
| | - Uttam Manna
- Indian Institute of Technology Guwahati Dapartment of Chemistry INDIA
| | - Asim Bhaumik
- Indian Association for the Cultivation of Science Department of Materials Science 2A & B Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
33
|
Shi X, Zhang Z, Yin C, Zhang X, Long J, Zhang Z, Wang Y. Design of Three‐Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiansong Shi
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Zhipeng Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Congcong Yin
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Xin Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Jianghai Long
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Zhe Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yong Wang
- Nanjing Tech University College of Chemical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering 30, Puzhu South 211816 Nanjing CHINA
| |
Collapse
|
34
|
Cao L, Chen IC, Chen C, Shinde DB, Liu X, Li Z, Zhou Z, Zhang Y, Han Y, Lai Z. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. J Am Chem Soc 2022; 144:12400-12409. [PMID: 35762206 DOI: 10.1021/jacs.2c04223] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m-2 at a 50-fold salinity gradient and up to 228.9 W m-2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.
Collapse
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cailing Chen
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Digambar B Shinde
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zongyao Zhou
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yuting Zhang
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yu Han
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Zhang Z, Xiao A, Yin C, Wang X, Shi X, Wang Y. Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chem Commun (Camb) 2022; 58:7136-7139. [PMID: 35666182 DOI: 10.1039/d2cc01749k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterostructured covalent organic framework (COF) membrane is synthesized via in situ linker exchange. Narrowed pores can be formed at the interface between two types of COFs by adjusting the linker exchange duration. The resultant COF membrane demonstrates a high rejection rate toward Na2SO4 of up to 97%.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| |
Collapse
|
36
|
Khan NA, Zhang R, Wang X, Cao L, Azad CS, Fan C, Yuan J, Long M, Wu H, Olson MA, Jiang Z. Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport. Nat Commun 2022; 13:3169. [PMID: 35672299 PMCID: PMC9174484 DOI: 10.1038/s41467-022-30647-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fabrication of covalent organic framework (COF) membranes for molecular transport has excited highly pragmatic interest as a low energy and cost-effective route for molecular separations. However, currently, most COF membranes are assembled via a one-step procedure in liquid phase(s) by concurrent polymerization and crystallization, which are often accompanied by a loosely packed and less ordered structure. Herein, we propose a two-step procedure via a phase switching strategy, which decouples the polymerization process and the crystallization process to assemble compact and highly crystalline COF membranes. In the pre-assembly step, the mixed monomer solution is casted into a pristine membrane in the liquid phase, along with the completion of polymerization process. In the assembly step, the pristine membrane is transformed into a COF membrane in the vapour phase of solvent and catalyst, along with the completion of crystallization process. Owing to the compact and highly crystalline structure, the resultant COF membranes exhibit an unprecedented permeance (water ≈ 403 L m-2 bar-1 h-1 and acetonitrile ≈ 519 L m-2 bar-1 h-1). Our two-step procedure via phase switching strategy can open up a new avenue to the fabrication of advanced organic crystalline microporous membranes.
Collapse
Affiliation(s)
- Niaz Ali Khan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China. .,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China.
| | - Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Mengying Long
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, 300072, Tianjin, China.
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China. .,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China.
| |
Collapse
|
37
|
Yong H, He X, Merlitz H. Connection between Intrapore Free Energy, Molecule Permeation, and Selectivity of Nanofiltration Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huaisong Yong
- Department of Polymer Materials and Engineering, School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| | - Xianru He
- Department of Polymer Materials and Engineering, School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, China
| | - Holger Merlitz
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| |
Collapse
|
38
|
Shi X, Zhang Z, Wei M, Wang X, Wang J, Zhang Y, Wang Y. Three-Dimensional Covalent Organic Framework Membranes: Synthesis by Oligomer Interfacial Ripening and Application in Precise Separations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
39
|
Wang X, Yang J, Shi X, Zhang Z, Yin C, Wang Y. Electrosynthesis of Ionic Covalent Organic Frameworks for Charge-Selective Separation of Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107108. [PMID: 35218138 DOI: 10.1002/smll.202107108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as potent material platforms for engineering advanced membranes to tackle challenging separation demands. However, the synthesis of COF membranes is currently hampered by suboptimal productivity and harsh synthesis conditions, especially for ionic COFs with perdurable charges. Herein, ionic COFs with charged nanochannels are electrically synthesized on conductive supports to rapidly construct composite membranes for charge-selective separations of small molecules. The intrinsic charging nature and strong charge intensity of ionic COFs are demonstrated to collectively dominate the membrane growth. Spontaneous repairing to diminish defects under the applied electric field is observed, in favor of generating well-grown COF membranes. Altering electrosynthetic conditions realizes the precise control over the membrane thickness and thus the separation ability. Electrically synthesized ionic COF membranes exhibit remarkable molecular separation performances due to their relatively ordered and charged nanochannels. With these charge-selective pathways, the membranes enable the efficient sieving of charged and neutral molecules with analogous structures. This study reveals an electrical route to synthesizing COF thin films, and showcases the great potential of ionic nanochannels in precise separation based on charge selectivity.
Collapse
Affiliation(s)
- Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jingying Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
40
|
Zhang Z, Rahman MM, Bajer B, Scharnagl N, Abetz V. Highly selective isoporous block copolymer membranes with tunable polyelectrolyte brushes in soft nanochannels. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Huang J, Tao Y, Ran S, Yang Y, Li C, Luo P, Chen Z, Tan X. A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydroxy-containing three dimensional covalent organic framework bearing Ag nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue and Congo red.
Collapse
Affiliation(s)
- Juncao Huang
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Yuxin Tao
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Shuqin Ran
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Yujiao Yang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Chaofan Li
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Peizhao Luo
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Ziao Chen
- A State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiaoping Tan
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| |
Collapse
|