1
|
Wu X, Chen Y, Wang X, Si Z, Du Q, Gao P. Dual Ionic Signal Detection: Modulation of Surface Charge of Nanofluidic Iontronics by Dual-Split Gate Voltages. Anal Chem 2025; 97:2658-2666. [PMID: 39870458 DOI: 10.1021/acs.analchem.4c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanofluidic iontronics, including the field-effect ionic diode (FE-ID) and field-effect ionic transistor (FE-IT), represent emerging nanofluidic logic devices that have been employed in sensitive analyses. Making analyte recognitions in predefined nanofluidic devices has been verified to improve the sensitivity and selectivity using a single ionic signal, such as ionic current amplification, rectification, and Coulomb blockade. However, the detection of analytes in complex systems generally necessitates more diverse signals beyond just ionic currents. Here, we demonstrated that dual ionic signals, steady ionic switching ratio, and transient response time (ts) act as detection signals modulated by dual-split gate voltages along the nanochannel for the detection of charged analytes. With an increase in gate voltage, the switching ratio decreases in both FE-ID and FE-IT, whereas the response time exhibits an exponential increase specifically in the FE-ID. Moreover, the response time shows no significant correlation with the external transmembrane voltage in the FE-IT. These results contribute to the optimization of reconfigurable iontronics through gate voltage modulation, providing a theoretical foundation for multiple ionic signal detection.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yajie Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhixiao Si
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Zheng F, Li H, Yang J, Wang H, Qin G, Chen D, Sha J. Modulation of Ion Transport in Nanopores Using Polyethylene Glycol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26742-26750. [PMID: 39626079 DOI: 10.1021/acs.langmuir.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ion transport in nanopores is crucial for various biological and technological processes, exhibiting unique behaviors compared to bulk solutions. In this study, we systematically explore how polyethylene glycol (PEG) modulates ion transport within a conical nanopore. Our experiments reveal that introducing PEG into the ionic solution induces a reversal in ion current rectification (ICR). We further investigate the impact of PEG concentration, molecular weight, nanopore size, and cation type on ion transport. Additionally, we assess three different configurations of PEG introduction, identifying diffusive flow driven by an asymmetric cation distribution within the nanopore as a dominant transport mechanism. Our results confirm that the interactions between PEG and cations significantly affect ion transport properties. These findings advance our understanding of macromolecular crowding effects on ion transport and suggest potential applications in iontronic devices and biomolecule sensing.
Collapse
Affiliation(s)
- Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - HongLuan Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Haiyan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Guangle Qin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- Jiangsu Automation Research Institute, Lianyungang 222000, China
| | - Dapeng Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- Jiangsu Automation Research Institute, Lianyungang 222000, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Alinezhad A, Khatibi M, Ashrafizadeh SN. Impact of surface charge density modulation on ion transport in heterogeneous nanochannels. Sci Rep 2024; 14:18409. [PMID: 39117730 PMCID: PMC11310325 DOI: 10.1038/s41598-024-69335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The PNP nanotransistor, consisting of emitter, base, and collector regions, exhibits distinct behavior based on surface charge densities and various electrolyte concentrations. In this study, we investigated the impact of surface charge density on ion transport behavior within PNP nanotransistors at different electrolyte concentrations and applied voltages. We employed a finite-element method to obtain steady-state solutions for the Poisson-Nernst-Planck and Navier-Stokes equations. The ions form a depletion region, influencing the ionic current, and we analyze the influence of surface charge density on the depth of this depletion region. Our findings demonstrate that an increase in surface charge density results in a deeper depletion zone, leading to a reduction in ionic current. However, at very low electrolyte concentrations, an optimal surface charge density causes the ion current to reach its lowest value, subsequently increasing with further increments in surface charge density. As such, atV app = + 1 V andC 0 = 1 mM , the ionic current increases by 25% when the surface charge density rises from 5 to 20 mC . m - 2 , whereas atC 0 = 10 mM , the ionic current decreases by 65% with the same increase in surface charge density. This study provides valuable insights into the behavior of PNP nanotransistors and their potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Amin Alinezhad
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran.
| |
Collapse
|
4
|
Wang W, Liang Y, Ma Y, Shi D, Xie Y. Memristive Characteristics in an Asymmetrically Charged Nanochannel. J Phys Chem Lett 2024; 15:6852-6858. [PMID: 38917304 DOI: 10.1021/acs.jpclett.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The emergent nanofluidic memristor provides a promising way of emulating neuromorphic functions in the brain. The conical-shaped nanopore showed promising features for a nanofluidic memristor, inspiring us to investigate the memory effects in asymmetrically charged nanochannels due to their high current rectification, which may result in good memory effects. Here, the memory effects of an asymmetrically charged nanofluidic channel were numerically simulated by Poisson-Nernst-Planck equations. Our results showed that the I-V curves represented a diode in low scanning frequency and then became a memristor and finally a resistor as frequency increased. We successfully replicated the learning behavior in our system with history-dependent ion redistribution in the nanochannel. Some critical factors were quantitatively analyzed for the memory effects including voltage amplitude, optimal frequency, and Dukhin number. Experimental characterizations were also carried out. Our findings are useful for the design of nanofluidic memristors by the principle of enrichment and depletion as well as the determination of the best memory settings.
Collapse
Affiliation(s)
- Wei Wang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710129, P. R. China
| | - Yizheng Liang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710129, P. R. China
| | - Yu Ma
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710129, P. R. China
| | - Deli Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710129, P. R. China
| | - Yanbo Xie
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, P. R. China
| |
Collapse
|
5
|
Laucirica G, Toum-Terrones Y, Cayón VM, Toimil-Molares ME, Azzaroni O, Marmisollé WA. Advances in nanofluidic field-effect transistors: external voltage-controlled solid-state nanochannels for stimulus-responsive ion transport and beyond. Phys Chem Chem Phys 2024; 26:10471-10493. [PMID: 38506166 DOI: 10.1039/d3cp06142f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ion channels, intricate protein structures facilitating precise ion passage across cell membranes, are pivotal for vital cellular functions. Inspired by the remarkable capabilities of biological ion channels, the scientific community has ventured into replicating these principles in fully abiotic solid-state nanochannels (SSNs). Since the gating mechanisms of SSNs rely on variations in the physicochemical properties of the channel surface, the modification of their internal architecture and chemistry constitutes a powerful strategy to control the transport properties and, consequently, render specific functionalities. In this framework, both the design of the nanofluidic platform and the subsequent selection and attachment of different building blocks gain special attention. Similar to biological ion channels, functional SSNs offer the potential to finely modulate ion transport in response to various stimuli, leading to innovations in a variety of fields. This comprehensive review delves into the intricate world of ion transport across stimuli-responsive SSNs, focusing on the development of external voltage-controlled nanofluidic devices. This kind of field-effect nanofluidic technology has attracted special interest due to the possibility of real-time reconfiguration of the ion transport with a non-invasive strategy. These properties have found interesting applications in drug delivery, biosensing, and nanoelectronics. This document will address the fundamental principles of ion transport through SSNs and the construction, modification, and applications of external voltage-controlled SSNs. It will also address future challenges and prospects, offering a comprehensive perspective on this evolving field.
Collapse
Affiliation(s)
- G Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Y Toum-Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - V M Cayón
- Department of Materials- and Geosciences, Technical University of Darmstadt, Darmstadt, Germany
| | - M E Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Department of Materials- and Geosciences, Technical University of Darmstadt, Darmstadt, Germany
| | - O Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - W A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
6
|
Li S, Zhang X, Su J. Enhanced Rectification Performance in Bipolar Janus Graphene Oxide Channels by Lateral Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5488-5498. [PMID: 38423602 DOI: 10.1021/acs.langmuir.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Improving the ionic rectification in nanochannels enables versatile applications such as biosensors, energy harvesting, and fluidic diodes. While previous work mostly focused on the effect of channel geometry and surface charge, in this work via a series of molecular dynamics simulations, we find a striking phenomenon that the ionic current rectification (ICR) ratio in Janus graphene oxide (GO) channels can be tremendously promoted by lateral electric fields. First, under a given axial electric field, an additional lateral electric field can improve the ICR ratio by several times to an order, depending on the channel symmetry. The symmetric channel has an obviously greater ICR ratio because it maintains a more pronounced ion transport disparity at opposite axial fields. The underlying mechanism for the function of the lateral electric field is that it promotes the lateral migration of ions and thus amplifies the ion-residue electrostatic interaction at opposite axial fields, enlarging the ion dynamical difference. Furthermore, for different axial electric fields, the ICR ratio can always be improved by lateral electric fields (up to two orders), suggesting that the ICR improvement is universal. Our results demonstrate that applying a lateral electric field could be a new method to improve the rectification performance of nanochannels, providing valuable guidance for the design of efficient ionic diode devices.
Collapse
Affiliation(s)
- Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Mei T, Liu W, Xu G, Chen Y, Wu M, Wang L, Xiao K. Ionic Transistors. ACS NANO 2024. [PMID: 38285731 DOI: 10.1021/acsnano.3c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Biological voltage-gated ion channels, which behave as life's transistors, regulate ion transport precisely and selectively through atomic-scale selectivity filters to sustain important life activities. By this inspiration, voltage-adaptable ionic transistors that use ions as signal carriers may provide an alternative information processing unit beyond solid-state electronic devices. This review provides a comprehensive overview of the first generation of biomimetic ionic transistors, including their operating mechanisms, device architecture development, and property characterizations. Despite its infancy, significant progress has been made in the applications of ionic transistors in fields such as DNA detection, drug delivery, and ionic circuits. Challenges and prospects of full exploitation of ionic transistors for a broad spectrum of practical applications are also discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
8
|
Ramirez P, Gómez V, Cervera J, Mafe S, Bisquert J. Synaptical Tunability of Multipore Nanofluidic Memristors. J Phys Chem Lett 2023:10930-10934. [PMID: 38033300 DOI: 10.1021/acs.jpclett.3c02796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We demonstrate a multipore nanofluidic memristor with conical pores showcasing a wide range of hysteresis and memristor properties that provide functionalities for brainlike computation in neuromorphic applications. Leveraging the interplay between the charged functional groups on the pore surfaces and the confined ionic solution, the memristor characteristics are modulated through the electrolyte type, ionic concentrations, and pH levels of the aqueous solution. The multipore membrane mimics the functional characteristics of biological ion channels and displays synaptical potentiation and depression. Furthermore, this property can be inverted in polarity by chemically varying the pH level. The ability to modulate memory effects by ionic conductivity holds promise for enhancing signal information processing capabilities.
Collapse
Affiliation(s)
- Patricio Ramirez
- Dept. de Física Aplicada, Universitat Politècnica de València, E-46022 València, Spain
| | - Vicente Gómez
- Dept. de Física Aplicada, Universitat Politècnica de València, E-46022 València, Spain
| | - Javier Cervera
- Dept. de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Mafe
- Dept. de Física Aplicada, Universitat Politècnica de València, E-46022 València, Spain
- Dept. de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| |
Collapse
|
9
|
Xin W, Ling H, Cui Y, Qian Y, Kong XY, Jiang L, Wen L. Tunable Ion Transport in Two-Dimensional Nanofluidic Channels. J Phys Chem Lett 2023; 14:627-636. [PMID: 36634054 DOI: 10.1021/acs.jpclett.2c03522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Layered two-dimensional (2D) materials with interlayer channels at the nanometer scale offer an ideal platform to control ion transport behaviors, including high-precision separation, ultrafast diffusion, and tunable permeation flux, which show great potential for energy conversion and storage, water treatment, catalysis, biosynthesis, and sensing. Recent advances in controlling the structure and functionality of 2D nanofluidic channels sustainably open doors for more revolutionary applications. In this Perspective, we first present a brief introduction to the fundamental mechanisms for ion transport in 2D nanofluidic channels and an overview of state-of-the-art assembly technologies of nanochannel membranes. We then point out new avenues for developing advanced nanofluidics, combining molecular-level cross-linking, and surface modification in nanoconfinement. Finally, we outline the potential applications of these 2D nanofluidic channel membranes and their technical challenges that need to be addressed to afford for practical applications.
Collapse
Affiliation(s)
- Weiwen Xin
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Haoyang Ling
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yanglansen Cui
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
10
|
Pial TH, Das S. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel. J Phys Chem B 2022; 126:10543-10553. [PMID: 36454705 DOI: 10.1021/acs.jpcb.2c05524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Controlling ion distribution inside a charged nanochannel is central to using such channels in diverse applications. Here, we show the possibility of using a charged polyelectrolyte (PE) brush-grafted nanochannel for triggering diverse nanoscopic ion distribution and nanofluidic electroosmotic transport by controlling the valence and size of the counterions (that screen the charges of the PE brushes) and the strength of an externally applied axial electric field. We atomistically simulate separate cases of fully charged polyacrylic acid (PAA) brush functionalized nanochannels with Na+, Cs+, Ca2+, Ba2+, and Y3+ counterions screening the PE charges. Four key findings emerge from our simulations. First, we find that the counterions with a greater valence and a smaller size prefer to remain localized inside the brush layer. Second, for the case where there is an added chloride salt with the same cation (as the screening counterions), there are more coions (Cl- ions) in the brush-free bulk than counterions (for counterions Na+, Ca2+, Ba2+, Y3+): this is a manifestation of the overscreening (OS) of the PE brush layer. Contrastingly, the number of Cs+ ions remain higher than the Cl- ions inside the brush-free bulk, ensuring that there is no OS effect for this case. Third, large applied electric field enables a few Na+, Cs+, and Ba2+ counterions to leave the brush layer and to go to the bulk: this makes the OS of the PE brush layer disappear for the cases of PE brushes being screened by the Na+ and Ba2+ ions. On the other hand, no such electric-field-mediated disappearance of OS is observed for the cases of Ca2+ and Y3+ screening counterions; we attribute this to the firm attachment of these counterions to the negatively charged monomers. Free energy associated with a counterion binding to a PE chain corroborates this diversity in the counterion-specific response to the applied electric field. Finally, we demonstrate that such diverse ion distributions, along with specific electric-field-strength-dependent ion properties, lead to (1) electroosmotic (EOS) transport in nanochannels grafted with PAA brushes screened with Cs+ ions to be always counterion dominated, (2) EOS transport in nanochannels grafted with PAA brushes screened with Ca2+ and Y3+ ions to be always coion-dominated, and (3) EOS transport in nanochannels grafted with PAA brushes screened with Na+ and Ba2+ ions to be coion dominated for smaller electric fields and counterion dominated for larger electric fields.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
11
|
Kirshanov K, Toms R, Aliev G, Naumova A, Melnikov P, Gervald A. Recent Developments and Perspectives of Recycled Poly(ethylene terephthalate)-Based Membranes: A Review. MEMBRANES 2022; 12:membranes12111105. [PMID: 36363660 PMCID: PMC9699556 DOI: 10.3390/membranes12111105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/01/2023]
Abstract
Post-consumer poly(ethylene terephthalate) (PET) waste disposal is an important task of modern industry, and the development of new PET-based value added products and methods for their production is one of the ways to solve it. Membranes for various purposes, in this regard are such products. The aim of the review, on the one hand, is to systematize the known methods of processing PET and copolyesters, highlighting their advantages and disadvantages and, on the other hand, to show what valuable membrane products could be obtained, and in what areas of the economy they can be used. Among the various approaches to the processing of PET waste, we single out chemical methods as having the greatest promise. They are divided into two large categories: (1) aimed at obtaining polyethylene terephthalate, similar in properties to the primary one, and (2) aimed at obtaining copolyesters. It is shown that among the former, glycolysis has the greatest potential, and among the latter, destruction followed by copolycondensation and interchain exchange with other polyesters, have the greatest prospects. Next, the key technologies for obtaining membranes, based on polyethylene terephthalate and copolyesters are considered: (1) ion track technology, (2) electrospinning, and (3) non-solvent induced phase separation. The methods for the additional modification of membranes to impart hydrophobicity, hydrophilicity, selective transmission of various substances, and other properties are also given. In each case, examples of the use are considered, including gas purification, water filtration, medical and food industry use, analytical and others. Promising directions for further research are highlighted, both in obtaining recycled PET-based materials, and in post-processing and modification methods.
Collapse
|