1
|
Chen J, Pan C, Gao Y, Chen Q, An X, Liu Z. Reactive Oxygen Species Scavenging Injectable Hydrogel Potentiates the Therapeutic Potential of Mesenchymal Stem Cells in Skin Flap Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17120-17128. [PMID: 38554083 DOI: 10.1021/acsami.3c18284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Cell-based therapies offer tremendous potential for skin flap regeneration. However, the hostile microenvironment of the injured tissue adversely affects the longevity and paracrine effects of the implanted cells, severely reducing their therapeutic effectiveness. Here, an injectable hydrogel (nGk) with reactive oxygen species (ROS) scavenging capability, which can amplify the cell viability and functions of encapsulated mesenchymal stem cells (MSCs), is employed to promote skin flap repair. nGk is formulated by dispersing manganese dioxide nanoparticles (MnO2 NPs) in a gelatin/κ-carrageenan hydrogel, which exhibits satisfactory injectable properties and undergoes a sol-gel phase transition at around 40 °C, leading to the formation of a solid gel at physiological temperature. MnO2 NPs enhance the mechanical properties of the hydrogel and give it the ability to scavenge ROS, thus providing a cell-protective system for MSCs. Cell culture studies show that nGk can mitigate the oxidative stress, improve cell viability, and boost stem cell paracrine function to promote angiogenesis. Furthermore, MSC-loaded nGk (nGk@MSCs) can improve the survival of skin flaps by promoting angiogenesis, reducing inflammatory reactions, and attenuating necrosis, providing an effective approach for tissue regeneration. Collectively, injectable nGk has substantial potential to enhance the therapeutic benefits of MSCs, making it a valuable delivery system for cell-based therapies.
Collapse
Affiliation(s)
- Jianmei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Ya Gao
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Qihong Chen
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| | - Zongguang Liu
- Microelectronics Industry Research Institute, College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
2
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Gerbolés AG, Galetti M, Rossi S, lo Muzio FP, Pinelli S, Delmonte N, Caffarra Malvezzi C, Macaluso C, Miragoli M, Foresti R. Three-Dimensional Bioprinting of Organoid-Based Scaffolds (OBST) for Long-Term Nanoparticle Toxicology Investigation. Int J Mol Sci 2023; 24:6595. [PMID: 37047568 PMCID: PMC10095512 DOI: 10.3390/ijms24076595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.
Collapse
Affiliation(s)
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority-INAIL, 00078 Rome, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Delmonte
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | | | - Claudio Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital, IRCCS, 20089 Milan, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43124 Parma, Italy
| |
Collapse
|
4
|
Zhao D, Huang R, Gan JM, Shen QD. Photoactive Nanomaterials for Wireless Neural Biomimetics, Stimulation, and Regeneration. ACS NANO 2022; 16:19892-19912. [PMID: 36411035 DOI: 10.1021/acsnano.2c08543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanomaterials at the neural interface can provide the bridge between bioelectronic devices and native neural tissues and achieve bidirectional transmission of signals with our brain. Photoactive nanomaterials, such as inorganic and polymeric nanoparticles, nanotubes, nanowires, nanorods, nanosheets or related, are being explored to mimic, modulate, control, or even substitute the functions of neural cells or tissues. They show great promise in next generation technologies for the neural interface with excellent spatial and temporal accuracy. In this review, we highlight the discovery and understanding of these nanomaterials in precise control of an individual neuron, biomimetic retinal prosthetics for vision restoration, repair or regeneration of central or peripheral neural tissues, and wireless deep brain stimulation for treatment of movement or mental disorders. The most intriguing feature is that the photoactive materials fit within a minimally invasive and wireless strategy to trigger the flux of neurologically active molecules and thus influences the cell membrane potential or key signaling molecule related to gene expression. In particular, we focus on worthy pathways of photosignal transduction at the nanomaterial-neural interface and the behavior of the biological system. Finally, we describe the challenges on how to design photoactive nanomaterials specific to neurological disorders. There are also some open issues such as long-term interface stability and signal transduction efficiency to further explore for clinical practice.
Collapse
Affiliation(s)
- Di Zhao
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, China
| | - Rui Huang
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Min Gan
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Medical School of Nanjing University, Nanjing 210008, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
5
|
Chen J, Wu X, Zhang Y, Xu Y, Ge H, Ning X. Bioinspired All-in-One Three-Dimensional Dynamic CellMatrix Improves the Manufacture of Therapeutically Qualified Cells for Cell Therapy. NANO LETTERS 2022; 22:5723-5734. [PMID: 35787105 DOI: 10.1021/acs.nanolett.2c00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the great promise, cell therapy still faces practical challenges because of the scarcity of a reliable cell source. Herein, a bioinspired 3D dynamic culture system (CellMatrix) with rational structure, composite and function, was developed for improving cell supply. CellMatrix was composed of unique core-shell fibers with a core of black phosphorus-incorporated fibroin and a shell of sericin, which together formed a 3D silkworm cocoon-mimicking structure via a bottom-up fabrication technique. CellMatrix not only provided optimal engineered biomimetic niche to facilitate cell growth but exhibited good photothermal conversion to dynamically regulate cell fates. Importantly, cell-CellMatrix construct could be directly implanted into defected tissues and improved tissue remodeling. Meanwhile, CellMatrix displayed good ice resistance and thermal conductivity, which maximally maintained cell viability and proliferation after the freeze-thawing process, allowing for storing precious cells and cell-CellMatrix construct. Thus, CellMatrix represents an all-in-one biomimetic platform for the culture-production-storage of therapeutically qualified cells.
Collapse
Affiliation(s)
- Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|