1
|
Do TTH, Yuan Z, Durmusoglu EG, Shamkhi HK, Valuckas V, Zhao C, Kuznetsov AI, Demir HV, Dang C, Nguyen HS, Ha ST. Room-Temperature Lasing at Flatband Bound States in the Continuum. ACS NANO 2025. [PMID: 40354498 DOI: 10.1021/acsnano.5c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
High-quality factor optical modes with a low dispersion in the momentum space are highly desirable for applications such as low-threshold lasers, strong light-matter interactions, and optical trapping. Bound states in the continuum (BICs) have recently gained attention as a promising optical cavity concept due to their theoretically infinite quality factors. However, their quality factor decreases exponentially when deviating from the BIC singularity in the momentum space, which limits their practical use. Here, we present a design concept and experimental realization of flatband BICs in a rectangular array of titanium dioxide nanopillars. By precisely engineering the interaction between four counterpropagating guided modes in the array, a nondispersive BIC band can be obtained. The flatband BIC exhibits an enhanced quality factor near the Γ-point by 2 orders of magnitude compared to that of the symmetry-protected BIC mode in a square array, along with an exceptionally high optical density of states. As a result, we achieve room-temperature lasing at the flatband BIC with a quality factor of ∼9100 and a threshold 4 times lower than that of the symmetry-protected BIC. The flatband-BIC lasing properties, such as directionality and topological charge, are also studied in detail. The concept and outstanding lasing performance of the flatband BICs presented in our work mark an important step toward efficient optical cavities and microlasers and hold great potential for advanced photonic and optoelectronic devices.
Collapse
Affiliation(s)
- Thi Thu Ha Do
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138635, Singapore
| | - Zhiyi Yuan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138635, Singapore
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- IRL 3288, CNRS-International-NTU-Thales Research Alliance (CINTRA), Singapore 637553, Singapore
| | - Emek G Durmusoglu
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hadi K Shamkhi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138635, Singapore
| | - Vytautas Valuckas
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138635, Singapore
| | - Chunyu Zhao
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138635, Singapore
| | - Hilmi Volkan Demir
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM─Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Cuong Dang
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- IRL 3288, CNRS-International-NTU-Thales Research Alliance (CINTRA), Singapore 637553, Singapore
| | - Hai Son Nguyen
- Ecole Centrale de Lyon, CNRS, INSA Lyon, CPE Lyon, INL, UMR 5270, Universite Claude Bernard Lyon 1, Ecully 69130, France
- Institut Universitaire de France (IUF), Paris F-75231, France
| | - Son Tung Ha
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138635, Singapore
| |
Collapse
|
2
|
Yao X, Li R, Zhang Z, Wei X, Gai X, Zhu J, Yu H, Wang X, Bao Y. Optimizing Lasing Performance of CsPbBr 3 Microplates by Regulating Exciton Recombination Dynamics with Pressure. J Phys Chem Lett 2024; 15:12619-12627. [PMID: 39686714 DOI: 10.1021/acs.jpclett.4c02962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
This study aims to achieve an ultralow lasing threshold in CsPbBr3 microplates (MPs), a crucial step toward developing electrically driven micro/nanolasers for optics integrated chips. We investigate the lasing behavior of CsPbBr3 MPs under varying pressures by using static-state photoluminescence (PL), time-resolved PL (TRPL), and first-principles theory calculations based on density functional theory (DFT). Our results reveal that the lasing threshold initially decreases and then increases, with a critical turning point at 0.44 GPa. Notably, we achieve an optimal lasing threshold of 20.87 μJ/cm2 after releasing pressure from 1.87 GPa, highlighting the potential of pressure modulation to optimize the lasing performance. At low pressure, pressure-induced phonon hardening enhances the barrier, preventing excitons decay from free states to trapping states. Conversely, at higher pressure, the increased density of surface defects, due to pressure-induced anisotropic contraction of lattice constants along the c-axis, leads to excitons decay from free states to trapping states. For CsPbBr3 MPs, it is evident that only free excitons contribute to lasing, while both free and trapped excitons contribute to luminescence. These findings offer a novel strategy to optimize the lasing performance of perovskite micro/nanolasers, significantly advancing their potential for practical applications in optoelectronic devices.
Collapse
Affiliation(s)
- Xiuru Yao
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Ruiyu Li
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Zihan Zhang
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Xinmiao Wei
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Xinmiao Gai
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Jinming Zhu
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Hongyu Yu
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Xin Wang
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| | - Yongjun Bao
- State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Feng M, Sum TC. The Photophysics of Perovskite Emitters: from Ensemble to Single Particle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413836. [PMID: 39600041 DOI: 10.1002/adma.202413836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Halide perovskite emitters are a groundbreaking class of optoelectronic materials possessing remarkable photophysical properties for diverse applications. In perovskite light emitting devices, they have achieved external quantum efficiencies exceeding 28%, showcasing their potential for next-generation solid-state lighting and ultra high definition displays. Furthermore, the demonstration of room temperature continuous-wave perovskite lasing underscores their potential for integrated optoelectronics. Of late, perovskite emitters are also found to exhibit desirable single-photon emission characteristics as well as superfluorescence or superradiance phenomena for quantum optics. With progressive advances in synthesis, surface engineering, and encapsulation, halide perovskite emitters are poised to become key components in quantum optical technologies. Understanding the underpinning photophysical mechanisms is crucial for engineering these novel emergent quantum materials. This review aims to provide a condensed overview of the current state of halide perovskite emitter research covering both established and fledging applications, distill the underlying mechanisms, and offer insights into future directions for this rapidly evolving field.
Collapse
Affiliation(s)
- Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
4
|
Yin Z, Tang H, Wang K, Zhang X, Sha X, Wang W, Xiao S, Song Q. Ultracompact and Uniform Nanoemitter Array Based on Periodic Scattering. NANO LETTERS 2024; 24:12612-12619. [PMID: 39331014 DOI: 10.1021/acs.nanolett.4c03690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
As emerging gain materials, lead halide perovskites have drawn considerable attention in coherent light sources. With the development of patterning and integration techniques, a perovskite laser array has been realized by distributing perovskite microcrystals periodically. Nevertheless, the packing density is limited by the crystal size and the channel gap distance. More importantly, the lasing performance for individual laser units is quite random due to variation of size and crystal quality. Herein an ultracompact perovskite nanoemitter array with uniform emission has been demonstrated. Individual emitters are formed via scattering evanescent components from a shared Fabry-Perot laser, ensuring uniform lasing emission in a unit cell with a side length of 160 nm and lattice constant of 400 nm. And the periodic silicon scatterers do not deteriorate the lasing threshold dramatically. In addition, the surface emitting efficiency increased significantly. The direct integration of a densely packed nanoemitter array with a silicon platform promises high-throughput sensing and high-capacity optical interconnects.
Collapse
Affiliation(s)
- Zhen Yin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Haijun Tang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kaiyang Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xudong Zhang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xinbo Sha
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Wenchao Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
5
|
Chen Y, Luo Y, Duan Y, Xu X, Zhang Y, Liu Q, Gao Y, Xiao L, Yang H, Wang S. Photophysical Properties of Submicrometer Ultrathin Perovskite Single-Crystal Films. J Phys Chem Lett 2024:7931-7938. [PMID: 39073987 DOI: 10.1021/acs.jpclett.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Organic-inorganic hybrid perovskite (OIHP) has attracted a great deal of interest with respect to diverse optoelectronic devices. However, the photophysical properties of the OIHP require further understanding because most of the investigations have been conducted with polycrystalline perovskites, which contain high-density structural defects. Here, diverse photophysical properties, including structural characterization, spectroscopic features, and photoexcited products, are studied in submicrometer CH3NH3PbBr3 ultrathin single-crystal (UTSC) films. Unlike polycrystalline films and large single crystals, the UTSC film provides a unique platform for studying spectroscopic characteristics of single-crystal perovskites. Compared with the polycrystalline film, the UTSC film presents an atomically flat morphology and near-perfect lattice with a lower defect density, leading to an isotropic system that can be applied in the construction of high-performance optoelectronic devices. Furthermore, a long lifetime emissive channel assigned to the trion is indicated, which is scarcely found in perovskite polycrystalline films. Our results profoundly improve our understanding of their photophysical properties and expand the horizons for perovskite materials in photonic applications.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Yijie Luo
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Yiqun Duan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Xiayuan Xu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Yuxin Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Qinyun Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Yunan Gao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Lixin Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| |
Collapse
|
6
|
Wang D, Cui J, Feng Y, Guo Y, Zhang J, Bao Y, Deng H, Chen R, Kang X, Zhang B, Song L, Huang W. A Universal Approach Toward Intrinsically Flexible All-Inorganic Perovskite-Gel Composites with Full-Color Luminescence. RESEARCH (WASHINGTON, D.C.) 2024; 7:0412. [PMID: 38979517 PMCID: PMC11227898 DOI: 10.34133/research.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024]
Abstract
The combination of all-inorganic perovskites (PVSKs) and polymers allows for free-standing flexible optoelectronic devices. However, solubility difference of the PVSK precursors and concerns over the compatibility between polymer carriers and PVSKs imply a great challenge to incorporate different kinds of PVSKs into polymer matrices by the same manufacturing process. In this work, PVSK precursors are introduced into poly(2-hydroxyethyl acrylate) (PHEA) hydrogels in sequence, in which the PVSK-gel composites are achieved with full-color emissions by simply varying the precursor species. Moreover, it is found that CsBr has a higher interaction energy with the (111) plane of CsPbBr3 than the (110) plane; thus, the CsPbBr3 crystals with a shape of truncated cube and tetragon are observed during the CsPbBr3-Cs4PbBr6 phase transition over time. The PVSK-gel composites feature excellent bendability, elasticity, and stretchable deformation (tensile strain > 500%), which allows for 3D printing emissive customized stereoscopic architectures with shape-memory features.
Collapse
Affiliation(s)
- Dourong Wang
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jingjing Cui
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Feng
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunlong Guo
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jie Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yaqi Bao
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haoran Deng
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruiqian Chen
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xinxin Kang
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE),
Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM),
Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
7
|
Zhang L, Wang Y, Chu A, Zhang Z, Liu M, Shen X, Li B, Li X, Yi C, Song R, Liu Y, Zhuang X, Duan X. Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing. Nat Commun 2024; 15:5484. [PMID: 38942769 PMCID: PMC11213932 DOI: 10.1038/s41467-024-49364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
The tunable properties of halide perovskite/two dimensional (2D) semiconductor mixed-dimensional van der Waals heterostructures offer high flexibility for innovating optoelectronic and photonic devices. However, the general and robust growth of high-quality monocrystalline halide perovskite/2D semiconductor heterostructures with attractive optical properties has remained challenging. Here, we demonstrate a universal van der Waals heteroepitaxy strategy to synthesize a library of facet-specific single-crystalline halide perovskite/2D semiconductor (multi)heterostructures. The obtained heterostructures can be broadly tailored by selecting the coupling layer of interest, and can include perovskites varying from all-inorganic to organic-inorganic hybrid counterparts, individual transition metal dichalcogenides or 2D heterojunctions. The CsPbI2Br/WSe2 heterostructures demonstrate ultrahigh optical gain coefficient, reduced gain threshold and prolonged gain lifetime, which are attributed to the reduced energetic disorder. Accordingly, the self-organized halide perovskite/2D semiconductor heterostructure lasers show highly reproducible single-mode lasing with largely reduced lasing threshold and improved stability. Our findings provide a high-quality and versatile material platform for probing unique optoelectronic and photonic physics and developing further electrically driven on-chip lasers, nanophotonic devices and electronic-photonic integrated systems.
Collapse
Affiliation(s)
- Liqiang Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Anshi Chu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zhengwei Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan, P. R. China
| | - Miaomiao Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xiaohua Shen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Chen Yi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Rong Song
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yingying Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xiujuan Zhuang
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan, P. R. China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
8
|
Ou Z, Wang C, Tao ZG, Li Y, Li Z, Zeng Y, Li Y, Shi E, Chu W, Wang T, Xu H. Organic Ligand Engineering for Tailoring Electron-Phonon Coupling in 2D Hybrid Perovskites. NANO LETTERS 2024; 24:5975-5983. [PMID: 38726841 DOI: 10.1021/acs.nanolett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.
Collapse
Affiliation(s)
- Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Cheng Wang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Zhi-Guo Tao
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
9
|
Wu X, Zhang S, Song J, Deng X, Du W, Zeng X, Zhang Y, Zhang Z, Chen Y, Wang Y, Jiang C, Zhong Y, Wu B, Zhu Z, Liang Y, Zhang Q, Xiong Q, Liu X. Exciton polariton condensation from bound states in the continuum at room temperature. Nat Commun 2024; 15:3345. [PMID: 38637571 PMCID: PMC11026397 DOI: 10.1038/s41467-024-47669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Exciton-polaritons (polaritons) resulting from the strong exciton-photon interaction stimulates the development of novel low-threshold coherent light sources to circumvent the ever-increasing energy demands of optical communications1-3. Polaritons from bound states in the continuum (BICs) are promising for Bose-Einstein condensation owing to their theoretically infinite quality factors, which provide prolonged lifetimes and benefit the polariton accumulations4-7. However, BIC polariton condensation remains limited to cryogenic temperatures ascribed to the small exciton binding energies of conventional material platforms. Herein, we demonstrated room-temperature BIC polariton condensation in perovskite photonic crystal lattices. BIC polariton condensation was demonstrated at the vicinity of the saddle point of polariton dispersion that generates directional vortex beam emission with long-range coherence. We also explore the peculiar switching effect among the miniaturized BIC polariton modes through effective polariton-polariton scattering. Our work paves the way for the practical implementation of BIC polariton condensates for integrated photonic and topological circuits.
Collapse
Affiliation(s)
- Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiepeng Song
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xinyi Deng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuyang Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yuzhong Chen
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Yubin Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhuoya Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China.
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P. R. China.
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, 100084, P. R. China.
- Frontier Science Center for Quantum Information, Beijing, 100084, P. R. China.
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
10
|
Yu J, Wang Y, Zhou Y, Fang W, Liu B, Xing J. Intrinsic Self-Trapped Excitons in Graphitic Carbon Nitride. NANO LETTERS 2024; 24:4439-4446. [PMID: 38498723 DOI: 10.1021/acs.nanolett.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Graphitic carbon nitrides (g-C3N4) as low-cost, chemically stable, and ecofriendly layered semiconductors have attracted rapidly growing interest in optoelectronics and photocatalysis. However, the nature of photoexcited carriers in g-C3N4 is still controversial, and an independent charge-carrier picture based on the band theory is commonly adopted. Here, by performing transient spectroscopy studies, we show characteristics of self-trapped excitons (STEs) in g-C3N4 nanosheets including broad trapped exciton-induced absorption, picosecond exciton trapping without saturation at high photoexcitation density, and transient STE-induced stimulated emissions. These features, together with the ultrafast exciton trapping polarization memory, strongly suggest that STEs intrinsically define the nature of the photoexcited states in g-C3N4. These observations provide new insights into the fundamental photophysics of carbon nitrides, which may enlighten novel designs to boost energy conversion efficiency.
Collapse
Affiliation(s)
- Junhong Yu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Yunhu Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 266042 Qingdao, China
| | - Yubu Zhou
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhui Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Xing
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 266042 Qingdao, China
| |
Collapse
|
11
|
Li C, Li X, Liu X, Ma L, Yan H, Tong L, Yang Z, Liu J, Bao D, Yin J, Li X, Wang P, Li R, Huang L, Yu M, Jia S, Wang T. On-Substrate Fabrication of CsPbBr 3 Single-Crystal Microstructures via Nanoparticle Self-Assembly-Assisted Low-Temperature Sintering. ACS NANO 2024; 18:9128-9136. [PMID: 38492230 DOI: 10.1021/acsnano.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The growth of all-inorganic perovskite single-crystal microstructures on substrates is a promising approach for constructing photonic and electronic microdevices. However, current preparation methods typically involve direct control of ions or atoms, which often depends on specific lattice-matched substrates for epitaxial growth and other stringent conditions that limit the mild preparation and flexibility of device integration. Herein, we present the on-substrate fabrication of CsPbBr3 single-crystal microstructures obtained via a nanoparticle self-assembly assisted low-temperature sintering (NSALS) method. Sintering guided by self-assembled atomically oriented superlattice embryos facilitated the formation of single-crystal microstructures under mild conditions without substrate dependence. The as-prepared on-substrate microstructures exhibited a consistent out-of-plane orientation with a carrier lifetime of up to 82.7 ns. Photodetectors fabricated by using these microstructures exhibited an excellent photoresponse of 9.15 A/W, and the dynamic optical response had a relative standard deviation as low as 0.1831%. The discrete photosensor microarray chip with 174000 pixels in a 100 mm2 area showed a response difference of less than 6%. This method of nanoscale particle-controlled single crystal growth on a substrate offers a perspective for mild-condition preparation and in situ repair of crystals of various types. This advancement can propel the flexible integration and widespread application of perovskite devices.
Collapse
Affiliation(s)
- Cancan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiang Liu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lindong Ma
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hui Yan
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Tong
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhibo Yang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiaxing Liu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Deyu Bao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jikun Yin
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiujun Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Peng Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Rong Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Huang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Miao Yu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Sitong Jia
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
12
|
Tian S, Wang Q, Liang S, Han Q, Zhang D, Huang Z, Ning J, Mei S, Xie W, Zhao H, Wu X, Wang J. High Q-Factor Single-Mode Lasing in Inorganic Perovskite Microcavities with Microfocusing Field Confinement. NANO LETTERS 2024; 24:1406-1414. [PMID: 38227806 DOI: 10.1021/acs.nanolett.3c04797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The realization of high-Q single-mode lasing on the microscale is significant for the advancement of on-chip integrated light sources. It remains a challenging trade-off between Q-factor enhancement and light-field localization to raise the lasing emission rate. Here, we fabricated a zero-dimensional perovskite microcavity integrated with a nondamage pressed microlens to three-dimensionally tailor the intracavity light field and demonstrated linearly and nonlinearly (two-photon) pumped lasing by this microfocusing configuration. Notably, the microlensing microcavity experimentally achieves a high Q-factor (16700), high polarization (99.6%), and high Purcell factor (11.40) single-mode lasing under high-repetition pulse pumping. Three-dimensional light-field confinement formed by the microlens and plate microcavity simultaneously reduces the mode volume (∼3.66 μm3) and suppresses diffraction and transverse walk-off loss, which induces discretization on energy-momentum dispersions and spatial electromagnetic-field distributions. The Q factor and Purcell factor of our lasing come out on top among most of the reported perovskite microcavities, paving a promising avenue toward further studying electrically driven on-chip microlasers.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Qi Wang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Shuang Liang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
| | - Qi Han
- School of Microelectronics, Fudan University, 200433 Shanghai, China
| | - Debao Zhang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Zhongmin Huang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Jiqiang Ning
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
| | - Haibin Zhao
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| | - Xiang Wu
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| | - Jun Wang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| |
Collapse
|
13
|
Hu J, Wen X, Yang D, Chen Y, Liu Z, Li D. Lead-Free Chiral Perovskite for High Degree of Circularly Polarized Light Emission and Spin Injection. NANO LETTERS 2024; 24:1001-1008. [PMID: 38198561 DOI: 10.1021/acs.nanolett.3c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.
Collapse
Affiliation(s)
- Junchao Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinglin Wen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dong Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zeyi Liu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Tang H, Wang Y, Chen Y, Wang K, He X, Huang C, Xiao S, Yu S, Song Q. Ultrahigh-Q Lead Halide Perovskite Microlasers. NANO LETTERS 2023; 23:3418-3425. [PMID: 37042745 DOI: 10.1021/acs.nanolett.3c00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lead halide perovskites have been promising platforms for micro- and nanolasers. However, the fragile nature of perovskites poses an extreme challenge to engineering a cavity boundary and achieving high-quality (Q) modes, severely hindering their practical applications. Here, we combine an etchless bound state in the continuum (BIC) and a chemically synthesized single-crystalline CsPbBr3 microplate to demonstrate on-chip integrated perovskite microlasers with ultrahigh Q factors. By pattering polymer microdisks on CsPbBr3 microplates, we show that record high-Q BIC modes can be formed by destructive interference between different in-plane radiation from whispering gallery modes. Consequently, a record high Q-factor of 1.04 × 105 was achieved in our experiment. The high repeatability and high controllability of such ultrahigh Q BIC microlasers have also been experimentally confirmed. This research provides a new paradigm for perovskite nanophotonics.
Collapse
Affiliation(s)
- Haijun Tang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yuhan Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yimu Chen
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kaiyang Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xianxiong He
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Can Huang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi P. R. China
| | - Shaohua Yu
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi P. R. China
| |
Collapse
|
15
|
Ermolaev G, Pushkarev AP, Zhizhchenko A, Kuchmizhak AA, Iorsh I, Kruglov I, Mazitov A, Ishteev A, Konstantinova K, Saranin D, Slavich A, Stosic D, Zhukova ES, Tselikov G, Di Carlo A, Arsenin A, Novoselov KS, Makarov SV, Volkov VS. Giant and Tunable Excitonic Optical Anisotropy in Single-Crystal Halide Perovskites. NANO LETTERS 2023; 23:2570-2577. [PMID: 36920328 DOI: 10.1021/acs.nanolett.2c04792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During the last years, giant optical anisotropy has demonstrated its paramount importance for light manipulation. In spite of recent advances in the field, the achievement of continuous tunability of optical anisotropy remains an outstanding challenge. Here, we present a solution to the problem through the chemical alteration of halogen atoms in single-crystal halide perovskites. As a result, we manage to continually modify the optical anisotropy by 0.14. We also discover that the halide perovskite can demonstrate optical anisotropy up to 0.6 in the visible range─the largest value among non-van der Waals materials. Moreover, our results reveal that this anisotropy could be in-plane and out-of-plane depending on perovskite shape─rectangular and square. As a practical demonstration, we have created perovskite anisotropic nanowaveguides and shown a significant impact of anisotropy on high-order guiding modes. These findings pave the way for halide perovskites as a next-generation platform for tunable anisotropic photonics.
Collapse
Affiliation(s)
- Georgy Ermolaev
- Emerging Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Anatoly P Pushkarev
- ITMO University, School of Physics and Engineering, St. Petersburg 197101, Russia
| | - Alexey Zhizhchenko
- Far Eastern Federal University, Vladivostok 690091, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Aleksandr A Kuchmizhak
- Far Eastern Federal University, Vladivostok 690091, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Ivan Iorsh
- ITMO University, School of Physics and Engineering, St. Petersburg 197101, Russia
| | - Ivan Kruglov
- Emerging Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
- Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia
| | - Arslan Mazitov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
- Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia
| | - Arthur Ishteev
- LASE - Laboratory of Advanced Solar Energy, NUST MISiS, Moscow 119049, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kamilla Konstantinova
- LASE - Laboratory of Advanced Solar Energy, NUST MISiS, Moscow 119049, Russia
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, Moscow 127051, Russia
| | - Danila Saranin
- LASE - Laboratory of Advanced Solar Energy, NUST MISiS, Moscow 119049, Russia
| | - Aleksandr Slavich
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Dusan Stosic
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Elena S Zhukova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Gleb Tselikov
- Emerging Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Aldo Di Carlo
- LASE - Laboratory of Advanced Solar Energy, NUST MISiS, Moscow 119049, Russia
- CHOSE - Centre of Hybrid and Organic Solar Energy, Department of Electronics Engineering, Rome 00133, Italy
| | - Aleksey Arsenin
- Emerging Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Kostya S Novoselov
- National Graphene Institute (NGI), University of Manchester, Manchester M13 9PL, United Kingdom
- Institute for Functional Intelligent Materials, National University of Singapore, 117544 Singapore
- Chongqing 2D Materials Institute, Chongqing 400714, China
| | - Sergey V Makarov
- ITMO University, School of Physics and Engineering, St. Petersburg 197101, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Valentyn S Volkov
- Emerging Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| |
Collapse
|
16
|
Ye X, Li C, Jiang J, Zheng X, Han Q, Lin Q, Liu Y, Tao X. Morphology dependent light-induced photoluminescence enhancement of CsPbBr 3 microcrystals. Chem Commun (Camb) 2023; 59:3403-3406. [PMID: 36852483 DOI: 10.1039/d2cc06545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Herein, we report a facile method for growing CsPbBr3 cube and prism microcrystals by microspacing in-air sublimation. Morphology-dependent photoluminescence behavior investigation reveals that the CsPbBr3 cubes show higher photoluminescence quantum yield and longer PL lifetime than the prisms. In contrast, CsPbBr3 prisms exhibit more considerable light-induced photoluminescence enhancement.
Collapse
Affiliation(s)
- Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Quangxiang Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
17
|
Yao X, Wang Y, Wang L, Wang X, Bao Y. The Dissociation of Exciton During the Lasing of a Single CsPbBr 3 Microplate. J Phys Chem Lett 2022; 13:10851-10857. [PMID: 36382934 DOI: 10.1021/acs.jpclett.2c03242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, the lasing of a single CsPbBr3 microplate (MP) fabricated with chemical vapor deposition (CVD) is investigated from the viewpoint of exciton dissociation characterized with steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL). It is confirmed that the lasing performance is disturbed by the dissociation of excitons. The increase of lasing threshold with temperature originates from the dissociation of free excitons (FEs) to localized carriers (LCs), and the lasing failure is mostly ascribed to the dissociation of FEs to free carriers (FCs). The working temperature of micro/nanolasers based on metal halide perovskites (MHPs) could be raised up to the temperature determined by exciton binding energy while the laser heating effect is dealt with well. These findings advance our understanding on the photophysics of the lasing behaviors of micro/nanocavities based on MHPs and help us promote their performance by having better thermal management.
Collapse
Affiliation(s)
- Xiuru Yao
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Yu Wang
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Lu Wang
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Xin Wang
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Yongjun Bao
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| |
Collapse
|
18
|
Quan C, Xing X, Jia T, Zhang Z, Wang C, Huang S, Liu Z, Du J, Leng Y. Hot Carrier Transfer in PtSe 2/Graphene Enabled by the Hot Phonon Bottleneck. J Phys Chem Lett 2022; 13:9456-9463. [PMID: 36197092 DOI: 10.1021/acs.jpclett.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The charge transfer (CT) process of two-dimensional (2D) graphene/transition metal dichalcogenides (TMDs) heterostructures makes the photoelectric conversion ability of TMDs into a wider spectral range for the light harvester and photoelectric detector applications. However, the direct in situ investigation of the hot carrier transport in graphene/TMDs heterostructures has been rarely reported. Herein, using the optical pump and a terahertz (THz) probe (OPTP) spectroscopy, the CT process from graphene to five-layer PtSe2 in the PtSe2/graphene (P/G) heterostructure is demonstrated to be related to the pump fluence, which is enabled by the hot phonon bottleneck (HPB) effect in graphene. Furthermore, the frequency dispersion conductivity and the THz emission spectroscopy of the P/G heterostructure confirmed the existence of interlayer CT and its pump fluence-dependent behavior. Our results provide in-depth physical insights into the CT mechanism at the P/G van der Waals interface, which is crucial for further exploration of optoelectronic devices based on P/G heterostructures.
Collapse
Affiliation(s)
- Chenjing Quan
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- School of Physics Science and Engineering, Tongji University, Shanghai200092, People's Republic of China
| | - Xiao Xing
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
| | - Tingyuan Jia
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zeyu Zhang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Chunwei Wang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Sihao Huang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- School of Physics Science and Engineering, Tongji University, Shanghai200092, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|