1
|
Yun X, Dong Y, Ge Z. Polymerization in Living Organisms for Biomedical Applications. Macromol Rapid Commun 2025:e2401014. [PMID: 39973612 DOI: 10.1002/marc.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Indexed: 02/21/2025]
Abstract
Intra-tissue polymerization as a kind of polymerization reaction in biological tissues has the advantages of good biocompatibility, accurate localization, and dynamic response. In this review, the progress and applications of intra-tissue polymerization technologies in biomedicine are summarized. The biomedical applications of polymerization in different tissues are discussed, including living neural tissues to improve neural device performance, preparation of electronic devices in plants and animals, polymerization in tumor tissues for therapeutic and monitoring purposes, and polymerization in skin tissues for wound monitoring and therapy. Various polymerization strategies, including electrochemical polymerization, enzymatic polymerization, photopolymerization, and free radical polymerization, are used and described in the different intra-tissue polymerization methods. Moreover, the challenges in this field are discussed, such as the precise control of polymerization reactions and the development of biocompatible materials, and the future development direction of this field is also prospected.
Collapse
Affiliation(s)
- Xin Yun
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yansong Dong
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Biesmans H, Farinotti AB, Abrahamsson T, Arja K, Lindholm C, Strakosas X, Gerasimov JY, Simon DT, Svensson CI, Musumeci C, Berggren M. From synthetic vesicles to living cells: Anchoring conducting polymers to cell membrane. SCIENCE ADVANCES 2024; 10:eadr2882. [PMID: 39661678 PMCID: PMC11633735 DOI: 10.1126/sciadv.adr2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Coupling biology with electronics is emerging as a transformative approach in developing advanced medical treatments, with examples ranging from implants for treating neurological disorders to biosensors for real-time monitoring of physiological parameters. The electrodes used for these purposes often face challenges such as signal degradation due to biofouling and limited biocompatibility, which can lead to inaccurate readings and tissue damage over time. Conducting organic polymers are a promising alternative because of their mechanical, chemical, and physical properties, which better match the ones of biological systems. They also can be synthesized in vivo to form bio-templated structures through biologically compatible manufacturing processes. Here, we report a method to achieve conductive polymer structures anchored to cell membranes, creating an intimate interface between the polymer electrode and single cells. We show that the polymer is nontoxic to cells and does not interfere with its activation, thereby making this process an interesting alternative to existing materials and electrode techniques.
Collapse
Affiliation(s)
- Hanne Biesmans
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Katriann Arja
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Caroline Lindholm
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Jennifer Y. Gerasimov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Chiara Musumeci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| |
Collapse
|
3
|
Uva A, Michailovich S, Hsu NSY, Tran H. Degradable π-Conjugated Polymers. J Am Chem Soc 2024; 146:12271-12287. [PMID: 38656104 DOI: 10.1021/jacs.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The integration of next-generation electronics into society is rapidly reshaping our daily interactions and lifestyles, revolutionizing communication and engagement with the world. Future electronics promise stimuli-responsive features and enhanced biocompatibility, such as skin-like health monitors and sensors embedded in food packaging, transforming healthcare and reducing food waste. Imparting degradability may reduce the adverse environmental impact of next-generation electronics and lead to opportunities for environmental and health monitoring. While advancements have been made in producing degradable materials for encapsulants, substrates, and dielectrics, the availability of degradable conducting and semiconducting materials remains restricted. π-Conjugated polymers are promising candidates for the development of degradable conductors or semiconductors due to the ability to tune their stimuli-responsiveness, biocompatibility, and mechanical durability. This perspective highlights three design considerations: the selection of π-conjugated monomers, synthetic coupling strategies, and degradation of π-conjugated polymers, for generating π-conjugated materials for degradable electronics. We describe the current challenges with monomeric design and present options to circumvent these issues by highlighting biobased π-conjugated compounds with known degradation pathways and stable monomers that allow for chemically recyclable polymers. Next, we present coupling strategies that are compatible for the synthesis of degradable π-conjugated polymers, including direct arylation polymerization and enzymatic polymerization. Lastly, we discuss various modes of depolymerization and characterization techniques to enhance our comprehension of potential degradation byproducts formed during polymer cleavage. Our perspective considers these three design parameters in parallel rather than independently while having a targeted application in mind to accelerate the discovery of next-generation high-performance π-conjugated polymers for degradable organic electronics.
Collapse
Affiliation(s)
- Azalea Uva
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sofia Michailovich
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Nathan Sung Yuan Hsu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Helen Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
4
|
Barjasteh A, Kaushik N, Choi EH, Kaushik NK. Cold Atmospheric Pressure Plasma: A Growing Paradigm in Diabetic Wound Healing-Mechanism and Clinical Significance. Int J Mol Sci 2023; 24:16657. [PMID: 38068979 PMCID: PMC10706109 DOI: 10.3390/ijms242316657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetes is one of the most significant causes of death all over the world. This illness, due to abnormal blood glucose levels, leads to impaired wound healing and, as a result, foot ulcers. These ulcers cannot heal quickly in diabetic patients and may finally result in amputation. In recent years, different research has been conducted to heal diabetic foot ulcers: one of them is using cold atmospheric pressure plasma. Nowadays, cold atmospheric pressure plasma is highly regarded in medicine because of its positive effects and lack of side effects. These conditions have caused plasma to be considered a promising technology in medicine and especially diabetic wound healing because studies show that it can heal chronic wounds that are resistant to standard treatments. The positive effects of plasma are due to different reactive species, UV radiation, and electromagnetic fields. This work reviews ongoing cold atmospheric pressure plasma improvements in diabetic wound healing. It shows that plasma can be a promising tool in treating chronic wounds, including ones resulting from diabetes.
Collapse
Affiliation(s)
- Azadeh Barjasteh
- Department of Physics, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea;
| | - Eun Ha Choi
- Department of Electrical and Biological Physics/Plasma, Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics/Plasma, Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
5
|
Yin H, Du H, Li W, Qin Y, Fan Y, Tan J, Yang M, Zhu C, Xu Y. Long-Lived Photoacid-Doped Conducting Composites Induce Photocurrent for Efficient Wound Healing. Adv Healthc Mater 2023; 12:e2300742. [PMID: 37204778 DOI: 10.1002/adhm.202300742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Electrical stimulation is an effective strategy for facilitating wound healing. However, it is hindered by unwieldy electrical systems. In this study, a light-powered dressing based on long-lived photoacid generator (PAG)-doped polyaniline composites is used, which can generate a photocurrent under visible light irradiation to interact with the endogenous electric field and facilitate skin growth. Light-controlled proton binding and dissociation result in oxidation and reduction of the polyaniline backbone, inducing charge transfer to generate a photocurrent. Due to the rapid intramolecular photoreaction of PAG, a long-lived proton-induced localized acidic environment is formed, which protects the wound from microbial infection. In summary, a simple and effective therapeutic strategy is introduced for light-powered and biocompatible wound dressings that show great potential for wound treatment.
Collapse
Affiliation(s)
- Haiyan Yin
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huifang Du
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenya Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yinhua Qin
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yonghong Fan
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ju Tan
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingcan Yang
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chuhong Zhu
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, China
| | - Youqian Xu
- National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
6
|
Zhang A, Loh KY, Kadur CS, Michalek L, Dou J, Ramakrishnan C, Bao Z, Deisseroth K. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. SCIENCE ADVANCES 2023; 9:eadi1870. [PMID: 37556541 PMCID: PMC10411876 DOI: 10.1126/sciadv.adi1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Multicellular biological systems, particularly living neural networks, exhibit highly complex organization properties that pose difficulties for building cell-specific biocompatible interfaces. We previously developed an approach to genetically program cells to assemble structures that modify electrical properties of neurons in situ, opening up the possibility of building minimally invasive cell-specific structures and interfaces. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed materials. Here, we design a method for highly localized expression of enzymes targeted to the plasma membrane of primary neurons, with minimal intracellular retention. Next, we show that polymers synthesized in situ by this approach form dense extracellular clusters selectively on the targeted cell membrane and that neurons remain viable after polymerization. Last, we show generalizability of this method across a range of design strategies. This platform can be readily extended to incorporate a broad diversity of materials onto specific cell membranes within tissues and may further enable next-generation biological interfaces.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kang Yong Loh
- Department of Chemistry, Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Chandan S. Kadur
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jiayi Dou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- CNC Program, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- CNC Program, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|