1
|
Sinha A, Lee J, Kim J, So H. An evaluation of recent advancements in biological sensory organ-inspired neuromorphically tuned biomimetic devices. MATERIALS HORIZONS 2024; 11:5181-5208. [PMID: 39114942 DOI: 10.1039/d4mh00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In the field of neuroscience, significant progress has been made regarding how the brain processes information. Unlike computer processors, the brain comprises neurons and synapses instead of memory blocks and transistors. Despite advancements in artificial neural networks, a complete understanding concerning brain functions remains elusive. For example, to achieve more accurate neuron replication, we must better understand signal transmission during synaptic processes, neural network tunability, and the creation of nanodevices featuring neurons and synapses. This study discusses the latest algorithms utilized in neuromorphic systems, the production of synaptic devices, differences between single and multisensory gadgets, recent advances in multisensory devices, and the promising research opportunities available in this field. We also explored the ability of an artificial synaptic device to mimic biological neural systems across diverse applications. Despite existing challenges, neuroscience-based computing technology holds promise for attracting scientists seeking to enhance solutions and augment the capabilities of neuromorphic devices, thereby fostering future breakthroughs in algorithms and the widespread application of cutting-edge technologies.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Jihun Lee
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Junho Kim
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
2
|
Li B, Xia F, Du B, Zhang S, Xu L, Su Q, Zhang D, Yang J. 2D Halide Perovskites for High-Performance Resistive Switching Memory and Artificial Synapse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310263. [PMID: 38647431 PMCID: PMC11187899 DOI: 10.1002/advs.202310263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Metal halide perovskites (MHPs) are considered as promising candidates in the application of nonvolatile high-density, low-cost resistive switching (RS) memories and artificial synapses, resulting from their excellent electronic and optoelectronic properties including large light absorption coefficient, fast ion migration, long carrier diffusion length, low trap density, high defect tolerance. Among MHPs, 2D halide perovskites have exotic layered structure and great environment stability as compared with 3D counterparts. Herein, recent advances of 2D MHPs for the RS memories and artificial synapses realms are comprehensively summarized and discussed, as well as the layered structure properties and the related physical mechanisms are presented. Furthermore, the current issues and developing roadmap for the next-generation 2D MHPs RS memories and artificial synapse are elucidated.
Collapse
Affiliation(s)
- Bixin Li
- School of Physics and ChemistryHunan First Normal UniversityChangsha410205China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'anShaanxi710072China
- School of PhysicsCentral South University932 South Lushan RoadChangshaHunan410083China
| | - Fei Xia
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'anShaanxi710072China
| | - Bin Du
- School of Materials Science and EngineeringXi'an Polytechnic UniversityXi'an710048China
| | - Shiyang Zhang
- School of Physics and ChemistryHunan First Normal UniversityChangsha410205China
| | - Lan Xu
- School of Physics and ChemistryHunan First Normal UniversityChangsha410205China
| | - Qiong Su
- School of Physics and ChemistryHunan First Normal UniversityChangsha410205China
| | - Dingke Zhang
- School of Physics and Electronic EngineeringChongqing Normal UniversityChongqing401331China
| | - Junliang Yang
- School of PhysicsCentral South University932 South Lushan RoadChangshaHunan410083China
| |
Collapse
|
3
|
Hong R, He P, Zhang S, Hong X, Tian Q, Liu C, Bu T, Su W, Li G, Flandre D, Liu X, Lv Y, Liao L, Zou X. Compositional Engineering of Cu-Doped SnO Film for Complementary Metal Oxide Semiconductor Technology. NANO LETTERS 2024; 24:1176-1183. [PMID: 38240634 DOI: 10.1021/acs.nanolett.3c03953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.
Collapse
Affiliation(s)
- Ruohao Hong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Penghui He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Sen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xitong Hong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Qianlei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Tong Bu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wanhan Su
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Guoli Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Denis Flandre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Xingqiang Liu
- Changsha Semiconductor Technology and Application Research Institute, Engineering Research Center of Advanced Semiconductor Technology, College of Semiconductor (College of Integrated Circuit), Hunan University, Changsha 410082, China
- Zhangzhou Heqi Target Technology Company, Ltd., Jiulong Industrial Park, Hua'an Economic Development Zone, Zhangzhou, Fujian 363000, P. R. China
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Research Institute, Engineering Research Center of Advanced Semiconductor Technology, College of Semiconductor (College of Integrated Circuit), Hunan University, Changsha 410082, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Anoshkin SS, Shishkin II, Markina DI, Logunov LS, Demir HV, Rogach AL, Pushkarev AP, Makarov SV. Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden-Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images. J Phys Chem Lett 2024; 15:540-548. [PMID: 38197909 DOI: 10.1021/acs.jpclett.3c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.
Collapse
Affiliation(s)
| | - Ivan I Shishkin
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Daria I Markina
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Lev S Logunov
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Hilmi Volkan Demir
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore 639798
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, P. R. China
| | | | - Sergey V Makarov
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, P. R. China
| |
Collapse
|
5
|
Zhang F, Shao M, Wang C, Wen W, Shi W, Qin M, Huang H, Wei X, Guo Y, Liu Y. Photoinduced Nonvolatile Memory Transistor Based on Lead-Free Perovskite Incorporating Fused π-Conjugated Organic Ligands. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307326. [PMID: 37849381 DOI: 10.1002/adma.202307326] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Perovskites field-effect transistors (PeFETs) have been intensively investigated for their application in detector and synapse. However, synapse based on PeFETs is still very difficult to integrate excellent charge carrier transporting ability, photosensitivity, and nonvolatile memory effects into one device, which is very important for developing bionic electronic devices and edge computing. Here, two-dimensional (2D) perovskites are synthesized by incorporating fused π-conjugated pyrene-O-ethyl-ammonium (POE) ligands and a systematic study is conducted to obtain enhanced performance and reliable PeFETs. The optimized (POE)2 SnI4 transistors display the hole mobility over 0.3 cm2 V-1 s-1 , high repeatability, and operational stability. Meanwhile, the derived photo memory devices show remarkable photoresponse, with a switching ratio higher than 105 , high visible light responsivity (>4 × 104 A W-1 ), and stable storage-erase cycles, as well as competitive retention performance (104 s). The photoinduced memory behavior can be benefiting from the insulating nature of quantum-well in 2D perovskite under dark and its excellent light sensitivity. The excellent photo memory behaviors have been maintained after 40 days in a N2 atmosphere. Finally, a 2D perovskite-only transistors with a multi-level memory behavior (16 distinct states) is described by controlling incident light pulse. This work provides broader attention toward 2D perovskite and optoelectronic application.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chengyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingcong Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Hong X, Huang Y, Tian Q, Zhang S, Liu C, Wang L, Zhang K, Sun J, Liao L, Zou X. Two-Dimensional Perovskite-Gated AlGaN/GaN High-Electron-Mobility-Transistor for Neuromorphic Vision Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202019. [PMID: 35869612 PMCID: PMC9507368 DOI: 10.1002/advs.202202019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Indexed: 05/06/2023]
Abstract
The extraordinary optoelectronic properties and continued commercialization of GaN enable it a promising component for neuromorphic visual system (NVS). However, typical GaN-based optoelectronic devices demonstrated to data only show temporary and unidirectional photoresponse in ultraviolet region, which is an insurmountable obstacle for construction of NVS in practical applications. Herein, an ultrasensitive visual sensor with phototransistor architecture consisting of AlGaN/GaN high-electron-mobility-transistor (HEMT) and two-dimensional Ruddlesden-Popper organic-inorganic halide perovskite (2D OIHP) is reported. Utilizing the significant variation in activation energy for ion transport in 2D OIHP (from 1.3 eV under dark to 0.4 eV under illumination), the sensor can efficiently perceive and storage optical information in ultraviolet-visible region. Meanwhile, the photo-enhanced field-effect mechanism in the depletion-mode HEMT enables gate-tunable negative and positive photoresponse, where some typical optoelectronic synaptic functions including inhibitory and excitatory postsynaptic current as well as paired-pulse facilitation are demonstrated. More importantly, a NVS based on the proposed visual sensor array is constructed for achieving neuromorphic visual preprocessing with an improved color image recognition rate of 100%.
Collapse
Affiliation(s)
- Xitong Hong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education& Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Yulong Huang
- Hunan Key Laboratory for Super Microstructure and Ultrafast ProcessSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Qianlei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education& Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Sen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education& Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education& Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Liming Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education& Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Kai Zhang
- Science and Technology on Monolithic Integrated Circuits and Modules LaboratoryNanjing210016P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast ProcessSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and ChemometricsCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education& Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
- State Key Laboratory for Chemo/Biosensing and ChemometricsCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
| |
Collapse
|
7
|
Guan X, Lei Z, Yu X, Lin CH, Huang JK, Huang CY, Hu L, Li F, Vinu A, Yi J, Wu T. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203311. [PMID: 35989093 DOI: 10.1002/smll.202203311] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal-halide perovskites have drawn profuse attention during the past decade, owing to their excellent electrical and optical properties, facile synthesis, efficient energy conversion, and so on. Meanwhile, the development of information storage technologies and digital communications has fueled the demand for novel semiconductor materials. Low-dimensional perovskites have offered a new force to propel the developments of the memory field due to the excellent physical and electrical properties associated with the reduced dimensionality. In this review, the mechanisms, properties, as well as stability and performance of low-dimensional perovskite memories, involving both molecular-level perovskites and structure-level nanostructures, are comprehensively reviewed. The property-performance correlation is discussed in-depth, aiming to present effective strategies for designing memory devices based on this new class of high-performance materials. Finally, the existing challenges and future opportunities are presented.
Collapse
Affiliation(s)
- Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science, 398 Ruoshui Road, Suzhou, 215123, China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Feng Li
- School of Physics, Nano Institute, ACMM, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|