1
|
Lu Y, Wang M, Li M, Yu L, Li Y. Conduction Pathways of Quinoxalinyl Molecules in the STM-BJ-Fabricated Nanogap. J Phys Chem A 2025; 129:1665-1672. [PMID: 39907275 DOI: 10.1021/acs.jpca.4c07707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Quinoxaline (Qx) terminated with two mercaptomethyl (-SMe) anchoring ligands demonstrated two conductance values when studied using the scanning tunneling microscope-based break-junction (STM-BJ) technique. Further research showed that the observed low and high conductances (termed GL and GH) resulted from two electron transfer pathways of different lengths with distinct molecular binding configurations. GL arises from the two terminal -SMe groups attached to the Au electrodes, and GH appears when one of the two Au-S linkages is replaced by an Au-N linkage where N of Qx is anchored to the electrode. This is one of the few instances where a single molecule can independently exhibit two different conductance states without an external stimulus, thereby offering a desired molecular prototype for developing conductance-dependent molecular electronics, such as molecular switches and other functional molecular devices.
Collapse
Affiliation(s)
- Yuhua Lu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingzhen Wang
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengxiao Li
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lei Yu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Liu X, Yang H, Harb H, Samajdar R, Woods TJ, Lin O, Chen Q, Romo AIB, Rodríguez-López J, Assary RS, Moore JS, Schroeder CM. Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions. Nat Chem 2024; 16:1772-1780. [PMID: 39187723 DOI: 10.1038/s41557-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Molecular electronic devices require precise control over the flow of current in single molecules. However, the electron transport properties of single molecules critically depend on dynamic molecular conformations in nanoscale junctions. Here we report a unique strategy for controlling molecular conductance using shape-persistent molecules. Chemically diverse, charged ladder molecules, synthesized via a one-pot multicomponent ladderization strategy, show a molecular conductance (d[log(G/G0)]/dx ≈ -0.1 nm-1) that is nearly independent of junction displacement, in stark contrast to the nanogap-dependent conductance (d[log(G/G0)]/dx ≈ -7 nm-1) observed for non-ladder analogues. Ladder molecules show an unusually narrow distribution of molecular conductance during dynamic junction displacement, which is attributed to the shape-persistent backbone and restricted rotation of terminal anchor groups. These principles are further extended to a butterfly-like molecule, thereby demonstrating the strategy's generality for achieving gap-independent conductance. Overall, our work provides important avenues for controlling molecular conductance using shape-persistent molecules.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hassan Harb
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rajarshi Samajdar
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Toby J Woods
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Oliver Lin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qian Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adolfo I B Romo
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joaquín Rodríguez-López
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajeev S Assary
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Charles M Schroeder
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Gorenskaia E, Low PJ. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chem Sci 2024; 15:9510-9556. [PMID: 38939131 PMCID: PMC11206205 DOI: 10.1039/d4sc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
This article offers a broad overview of measurement methods in the field of molecular electronics, with a particular focus on the most common single-molecule junction fabrication techniques, the challenges in data analysis and interpretation of single-molecule junction current-distance traces, and a summary of simulations and predictive models aimed at establishing robust structure-property relationships of use in the further development of molecular electronics.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| |
Collapse
|
4
|
Batzinger K, Zhou Q, Ye X, Borguet E, Xiao S, Smeu M. Steric Effects on Single-Molecule Conductance in Flat-Lying Phenanthrene. Chemistry 2024; 30:e202400422. [PMID: 38629897 DOI: 10.1002/chem.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 05/23/2024]
Abstract
A previous combined experimental and theoretical study found that the position of anchoring groups on a phenanthrene (PHE) backbone played a large role in determining the single-molecule conductance of the PHE derivative. However, a consistent 0.1 G0 feature was found across all PHE derivatives. To understand this, the previously investigated PHE derivatives were placed flat on a simulated Au substrate with a scanning tunneling microscope (STM) tip over PHE and conductance was calculated using the non-equilibrium Green's function technique in conjunction with density functional theory (NEGF-DFT). The location of the tip was varied to find the most conductive and most energetically favorable arrangements, which did not coincide. Furthermore, the variation in conductance found in erect junctions was not present when PHE derivatives were lying flat, with all derivatives calculated to have conductance values around 0.1 G0.
Collapse
Affiliation(s)
- Kevin Batzinger
- Department of Physics, Binghamton University, Vestal, NY, USA
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiang Ye
- Mathematics and Science College, Shanghai Normal University, Shanghai, 200234, China
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Manuel Smeu
- Department of Physics, Binghamton University, Vestal, NY, USA
| |
Collapse
|
5
|
Ma C, Li Y, Tang A, Wang R, Li Y, Li Z, Yang J, Li H. Manipulating the charge transport via incorporating a cobalt bridge into a single-molecule junction. Phys Chem Chem Phys 2024; 26:1608-1611. [PMID: 38127678 DOI: 10.1039/d3cp04979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cobalt-bridged organometallic molecular wires (p-Co-p, p-Co-m and m-Co-m) are synthesized, and their charge transport properties are studied. The experimental results show that the quantum interference (QI) effects of cobalt-bridged organometallic wires are determined by the anchoring group. Interestingly, the cobalt-bridge reduces the conductance of the junctions and tunes the QI effect of the wires. These results demonstrate the unique property of metal-bridged organometallic molecular wires and their potential applications in molecular electronics.
Collapse
Affiliation(s)
- Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yingjie Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
6
|
Tang A, Li Y, Wang R, Yang J, Ma C, Li Z, Zou Q, Li H. Charge transport of F4TCNQ with different electronic states in single-molecule junctions. Chem Commun (Camb) 2023; 59:1305-1308. [PMID: 36633258 DOI: 10.1039/d2cc06341g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular conductance of 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4TCNQ) with different electronic states (neutral, radical anion, and dianion) was investigated by the scanning tunneling microscope break junction (STM-BJ) technique. These electronic states have distinct conductance, and the conductance decreases in the order of neutral > radical anion > dianion. Surprisingly, the molecular conductance of the neutral F4TCNQ junction reaches 10-1.17G0, attributed to its LUMO energy level being close to the Fermi level of the gold electrode. Moreover, we found that neutral F4TCNQ can be gradually reduced to radical anions under a relatively low bias voltage of 100 mV. These results will advance the development of organic optoelectronic devices and molecule electronics.
Collapse
Affiliation(s)
- Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Qi Zou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
7
|
Pan X, Qian C, Chow A, Wang L, Kamenetska M. Atomically precise binding conformations of adenine and its variants on gold using single molecule conductance signatures. J Chem Phys 2022; 157:234201. [PMID: 36550043 DOI: 10.1063/5.0103642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We demonstrate single molecule conductance as a sensitive and atomically precise probe of binding configurations of adenine and its biologically relevant variants on gold. By combining experimental measurements and density functional theory (DFT) calculations of single molecule-metal junction structures in aqueous conditions, we determine for the first time that robust binding of adenine occurs in neutral or basic pH when the molecule is deprotonated at the imidazole moiety. The molecule binds through the donation of the electron lone pairs from the imidazole nitrogen atoms, N7 and N9, to the gold electrodes. In addition, the pyrimidine ring nitrogen, N3, can bind concurrently and strengthen the overall metal-molecule interaction. The amine does not participate in binding to gold in contrast to most other amine-terminated molecular wires due to the planar geometry of the nucleobase. DFT calculations reveal the importance of interface charge transfer in stabilizing the experimentally observed binding configurations. We demonstrate that biologically relevant variants of adenine, 6-methyladenine and 2'-deoxyadenosine, have distinct conductance signatures. These results lay the foundation for biosensing on gold using single molecule conductance readout.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA
| | - Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Amber Chow
- Department of Physics, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Maria Kamenetska
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Wilkinson LA, Bennett TLR, Grace IM, Hamill J, Wang X, Au-Yong S, Ismael A, Jarvis SP, Hou S, Albrecht T, Cohen LF, Lambert C, Robinson BJ, Long NJ. Assembly, structure and thermoelectric properties of 1,1'-dialkynylferrocene 'hinges'. Chem Sci 2022; 13:8380-8387. [PMID: 35919728 PMCID: PMC9297386 DOI: 10.1039/d2sc00861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Dialkynylferrocenes exhibit attractive electronic and rotational features that make them ideal candidates for use in molecular electronic applications. However previous works have primarily focussed on single-molecule studies, with limited opportunities to translate these features into devices. In this report, we utilise a variety of techniques to examine both the geometric and electronic structure of a range of 1,1'-dialkynylferrocene molecules, as either single-molecules, or as self-assembled monolayers. Previous single molecule studies have shown that similar molecules can adopt an 'open' conformation. However, in this work, DFT calculations, STM-BJ experiments and AFM imaging reveal that these molecules prefer to occupy a 'hairpin' conformation, where both alkynes point towards the metal surface. Interestingly we find that only one of the terminal anchor groups binds to the surface, though both the presence and nature of the second alkyne affect the thermoelectric properties of these systems. First, the secondary alkyne acts to affect the position of the frontier molecular orbitals, leading to increases in the Seebeck coefficient. Secondly, theoretical calculations suggested that rotating the secondary alkyne away from the surface acts to modulate thermoelectric properties. This work represents the first of its kind to examine the assembly of dialkynylferrocenes, providing valuable information about both their structure and electronic properties, as well as unveiling new ways in which both of these properties can be controlled.
Collapse
Affiliation(s)
- Luke A Wilkinson
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Troy L R Bennett
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| | - Iain M Grace
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | - Joseph Hamill
- Department of Chemistry, Birmingham University Edgbaston Birmingham B15 2TT UK
| | - Xintai Wang
- Physics Department, Lancaster University Lancaster LA1 4YB UK
- The Blackett Laboratory, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Sophie Au-Yong
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | - Ali Ismael
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | - Samuel P Jarvis
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | - Songjun Hou
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | - Tim Albrecht
- Department of Chemistry, Birmingham University Edgbaston Birmingham B15 2TT UK
| | - Lesley F Cohen
- The Blackett Laboratory, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Colin Lambert
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | | | - Nicholas J Long
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| |
Collapse
|