1
|
Basha S, Mukunda DC, Pai AR, Mahato KK. Assessing amyloid fibrils and amorphous aggregates: A review. Int J Biol Macromol 2025; 311:143725. [PMID: 40324497 DOI: 10.1016/j.ijbiomac.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation play a central role in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. These aggregates manifest either as structured amyloid fibrils enriched in β-sheet conformations or as irregular amorphous aggregates with diverse morphologies. Understanding their formation, structure, and behavior is critical for deciphering disease mechanisms and developing targeted diagnostics and therapeutics. This review presents an integrated overview of both conventional and advanced techniques used to detect, distinguish, and structurally characterize these protein aggregates. It covers a range of spectroscopic and spectrometric tools, such as fluorescence, Raman, and mass spectrometry that facilitate aggregate identification. Microscopy methods, including atomic force and electron microscopy, are highlighted for morphological analysis. The review also discusses in situ detection strategies using fluorescent dyes, conformation-specific antibodies, enzymatic reporters, and real-time imaging. Separation methods like centrifugation, electrophoresis, and chromatography are outlined alongside structural analysis tools such as X-ray diffraction. Furthermore, the growing utility of computational approaches and artificial intelligence in predicting aggregation propensities and integrating biological data is emphasized. By critically evaluating each method's capabilities and limitations, this review provides a practical and forward-looking resource for researchers studying the complex landscape of protein aggregation.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Wang L, Xin L, Cao Y, Xu Q, Dong J, Fan P, Hou W, Wang Q, Meng J, Zhang R, Gao J. Development of a Controllable Intelligent Drug Delivery System for Efficient Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51970-51980. [PMID: 39288084 DOI: 10.1021/acsami.4c09087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Rheumatoid arthritis (RA) is a complex inflammatory disease of the joints, which is often accompanied by degeneration of articular cartilage and bone erosion, seriously affecting the quality of life and psychological state of patients. RA is difficult to be cured completely, and currently the main purpose of relief is through the use of anti-inflammatory and antirheumatic drugs, hormones, and biological agents. Tofacitib is a new type of small molecule inhibitor, which has a good effect in the treatment of RA. The current direct drug delivery method has serious side effects caused by the systemic distribution of the drug, so there is a need to develop an intelligent drug delivery system to realize precise treatment. In this work, tofacitib, gallic acid, targeted molecule folic acid, and Fe(III) were selected to assemble a novel type of artificial controllable nanodrug GF-TF. The self-photoacoustic/magnetic resonance imaging (self-PA/MRI) monitored the enrichment of GF-TF in the lesion in real-time, and artificially regulated the addition of deferoxamine (DFO) at the optimal enrichment. DFO strongly chelates Fe(III) in GF-TF and causes its structure to disintegrate gradually, and the self-PA/MRI signal of GF-TF became weaker while tofacitib began to be released, thus realizing the precise and artificially controlled release of the drug under the guidance of imaging. This nanodrug not only achieves efficient aggregation of drugs in inflamed joints, but also achieves real-time monitoring and precise control of drug release through self-PA/MRI, providing a new strategy for the precise treatment of RA.
Collapse
Affiliation(s)
- Lei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Xin
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yuchen Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | | | - Peixin Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenrun Hou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | | | - Jian Meng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | | | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
3
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
4
|
Deng ZW, Yang JK, Qiu KJ, Zhang TJ, He Z, Wang N, Chen XG, Liu Y. Long-term combined blockade of CXCR4 and PD-L1 with in vivo reassembly for intensive tumor interference. J Control Release 2024; 370:453-467. [PMID: 38697315 DOI: 10.1016/j.jconrel.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Negative immunoregulatory signal (PD-L1, CXCR4, et al.) and weak immunogenicity elicited immune system failing to detect and destroy cancerous cells. CXCR4 blockade promoted T cell tumor infiltration and increased tumor sensitivity to anti-PD-L1 therapy. Here, pH-responsive reassembled nanomaterials were constructed with anti-PD-L1 peptide and CXCR4 antagonists grafting (APAB), synergized with photothermal therapy for melanoma and breast tumor interference. The self-assembled APAB nanoparticles accumulated in the tumor and rapidly transformed into nanofibers in response to the acidic tumor microenvironment, leading to the exposure of grafted therapeutic agents. APAB enabling to reassemble around tumor cells and remained stable for over 96 h due to the aggregation induced retention (AIR) effect, led to long-term efficiently combined PD-L1 and CXCR4 blockade. Photothermal efficiency (ICG) induced immunogenic cell death (ICD) of tumor cells so as to effectively improve the immunogenicity. The combined therapy (ICG@APAB) could effectively inhibit the growth of primary tumor (∼83.52%) and distant tumor (∼76.24%) in melanoma-bearing mice, and significantly (p < 0.05) prolong the survival time over 42 days. The inhibition assay on tumor metastasis in 4 T1 model mice exhibited ICG@APAB almostly suppressed the occurrence of lung metastases and the expression levels of CD31, MMP-9 and VEGF in tumor decreased by 82.26%, 90.45% and 41.54%, respectively. The in vivo reassembly strategy will offer novel perspectives benefical future immunotherapies and push development of combined therapeutics into clinical settings.
Collapse
Affiliation(s)
- Zhen-Wei Deng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Kai-Jin Qiu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ting-Jie Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
5
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
6
|
Liang Z, Xiao L, Wang Q, Zhang B, Mo W, Xie S, Liu X, Chen Y, Yang S, Du H, Wang P, Li F, Ling D. Ligand-Mediated Magnetism-Conversion Nanoprobes for Activatable Ultra-High Field Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2024; 63:e202318948. [PMID: 38212253 DOI: 10.1002/anie.202318948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Ultra-high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low-field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand-mediated magnetism-conversion nanoprobe (MCNP) composed of 3-mercaptopropionic acid ligand-coated silver-gadolinium bimetallic nanoparticles. The MCNP exhibits a pH-dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH-activatable UHF MRI. Under neutral pH, the thiolate (-S- ) ligands lead to short τ'm and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (-SH) ligands, resulting in prolonged τ'm and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH-sensitive changes in Ag-S binding affinity of the MCNP lead to a remarkable (>10-fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next-generation UHF-tailored smart MRI contrast agent.
Collapse
Affiliation(s)
- Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Wenkui Mo
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengzhan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| |
Collapse
|
7
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
8
|
Yan Z, Liu Y, Zhao L, Hu J, Du Y, Peng X, Liu Z. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. MATERIALS HORIZONS 2023; 10:3197-3217. [PMID: 37376926 DOI: 10.1039/d3mh00592e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The individual motifs that respond to specific stimuli for the self-assembly of nanomaterials play important roles. In situ constructed nanomaterials are formed spontaneously without human intervention and have promising applications in bioscience. However, due to the complex physiological environment of the human body, designing stimulus-responsive self-assembled nanomaterials in vivo is a challenging problem for researchers. In this article, we discuss the self-assembly principles of various nanomaterials in response to the tissue microenvironment, cell membrane, and intracellular stimuli. We propose the applications and advantages of in situ self-assembly in drug delivery and disease diagnosis and treatment, with a focus on in situ self-assembly at the lesion site, especially in cancer. Additionally, we introduce the significance of introducing exogenous stimulation to construct self-assembly in vivo. Based on this foundation, we put forward the prospects and possible challenges in the field of in situ self-assembly. This review uncovers the relationship between the structure and properties of in situ self-assembled nanomaterials and provides new ideas for innovative drug molecular design and development to solve the problems in the targeted delivery and precision medicine.
Collapse
Affiliation(s)
- Ziling Yan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Licheng Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, P. R. China
| |
Collapse
|
9
|
Targeting Tumor-Associated Macrophages for Imaging. Pharmaceutics 2022; 15:pharmaceutics15010144. [PMID: 36678773 PMCID: PMC9866064 DOI: 10.3390/pharmaceutics15010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
As an important component of the tumor immune microenvironment (TIME), tumor-associated macrophages (TAMs) occupy a significant niche in tumor margin aggregation and respond to changes in the TIME. Thus, targeting TAMs is important for tumor monitoring, surgical guidance and efficacy evaluation. Continuously developing nanoprobes and imaging agents paves the way toward targeting TAMs for precise imaging and diagnosis. This review summarizes the commonly used nanomaterials for TAM targeting imaging probes, including metal-based nanoprobes (iron, manganese, gold, silver), fluorine-19-based nanoprobes, radiolabeled agents, near-infrared fluorescence dyes and ultrasonic nanobubbles. Additionally, the prospects and challenges of designing nanomaterials for imaging and diagnosis (targeting efficiency, pharmacokinetics, and surgery guidance) are described in this review. Notwithstanding, TAM-targeting nanoplatforms provide great potential for imaging, diagnosis and therapy with a greater possibility of clinical transformation.
Collapse
|
10
|
Du H, Wang Q, Liang Z, Li Q, Li F, Ling D. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. NANOSCALE 2022; 14:17483-17499. [PMID: 36413075 DOI: 10.1039/d2nr04979a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrahigh-field magnetic resonance imaging (UHF-MRI) has been attracting tremendous attention in biomedical imaging owing to its high signal-to-noise ratio, superior spatial resolution, and fast imaging speed. However, at UHF-MRI, there is a lack of proper imaging probes that can impart superior imaging sensitivity of disease lesions because conventional contrast agents generally produce pronounced susceptibility artifacts and induce very strong T2 decay effects, thus hindering satisfactory imaging performance. This review focused on the recent development of high-performance nanoprobes that can improve the sensitivity and specificity of UHF-MRI. Firstly, the contrast enhancement mechanism of nanoprobes at UHF-MRI has been elucidated. In particular, the strategies for modulating nanoprobe performance, including size effects, metal alloying and magnetic-dopant effects, surface effects, and stimuli-response regulation, have been comprehensively discussed. Furthermore, we illustrate the remarkable advances in the design of UHF-MRI nanoprobes for medical diagnosis, such as early-stage primary tumor and metastasis imaging, angiography, and dynamic monitoring of biosignaling factors in vivo. Finally, we provide a summary and outlook on the development of cutting-edge UHF-MRI nanoprobes for advanced biomedical imaging.
Collapse
Affiliation(s)
- Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Qilong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| |
Collapse
|
11
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Chen C, Huang C, Liu J, Tao J, Chen Y, Deng K, Xu Y, Lin B, Zhao P. Hofmeister Effect-Based T1-T2 Dual-Mode MRI and Enhanced Synergistic Therapy of Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49568-49581. [PMID: 36317744 DOI: 10.1021/acsami.2c15295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The imaging resolution of magnetic resonance imaging (MRI) is influenced by many factors. The development of more effective MRI contrast agents (CAs) is significant for early tumor detection and radical treatment, albeit challenging. In this work, the Hofmeister effect of Fe2O3 nanoparticles within the tumor microenvironment was confirmed for the first time. Based on this discovery, we designed a nanocomposite (FePN) by loading Fe2O3 nanoparticles on black phosphorus nanosheets. After reacting with glutathione, the FePN will undergo two stages in the tumor microenvironment, resulting in the robust enhancement of r1 and r2 based on the Hofmeister effect in the commonly used magnetic field (3.0 T). The glutathione-activated MRI signal of FePN was higher than most of the activatable MRI CAs, enabling a more robust visualization of tumors. Furthermore, benefiting from the long circulation time of FePN in the blood and retention time in tumors, the synergistic therapy of FePN exhibited an outstanding inhibition toward tumors. The FePN with good biosafety and biocompatibility will not only pave a new way for designing a common magnetic field-tailored T1-T2 dual-mode MRI CA but also offer a novel pattern for the accurate clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Kan Deng
- Philips Healthcare, 510000 Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| |
Collapse
|
13
|
Wang T, Zhang X, Xu Y, Xu Y, Zhang Y, Zhang K. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. J Mater Chem B 2022; 10:7361-7383. [PMID: 35770674 DOI: 10.1039/d2tb00600f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important techniques in the diagnosis of many diseases including cancers, where contrast agents (CAs) are usually necessary to improve its precision and sensitivity. Previous MRI CAs are confined to the signal-to-noise ratio (SNR) elevation of lesions for precisely localizing lesions. As nanobiotechnology advances, some new MRI CAs or nanobiotechnology-enabled MRI modes have been established to vary the longitudinal or transverse relaxation of CAs, which are harnessed to detect lesion targets, monitor disease evolution, predict or evaluate curative effect, etc. These distinct cases provide unexpected insights into the correlation of the design principles of these nanobiotechnologies and corresponding MRI CAs with their potential applications. In this review, first, we briefly present the principles, classifications and applications of conventional MRI CAs, and then elucidate the recent advances in relaxation tuning via the development of various nanobiotechnologies with emphasis on the design strategies of nanobiotechnology and the corresponding MRI CAs to target the tumor microenvironment (TME) and biological targets or activities in tumors or other diseases. In addition, we exemplified the advantages of these strategies in disease theranostics and explored their potential application fields. Finally, we analyzed the present limitations, potential solutions and future development direction of MRI after its combination with nanobiotechnology.
Collapse
Affiliation(s)
- Taixia Wang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Xueni Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yuan Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yingchun Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yifeng Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| |
Collapse
|