1
|
Wang X, Wei L, Wu J, Zhu A, Zhang Q, Liu Q. Supported core-shell catalysts for enhancing ethanol electrooxidation by C1 pathway. J Colloid Interface Sci 2025; 694:137719. [PMID: 40319719 DOI: 10.1016/j.jcis.2025.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
The direct ethanol fuel cell (DEFC) are considered a promising clean energy conversion technology due to their high energy density and low emissions. However, the anodic ethanol oxidation reaction (EOR) follows a dual-pathway mechanism (C1 pathway and C2 pathway) with low efficiency, which limits the performance and industrial application of DEFC. A multi-strategy approach to balance activity, stability, and C1 pathway selectivity in this work was adopted in order to design high-performance core-shell supported palladium (Pd) based catalysts. Au1@Pdx/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO of core-shell supported catalyst were successfully prepared using the sol-gel method, which show high performance in the EOR. The peak mass current density of the Au1@Pd1.5/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO catalyst is 4914.8 mA mgPd-1 and 5038.1 mA mgPd-1, which was 6.0 and 6.2 times of the Pd/C(JM) catalyst (816.4 mA mgPd-1), respectively. At the same time, their residual current density after 5000 s of stability testing is 1757.9 mA mgPd-1 and 2160.5 mA mgPd-1, which was 27.3 and 33.5 times of the Pd/C(JM) catalyst (64.5 mA mgPd-1), respectively. The synergistic effect between the core-shell structure and the composite support effectively enhanced the C1 pathway selectivity, regenerative ability, and resistance to CO poisoning of the catalyst in the EOR.
Collapse
Affiliation(s)
- Xiaosen Wang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Longbo Wei
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Jianyang Wu
- Department of Physics, Jiujiang Research Institute, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
2
|
Chen T, Zhang X, Wang H, Yuan C, Zuo Y, Gao C, Xiao W, Yu Y, Cai J, Luo T, Xiang Y, Xia D. Antisite defect unleashes catalytic potential in high-entropy intermetallics for oxygen reduction reaction. Nat Commun 2025; 16:3308. [PMID: 40195379 PMCID: PMC11977229 DOI: 10.1038/s41467-025-58679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Developing highly active, low-cost, and durable catalysts for efficient oxygen reduction reactions remain a challenge, hindering the commercial viability of proton exchange membrane fuel cells (PEMFCs). In this study, an ordered PtZnFeCoNiCr high-entropy intermetallic electrocatalyst with Pt antisite point defects (PD-PZFCNC-HEI) is synthesized. The electrocatalyst shows high mass activity of 4.12 A mgPt-1 toward the oxygen reduction reaction (ORR), which is 33 times that of the commercial Pt/C. PEMFC, assembled with PD-PZFCNC-HEI as the cathode (0.05 mgPt cm-2), exhibits a peak power density of 1.9 W cm-2 and a high mass activity of 3.0 A mgPt-1 at 0.9 V. Theoretical calculations combined with in situ X-ray absorption fine structure results reveal that defect engineering optimizes Pt's electronic structure and activates non-noble metal site active centers, achieving exceptionally high ORR catalytic activity. This study provides guidance for the development of nanostructured ordered high-entropy intermetallic catalysts.
Collapse
Affiliation(s)
- Tao Chen
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xinkai Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, China
| | - Hangchao Wang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Chonglin Yuan
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yuxuan Zuo
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Chuan Gao
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Wukun Xiao
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yue Yu
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Junfei Cai
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Tie Luo
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, China
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
3
|
Shi H, Wang T, Lin Z, Liu S, Liu X, Zhou R, Cai Z, Huang Y, Li Q. Spontaneous Hydrogen Production Coupled with Glucose Valorization through Modulating Au-Pt Coordination on Ultrathin Au 3Pt Twin Nanowires. Angew Chem Int Ed Engl 2025; 64:e202424476. [PMID: 39829348 DOI: 10.1002/anie.202424476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/12/2025] [Accepted: 01/19/2025] [Indexed: 01/22/2025]
Abstract
Organics electrooxidation coupled hydrogen production has attracted increasing attention due to the low operation voltage. Nevertheless, the spontaneous production of hydrogen coupled with organics valorization remains challenging. Herein, we develop ultrathin Au/Pt twin nanowire (NW) catalysts for both electrochemical glucose oxidation and hydrogen evolution reaction towards a spontaneous hydrogen production system. The more Pt-Au coordination and the localized tensile strain generated on twin boundaries of Au3Pt NWs facilitate the selective glucose electro-oxidation to gluconic acid (GNA) compared to Pt NWs (a low onset potential of 0.07 VRHE and selectivity >90 %). In situ spectroscopy and theoretical calculations reveal that Au3Pt NWs could reduce the energy barriers for GNA generation and alleviate the poisoning of Pt sites via a 'Pt-to-Au site transfer' mechanism, which facilitates the desorption of strongly absorbed gluconolactone. Therefore, the asymmetric cell equipped with Au3Pt NWs catalysts realizes the spontaneous hydrogen production and glucose valorization with a peak power of 50 mW, which outputs the voltage of 0.24 V at 50 mA cm-2, outperforming the state-of-the-art electrolyzers for hydrogen production. The production of 1 kg H2 of the device is accompanied with $64.2 valorization of the anode product ($1200 ton-1 for GNA), and 5.36 kW h of generated electricity.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zijie Lin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuxia Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruixin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Cai
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Xia Z, Yu R, Wang Y, Xu K, Eid K, Zhang Y, He J, Ning F, Liu L, Zhang J, Yang H, Zhao H, Zhang D. Cavities-Induced Compressive Strain in Unique Nanotubes Boosts the C1 Pathway of Ethanol Oxidation Electrocatalysis. ACS NANO 2025; 19:7379-7390. [PMID: 39955788 DOI: 10.1021/acsnano.4c18350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Engineering structural defects is beneficial for electrocatalytic performances. Herein, a class of acid-etched PtNiRh nanotubes with abundant structural defects around cavities were constructed. Modulated electronic and coordination structures closely associated with structural defects boost the ethanol oxidation reaction (EOR) activity and selectivity. The optimized PtNiRh-E-H nanotubes exhibit an EOR mass and specific activity of 1.81 A mgPt-1 and 3.38 mA cm-2, respectively. A high retention at 1.80 A mgPt-1 after a chronoamperometric test of 10000 s was achieved by PtNiRh-E-H nanotubes. Moreover, the PtNiRh-E-H nanotubes featuring compressive lattice strain and lower-lying d band center display a strong inclination for the C1 pathway, as evidenced by a higher linearly bonded CO band intensity and lower intensity of adsorbed acetate across the applied potentials using attenuated total-reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Also, the attenuated CO adsorption and accelerated CO oxidative desorption by OH species led to superior C1 selectivity of the PtNiRh-E-H nanotubes. Differential mass spectrometry (DEMS) together with ATR-SEIRAS provides explicit evidence of catalytic pathway as CH3CH2OH → CH3CH2OHads → ··· → CH3CHO → CH3CO → CH3 + CO → 2CO2. The work represents a feasible strategy for alcohol oxidation catalysis, wherein acid etching exposes significantly more structural defects and brings about an optimal electronic structure and lattice strain.
Collapse
Affiliation(s)
- Zhonghong Xia
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Renqin Yu
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yan Wang
- School of Environmental & Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Kaiyang Xu
- Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China
| | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Yifan Zhang
- School of Environmental & Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jia He
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Fanghua Ning
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lifeng Liu
- Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China
| | - Jiujun Zhang
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Hongbin Zhao
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
5
|
Li S, Ma Y, Li Y. Strain engineering of PtMn alloy enclosed by high-indexed facets boost ethanol electrooxidation. J Colloid Interface Sci 2025; 677:416-424. [PMID: 39096709 DOI: 10.1016/j.jcis.2024.07.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Surface strain engineering has proven to be an efficient strategy to enhance catalytic properties of platinum (Pt)-based catalysts for electrooxidation reactions. Herein, the S-doped PtMn concave cubes (CNCs) enclosed with high index facets (HIFs) and regulatable surface strain are successfully fabricated by two steps hydrothermal method. The S element with electrophilic property can modify the near-surface of PtMn nanocrystals, altering the electronic structure of Pt to effectively regulate the adsorption/desorption of intermediates in the ethanol electrooxidation reaction (EOR). The PtMnS1.1 catalyst with optimal surface strain delivered extraordinary catalytic performance on EOR in acidic media, with a specific activity of 2.88 mA/cm2 and mass activity of 1.10 mA/μgPt, which is 4.1 and 2.2 times larger than that of state-of-the-art Pt/C catalyst, respectively. Additionally, the PtMnS1.1 catalyst also achieve excellent catalytic properties in alkaline electrolyte for EOR. The results of kinetic studies indicated that the surface strain and modified electronic structure can degrade the activation energy barrier during the process of EOR, which is beneficial for enhance the reaction rate. This work provides a promising approach to construct highly efficient electrocatalysts with tunable surface strain effects for clean energy electro-chemical reactions.
Collapse
Affiliation(s)
- Shuna Li
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yunrui Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Shi C, Cheng Z, Leonardi A, Yang Y, Engel M, Jones MR, Han Y. Preserving surface strain in nanocatalysts via morphology control. SCIENCE ADVANCES 2024; 10:eadp3788. [PMID: 39321292 PMCID: PMC11423881 DOI: 10.1126/sciadv.adp3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Engineering strain critically affects the properties of materials and has extensive applications in semiconductors and quantum systems. However, the deployment of strain-engineered nanocatalysts faces challenges, in particular in maintaining highly strained nanocrystals under reaction conditions. Here, we introduce a morphology-dependent effect that stabilizes surface strain even under harsh reaction conditions. Using four-dimensional scanning transmission electron microscopy (4D-STEM), we found that cube-shaped core-shell Au@Pd nanoparticles with sharp-edged morphologies sustain coherent heteroepitaxial interfaces with larger critical thicknesses than morphologies with rounded edges. This configuration inhibits dislocation nucleation due to reduced shear stress at corners, as indicated by molecular dynamics simulations. A Suzuki-type cross-coupling reaction shows that our approach achieves a fourfold increase in activity over conventional nanocatalysts, owing to the enhanced stability of surface strain. These findings contribute to advancing the development of advanced nanocatalysts and indicate broader applications for strain engineering in various fields.
Collapse
Affiliation(s)
- Chuqiao Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA
| | - Zhihua Cheng
- Department of Chemistry, Rice University, Houston, TX 77006, USA
| | - Alberto Leonardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Department of Earth and Atmospheric Sciences, Indiana University, 1001 East 10th Street, Bloomington, IN 47405, USA
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew R Jones
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA
- Department of Chemistry, Rice University, Houston, TX 77006, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA
| |
Collapse
|
7
|
Singha T, Tomar S, Das S, Satpati B. D-Band Engineering in Pd-Based Nanowire Networks for Further Enhancement in Ethanol Electrooxidation Reaction. SMALL METHODS 2024; 8:e2400368. [PMID: 38745535 DOI: 10.1002/smtd.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The development of highly efficient electrocatalysts for the ethanol oxidation reaction (EOR) is essential for the commercialization of direct ethanol fuel cells, yet challenges remain. In this study, a one-pot solution-phase method to synthesize Pd nanowire networks (NNWs) with very high surface-to-volume ratio having numerous twin and grain boundaries is developed. Using the same method, the Pd lattice is further engineered by introducing Ag and Cu atoms to produce AgPd, and CuPd alloy structure which significantly shifts the Pd d-band center upward and downward, respectively due to strain and ligand effects. Theoretical analysis employing density functional theory (DFT) demonstrates that such modification of the d-band center significantly influences the adsorption energies of reactants on the catalytic surface. Owing to their notably high surface-to-volume ratio and the presence of multiple twin and grain boundaries, Pd NNWs demonstrate significantly enhanced electrocatalytic activity toward EOR, ≈7.2 times greater than that of commercial Pd/C. Remarkably, compared to Pd NNWs, AgPd, and CuPd NNWs display enlarged and reduced electrocatalytic activity toward EOR, respectively. Specifically, Ag4Pd7 NNWs achieve a remarkable mass activity of 9.00 A mgpd -1 for EOR, which is 13.6 times higher than commercial Pd/C.
Collapse
Affiliation(s)
- Tukai Singha
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Shalini Tomar
- Indo-Korea Science and Technology Center (IKST), Bangalore, 560065, India
| | - Shuvankar Das
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Biswarup Satpati
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| |
Collapse
|
8
|
Zhao W, Li M, Hu S. Insight into the ordering process and ethanol oxidation performance of Au-Pt-Cu ternary alloys. Dalton Trans 2024; 53:8750-8755. [PMID: 38712563 DOI: 10.1039/d4dt00553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Direct ethanol fuel cells (DEFCs), which have been widely recognized as nontoxic and green energy conversion devices, show attractive application prospects for liquid hydrogen-carriers, due to the higher specific energy and lower toxicity of ethanol. Pt-based catalysts are widely used in DEFCs, while their poor poisoning resistance highlights the importance of composition and structure optimization. Herein, we synthesized a series of reduced graphene oxide supported ternary alloy AuxPt1-xCu3/rGO (x = 0-1) catalysts with excellent ethanol oxidation performance and a composition-dependent volcano plot trend of the ordering degree was observed and rationalized. The highest Pt-normalized mass activity of Au0.8Pt0.2Cu3/rGO is attributed to the optimized CO binding energy according to DFT calculations. This work not only provides an efficient EOR catalyst based on ordered alloys AuxPt1-xCu3 (x = 0-1), but also offers valuable insight into the role of a third metal in tuning the structure and function of alloys.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Mengyao Li
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Shi Hu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Chen R, Wang Z, Chen S, Wang L, Wu W, Zhu Y, Cheng N. Optimizing Intermediate Adsorption on Pt Sites via Triple-Phase Interface Electronic Exchange for Methanol Oxidation. Inorg Chem 2024; 63:4364-4372. [PMID: 38373009 DOI: 10.1021/acs.inorgchem.3c04634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
For the most commonly applied platinum-based catalysts of direct methanol fuel cells, the adsorption ability toward reaction intermediates, including CO and OH, plays a vital role in their catalytic activity and antipoisoning in anodic methanol oxidation reaction (MOR). Herein, guided by a theoretical mechanism study, a favorable modulation of the electronic structure and intermediate adsorption energetics for Pt active sites is achieved by constructing the triple-phase interfacial structure between tin oxide (SnO2), platinum (Pt), and nitrogen-doped graphene (NG). From the strong electronic exchange at the triple-phase interface, the adsorption ability toward MOR reaction intermediates on Pt sites could be efficiently optimized, which not only inhibits the adsorption of CO* on active sites but also facilitates the adsorption of OH* to strip the poisoning species from the catalyst surface. Accordingly, the resulting catalyst delivers excellent catalytic activity and antipoisoning ability for MOR catalysis. The mass activity reaches 1098 mA mg-1Pt, 3.23 times of commercial Pt/C. Meanwhile, the initial potentials and main peak for CO oxidation are also located at a much lower potential (0.51 and 0.74 V) against commercial Pt/C (0.83 and 0.89 V).
Collapse
Affiliation(s)
- Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou ,Fujian 350108, China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Yu Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Xu GR, Dong Z, Zhao Y, Zhang W, Sun Q, Ju D, Wang L. Alkali Etching of Porous PdCoZn Nanosheets for Boosting C-C Bond Cleavage of Ethylene Glycol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306341. [PMID: 37903360 DOI: 10.1002/smll.202306341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Indexed: 11/01/2023]
Abstract
Pd-based electrocatalysts are the most effective catalysts for ethylene glycol oxidation reaction (EGOR), while the disadvantages of poor stability, low resistance to neutrophilic, and low catalytic activity seriously hamper the development of direct ethylene glycol fuel cells (DEGFCs). In this work, defect-riched PdCoZn nanosheets (D-PdCoZn NSs) with ultrathin 2D NSs and porous structures are fabricated through the solvothermal and alkali etching processes. Benefiting from the presence of defects and ultrathin 2D structures, D-PdCoZn NSs demonstrate excellent electrocatalytic activity and good durability against EGOR in alkaline media. The mass activity and specific activity of D-PdCoZn NSs for EGOR are 9.5 A mg-1 and 15.7 mA cm-2 , respectively, which are higher than that of PdCoZn NSs, PdCo NSs, and Pd black. The D-PdCoZn NSs still maintain satisfactory mass activity after long-term durability tests. Meanwhile, in situ IR spectroscopy demonstrates that the presence of defects attenuated the adsorption of intermediates, which improves the selectivity of the C1 pathway with excellent anti-CO poisoning performance. This work not only provides an effective synthetic strategy for the preparation of Pd-based nanomaterials with defective structures but also indicates significant guidance for optimum C1 pathway selectivity of ethylene glycol and other challenging chemical transformations.
Collapse
Affiliation(s)
- Guang-Rui Xu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zemeng Dong
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingxiu Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qiyan Sun
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dianxing Ju
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
11
|
Feng R, Li D, Yang H, Li C, Zhao Y, Waterhouse GIN, Shang L, Zhang T. Epitaxial Ultrathin Pt Atomic Layers on CrN Nanoparticle Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309251. [PMID: 37897297 DOI: 10.1002/adma.202309251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Indexed: 10/30/2023]
Abstract
The construction of platinum (Pt) atomic layers is an effective strategy to improve the utilization efficiency of Pt atoms in electrocatalysis, thus is important for reducing the capital costs of a wide range of energy storage and conversion devices. However, the substrates used to grow Pt atomic layers are largely limited to noble metals and their alloys, which is not conducive to reducing catalyst costs. Herein, low-cost chromium nitride (CrN) is utilized as a support for the loading of epitaxial ultrathin Pt atomic layers via a simple thermal ammonolysis method. Owing to the strong anchoring and electronic regulation of Pt atomic layers by CrN, the obtained Pt atomic layers catalyst (containing electron-deficient Pt sites) exhibits excellent activity and endurance for the formic acid oxidation reaction, with a mass activity of 5.17 A mgPt -1 that is 13.6 times higher than that of commercial Pt/C catalyst. This novel strategy demonstrates that CrN can replace noble metals as a low-cost substrate for constructing Pt atomic layers catalysts.
Collapse
Affiliation(s)
- Ruixue Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyu Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Zhu S, Liu Y, Gong Y, Sun Y, Chen K, Liu Y, Liu W, Xia T, Zheng Q, Gao H, Guo H, Wang R. Boosting Bifunctional Catalysis by Integrating Active Faceted Intermetallic Nanocrystals and Strained Pt-Ir Functional Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305062. [PMID: 37803476 DOI: 10.1002/smll.202305062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Indexed: 10/08/2023]
Abstract
PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.
Collapse
Affiliation(s)
- Shiyu Zhu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Sun
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kang Chen
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Liu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Weidi Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, ST Lucia, QLD, 4072, Australia
| | - Tianyu Xia
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Han Gao
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
13
|
Li T, Wang Q, Wu J, Sui Y, Tang P, Liu H, Zhang W, Li H, Wang Y, Cabot A, Liu J. Strain and Shell Thickness Engineering in Pd 3 Pb@Pt Bifunctional Electrocatalyst for Ethanol Upgrading Coupled with Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306178. [PMID: 37800605 DOI: 10.1002/smll.202306178] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The ethanol oxidation reaction (EOR) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts for both EOR and hydrogen evolution reaction (HER) is a major challenge. Herein, the synthesis of Pd3 Pb@Pt core-shell nanocubes with controlled shell thickness by Pt-seeded epitaxial growth on intermetallic Pd3 Pb cores is reported. The lattice mismatch between the Pd3 Pb core and the Pt shell leads to the expansion of the Pt lattice. The synergistic effects between the tensile strain and the core-shell structures result in excellent electrocatalytic performance of Pd3 Pb@Pt catalysts for both EOR and HER. In particular, Pd3 Pb@Pt with three Pt atomic layers shows a mass activity of 8.60 A mg-1 Pd+Pt for ethanol upgrading to acetic acid and close to 100% of Faradic efficiency for HER. An EOR/HER electrolysis system is assembled using Pd3 Pb@Pt for both the anode and cathode, and it is shown that low cell voltage of 0.75 V is required to reach a current density of 10 mA cm-2 . The present work offers a promising strategy for the development of bifunctional catalysts for hybrid electrocatalytic reactions and beyond.
Collapse
Affiliation(s)
- Tong Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiuxia Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingjing Wu
- State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China
- 52020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanping Sui
- State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China
| | - Pengyi Tang
- State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China
- 52020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiting Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenjie Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Junfeng Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
14
|
Yu R, Shao R, Ning F, Yu Y, Zhang J, Ma XY, Zhu R, Li M, Lai J, Zhao Y, Zeng L, Zhang J, Xia Z. Electronic and Geometric Effects Endow PtRh Jagged Nanowires with Superior Ethanol Oxidation Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305817. [PMID: 37814379 DOI: 10.1002/smll.202305817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.
Collapse
Affiliation(s)
- Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Fanghua Ning
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yaodong Yu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Jing Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Yin Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
15
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Chen T, Xu S, Zhao T, Zhou X, Hu J, Xu X, Liang C, Liu M, Ding W. Accelerating Ethanol Complete Electrooxidation via Introducing Ethylene as the Precursor for the C-C Bond Splitting. Angew Chem Int Ed Engl 2023; 62:e202308057. [PMID: 37545437 DOI: 10.1002/anie.202308057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The crucial issue restricting the application of direct ethanol fuel cells (DEFCs) is the incomplete and sluggish electrooxidation of ethanol due to the chemically stable C-C bond thereof. Herein, a unique ethylene-mediated pathway with a 100 % C1-selectivity for ethanol oxidation reaction (EOR) is proposed for the first time based on a well-structured Pt/Al2 O3 @TiAl catalyst with cascade active sites. The electrochemical in situ Fourier transform infrared spectroscopy (FTIR) and differential electrochemical mass spectrometry (DEMS) analysis disclose that ethanol is primarily dehydrated on the surface of Al2 O3 @TiAl and the derived ethylene is further oxidized completely on nanostructured Pt. X-ray absorption and density functional theory (DFT) studies disclose the Al component doped in Pt nanocrystals can promote the EOR kinetics by lowering the reaction energy barriers and eliminating the poisonous species. Strikingly, Pt/Al2 O3 @TiAl exhibits a specific activity of 3.83 mA cm-2 Pt , 7.4 times higher than that of commercial Pt/C and superior long-term durability.
Collapse
Affiliation(s)
- Teng Chen
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shen Xu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Taotao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaohang Zhou
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Jianqiang Hu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Xin Xu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Chenjia Liang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
17
|
Li T, Wang Q, Zhang W, Li H, Wang Y, Liu J. Length-tunable Pd 2Sn@Pt core-shell nanorods for enhanced ethanol electrooxidation with concurrent hydrogen production. Chem Sci 2023; 14:9488-9495. [PMID: 37712030 PMCID: PMC10498666 DOI: 10.1039/d3sc02771f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The electrooxidation of ethanol as an alternative to the oxygen evolution reaction presents a promising approach for low-cost hydrogen production. However, the design and synthesis of efficient ethanol oxidation electrocatalysts remain key challenges. Here, a colloidal procedure is developed to prepare Pd2Sn@Pt core-shell nanorods with an expanded Pt lattice and tunable length. The obtained Pd2Sn@Pt catalysts exhibit superior activity and stability for ethanol electrooxidation compared to Pd2Sn and commercial Pt/C catalysts. By tuning the length of the Pd2Sn@Pt nanorods, remarkable mass activity of up to 4.75 A mgPd+Pt-1 and specific activity of 20.14 mA cm-2 are achieved for the short nanorods owing to their large specific surface area. A hybrid electrolysis system for ethanol oxidation and hydrogen evolution is constructed using Pd2Sn@Pt as the anodic catalyst and Pt mesh as the cathode. The system requires a low cell voltage of 0.59 V for the simultaneous production of acetic acid and hydrogen at a current density of 10 mA cm-2. Density functional theory calculations further reveal that the strained Pt shell reduces energy barriers in the ethanol electrooxidation pathway, facilitating the conversion of ethanol to acetic acid. This work provides valuable guidance for developing highly efficient ethanol electrooxidation catalysts for integrated hydrogen production systems.
Collapse
Affiliation(s)
- Tong Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Qiuxia Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Wenjie Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Yong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Junfeng Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
18
|
Huang B, Ge Y, Zhang A, Zhu S, Chen B, Li G, Yun Q, Huang Z, Shi Z, Zhou X, Li L, Wang X, Wang G, Guan Z, Zhai L, Luo Q, Li Z, Lu S, Chen Y, Lee CS, Han Y, Shao M, Zhang H. Seeded Synthesis of Hollow PdSn Intermetallic Nanomaterials for Highly Efficient Electrocatalytic Glycerol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302233. [PMID: 37261943 DOI: 10.1002/adma.202302233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Intermetallic nanomaterials have shown promising potential as high-performance catalysts in various catalytic reactions due to their unconventional crystal phases with ordered atomic arrangements. However, controlled synthesis of intermetallic nanomaterials with tunable crystal phases and unique hollow morphologies remains a challenge. Here, a seeded method is developed to synthesize hollow PdSn intermetallic nanoparticles (NPs) with two different intermetallic phases, that is, orthorhombic Pd2 Sn and monoclinic Pd3 Sn2 . Benefiting from the rational regulation of the crystal phase and morphology, the obtained hollow orthorhombic Pd2 Sn NPs deliver excellent electrocatalytic performance toward glycerol oxidation reaction (GOR), outperforming solid orthorhombic Pd2 Sn NPs, hollow monoclinic Pd3 Sn2 NPs, and commercial Pd/C, which places it among the best reported Pd-based GOR electrocatalysts. The reaction mechanism of GOR using the hollow orthorhombic Pd2 Sn as the catalyst is investigated by operando infrared reflection absorption spectroscopy, which reveals that the hollow orthorhombic Pd2 Sn catalyst cleaves the CC bond more easily compared to the commercial Pd/C. This work can pave an appealing route to the controlled synthesis of diverse novel intermetallic nanomaterials with hollow morphology for various promising applications.
Collapse
Affiliation(s)
- Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine, Science and Engineering Guangdong Laboratory and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
19
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
20
|
Zhang L, Zhang J, Tan W, Zhong C, Tu Y, Song H, Du L, Liao S, Cui Z. Amorphous TiO x Stabilized Intermetallic Pt 3Ti Nanocatalyst for Methanol Oxidation Reaction. NANO LETTERS 2023. [PMID: 37276263 DOI: 10.1021/acs.nanolett.3c01147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermetallic compounds, featuring atomically ordered structures, have emerged as a class of promising electrocatalysts for fuel cells. However, it remains a formidable challenge to controllably synthesize Pt-based intermetallics during the essential high-temperature annealing process as well as stabilize the nanoparticles (NPs) during the electrocatalytic process. Herein, we demonstrated a Ketjen black supported intermetallic Pt3Ti nanocatalyst coupled with amorphous TiOx species (Pt3Ti-TiOx/KB). The TiOx can not only confine Pt3Ti NPs during the synthesis and electrocatalytic process by a strong metal-oxide interaction but also promote the water dissociation for generating more OH species, thus facilitating the conversion of COad. The Pt3Ti-TiOx/KB showed a significantly enhanced mass activity (2.15 A mgPt-1) for the methanol oxidation reaction, compared with Pt3Ti/KB and Pt/C, and presented an impressively high mass activity retention (∼71%) after the durability test. This work provides an effective strategy of coupling Pt-based intermetallics with functional oxides for developing highly performed electrocatalysts.
Collapse
Affiliation(s)
- Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaxi Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weiquan Tan
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chengzhi Zhong
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanhua Tu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huiyu Song
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
21
|
Chong Y, Li Y, Lin J, Chen T, Zhao S, Wu P, Li A, Feng C, Qiu Y, Ye D. Constructing Highly Active Metal Oxides for Toluene Degradation by Fenton Iron Mud Modulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22075-22084. [PMID: 37116203 DOI: 10.1021/acsami.3c01231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fenton iron mud (IM) is a hazardous solid waste produced by Fenton oxidation technology after treating industrial wastewater. Thus, it is necessary and challenging to develop a recycling technology to back-convert dangerous materials into useful products. Herein, we develop a sustainable approach to prepare highly active metal oxides via a solid-state grinding method. IM, as an amorphous material, can disperse and interact well with these supported metal oxides, boosting toluene degradation significantly. Among these IM-based catalysts, the catalyst 8% MnOx/IM-0.2VC exhibits the best performance (T100 = 290 °C), originating from the oxide-support interaction and optimal balance between low-temperature reducibility and oxygen vacancy concentration. In addition, in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) results expound that ring breakage is prone to occur on MnOx, and oxygen vacancies are beneficial to adsorb oxygen and activate oxygen species to boost toluene oxidation following the Mars-van Krevelen mechanism. This work advances a complete industrial hazardous waste recycling route to develop extremely active catalysts.
Collapse
Affiliation(s)
- Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Jiajin Lin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Tingyu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Shuaiqi Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Peng Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Anqi Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| |
Collapse
|
22
|
Ren Y, Zang Z, Lv C, Li B, Li L, Yang X, Lu Z, Yu X, Zhang X. Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2023; 640:801-808. [PMID: 36905889 DOI: 10.1016/j.jcis.2023.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Developing highly durable and active catalysts with the morphology of structurally robust nanoframes toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acidic environment is crucial but still a great challenge to completely achieve in a single material. Herein, PtCuCo nanoframes (PtCuCo NFs) with internal support structures as enhanced bifunctional electrocatalysts were prepared by a facile one-pot approach. PtCuCo NFs exhibited remarkable activity and durability for ORR and MOR owing to the ternary compositions and the structure-fortifying frame structures. Impressively, the specific/mass activity of PtCuCo NFs were 12.8/7.5 times as large as that of commercial Pt/C for ORR in perchloric acid solution. For MOR in sulfuric acid solution, the mass/specific activity of PtCuCo NFs was 1.66 A mgPt-1/4.24 mA cm-2, which was 5.4/9.4 times as large as that of Pt/C. This work may provide a promising nanoframe material to develop dual catalysts for fuel cells.
Collapse
Affiliation(s)
- Yangyang Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zehao Zang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chenhao Lv
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Beibei Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
23
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
24
|
Wang X, Liu Y, Ma XY, Chang LY, Zhong Q, Pan Q, Wang Z, Yuan X, Cao M, Lyu F, Yang Y, Chen J, Sham TK, Zhang Q. The Role of Bismuth in Suppressing the CO Poisoning in Alkaline Methanol Electrooxidation: Switching the Reaction from the CO to Formate Pathway. NANO LETTERS 2023; 23:685-693. [PMID: 36594847 DOI: 10.1021/acs.nanolett.2c04568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xing-Yu Ma
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qi Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhiqiang Wang
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Fenglei Lyu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Tang Y, Chen Y, Wu Y, Xu W, Luo Z, Ye HR, Gu W, Song W, Guo S, Zhu C. High-Indexed Intermetallic Pt 3Sn Nanozymes with High Activity and Specificity for Sensitive Immunoassay. NANO LETTERS 2023; 23:267-275. [PMID: 36580489 DOI: 10.1021/acs.nanolett.2c04235] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Great efforts have been made to expand the application fields of nanozymes, which puts forward requirements for nanozymes with both superior catalytic activity and specificity. Herein, we reported the high-indexed intermetallic Pt3Sn (H-Pt3Sn) with high peroxidase-like activity and specificity. The resultant H-Pt3Sn exhibits a specific activity of 345.3 U/mg, which is 1.82 times higher than Pt. Moreover, H-Pt3Sn possesses negligible oxidase-like and catalase-like activities, achieving superior catalytic specificity toward H2O2 activation. Experimental and theoretical calculations reveal both the splitting energy for adsorbed H2O2 and the energy barrier for the rate-determining step of H-Pt3Sn are significantly decreased compared with Pt3Sn and Pt. Finally, a nanozyme-linked immunosorbent assay is successfully developed, achieving the sensitive and accurate colorimetric detection for carcinoembryonic antigen with a low detection limit of 0.49 pg/mL and showing practical feasibility in serum sample detection.
Collapse
Affiliation(s)
- Yinjun Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yanjun Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhen Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430079, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|