1
|
Zhang W, Li S, Wang Y, Liu S, Liu L, Deng Z, Mo S, Chen M, Li Z, Wang R, Zhou X, Xu L, Yu L, Liu Z, Li H, Liang J, Wang C. Arginine-Rich Peptides Regulate the Pathogenic Galectin-10 Crystallization and Mitigate Crystallopathy-Associated Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8949-8961. [PMID: 39894983 DOI: 10.1021/acsami.4c18411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Protein self-assembly into a crystal in vivo triggers acute or chronic organ injury that can lead to intractable diseases lacking specific treatment options. In this study, we report the discovery of ionic arginine-rich peptides to disrupt the pathogenic galectin-10 (gal-10) crystallization, where the aberrant deposition of gal-10 crystals in airways causes the activation of IL-1β-dependent inflammation and the stimulation of epithelial cells to produce TNF-α. Gal-10 crystals show susceptibility to pH changes and charged residue substitutions at the protein packing interfaces, manifesting the role of charge-charge attractions across protein-protein interaction interfaces in governing gal-10 crystallization. To dissolve the gal-10 crystal, the ionic peptides R9 and R12Y8 were identified to eliminate the interprotein charge-charge interactions. The efficacy of R12Y8 in mitigating the gal-10 crystallopathy in vivo was assessed in a crystal-induced lung inflammation mice model. The mice intratracheally administrated by R12Y8 exhibited a downregulated release of proinflammatory cytokines and reduced infiltration of inflammatory cells in the lungs. Our study demonstrates that the pathogenic gal-10 crystallization is readily eliminated by R-rich peptides, which may display translational potentials for the treatment of gal-10 crystallopathy.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Shuyuan Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Yang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing 100123, P. R. China
| | - Lei Liu
- Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, 320 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Zhun Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Shanshan Mo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Mingrui Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Zhenyan Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Ruonan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Xin Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Longxin Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Lanlan Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Zhenlin Liu
- Department of Medical Engineering, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, P. R. China
| | - Junbo Liang
- Center for Bioinformatics, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, P. R. China
| | - Chenxuan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| |
Collapse
|
2
|
Yan B, Lan F, Li J, Wang C, Zhang L. The mucosal concept in chronic rhinosinusitis: Focus on the epithelial barrier. J Allergy Clin Immunol 2024; 153:1206-1214. [PMID: 38295881 DOI: 10.1016/j.jaci.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Chronic rhinosinusitis (CRS) is a common chronic nasal cavity and sinus disease affecting a growing number of individuals worldwide. Recent advances have shifted our understanding of CRS pathophysiology from a physical obstruction model of ventilation and drainage to a mucosal concept that recognizes the complexities of mucosal immunologic variations and cellular aberrations. A growing number of studies have demonstrated the alteration of the epithelial barrier during inflammatory states. Therefore, the current review has focused on the crucial role of epithelial cells within this mucosal framework in CRS, detailing the perturbed epithelial homeostasis, impaired epithelial cell barrier, dysregulated epithelial cell repair processes, and enhanced interactions between epithelial cells and immune cells. Notably, the utilization of novel technologies, such as single-cell transcriptomics, has revealed the novel functions of epithelial barriers, such as inflammatory memory and neuroendocrine functions. Therefore, this review also emphasizes the importance of epithelial inflammatory memory and the necessity of further investigations into neuroendocrine epithelial cells and neurogenic inflammation in CRS. We conclude by contemplating the prospective benefits of epithelial cell-oriented biological treatments, which are currently under investigation in rigorous randomized, double-blind clinical trials in patients with CRS with nasal polyps.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Lan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Sima Y, Wang X, Zhang L. Interaction of eosinophilic and neutrophilic inflammation in patients with chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2024; 24:25-31. [PMID: 37966141 DOI: 10.1097/aci.0000000000000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW In the past year, the endotype of chronic rhinosinusitis (CRS) has been studied from a new perspective. Eosinophilic and neutrophilic inflammation are not independent processes in the pathogenesis of CRS. In this review, we will focus on recent research on mixed eosinophilic-neutrophilic inflammation in CRS and discuss the mechanism and potential treatments. RECENT FINDINGS Traditionally, patients with eosinophilic CRS (ECRS) present with severe clinical manifestations, comorbidities, and a higher recurrence rate. Recent studies have found that approximately 40% of patients with ECRS present with neutrophilic infiltration, while patients with predominantly eosinophilic infiltration along with neutrophilic inflammation present with more complex inflammation, clinical manifestations and exhibit refractory characteristics. SUMMARY The complex inflammatory profile and refractory clinical characteristics of mixed eosinophilic-neutrophilic inflammation in CRS are current challenges for clinicians. We summarize the features of eosinophilic and neutrophilic inflammation and current studies on the mechanisms of mixed eosinophilic-neutrophilic inflammation and suggest potentially effective therapeutic methods. We hope that this review will help with determining precise treatment options for patients.
Collapse
Affiliation(s)
- Yutong Sima
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Sima Y, Zhao Y, Wang X, Zhang L. Precision medicine in chronic rhinosinusitis - using endotype and endotype-driven therapeutic options. Expert Rev Clin Immunol 2023; 19:949-958. [PMID: 37387541 DOI: 10.1080/1744666x.2023.2232115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Chronic rhinosinusitis (CRS) is a heterogeneous disease, and its complex pathophysiological characteristics pose a challenge to its clinical treatment. CRS is distinguished not only by clinical phenotype but also by endotype characteristics, which are divided into type 2 CRS and non-type 2 CRS. AREAS COVERED In this review, we summarize and discuss current studies that depict the mechanisms and endotypes of CRS. In particular, inflammatory cells and the microbiome play a role in the pathophysiology of CRS. We also listed some of the biomarkers described in recent studies that may serve as a theoretical foundation for additional investigations. We have summarized the advantages and disadvantages of existing treatments and listed the available biological treatments for CRS in detail. EXPERT OPINION Endotype-driven therapeutic options face many challenges because of the complexity of the disease. Glucocorticoids, nasal endoscopic surgery, and biological therapy are the main treatments used in clinical practice, but they have limitations. This review provides advice on the clinical management and treatment options for patients with different endotypes, which will be more conducive to improving the quality of life and reducing the financial burden on patients.
Collapse
Affiliation(s)
- Yutong Sima
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Gelardi M, Giancaspro R, Cassano M. Charcot-Leyden crystals: An ancient but never so current discovery. Am J Otolaryngol 2023; 44:103844. [PMID: 36948077 DOI: 10.1016/j.amjoto.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
From the first description of Charcot-Leyden crystals (CLCs) to the present, many steps have been taken to understand the mechanisms underlying their formation. In particular, to date not only eosinophils but also mast cells are known to be responsible for the production of CLCs, which represent the crystallized form of Galectin-10. Due to their characteristics, CLCs typically induce a crystallopathy and are responsible for an exacerbation of inflammation. Nasal cytology (NC) has allowed to better understand the correlation between the severity of several rhinopaties and the presence of CLCs in NC samples, which is strictly correlated with an eosinophiles and mast cells infiltration. As a matter of fact, rhinopaties with a mixed eosinophilic-mast cell inflammatory infiltrate, characterized by the presence of abundant CLCs, show a worse prognosis and a higher risk of relapse. This could have important therapeutic implications, since the treatments available today could be exploited to target both eosinophils and mast cells, to reduce the damage induced by CLCs.
Collapse
Affiliation(s)
- M Gelardi
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - R Giancaspro
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - M Cassano
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|