1
|
Wu D, Han X, Wu C, Song Y, Li J, Wan Y, Wu X, Tian X. Two-Dimensional Transition Metal Boron Cluster Compounds (MB nenes) with Strain-Independent Room-Temperature Magnetism. J Phys Chem Lett 2024; 15:1070-1078. [PMID: 38261575 DOI: 10.1021/acs.jpclett.3c02786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Two-dimensional (2D) metal borides (MBenes) with unique electronic structures and physicochemical properties hold great promise for various applications. Given the abundance of boron clusters, we proposed employing them as structural motifs to design 2D transition metal boron cluster compounds (MBnenes), an extension of MBenes. Herein, we have designed three stable MBnenes (M4(B12)2, M = Mn, Fe, Co) based on B12 clusters and investigated their electronic and magnetic properties using first-principles calculations. Mn4(B12)2 and Co4(B12)2 are semiconductors, while Fe4(B12)2 exhibits metallic behavior. The unique structure in MBnenes allows the coexistence of direct exchange interactions between adjacent metal atoms and indirect exchange interactions mediated by the clusters, endowing them with a Néel temperature (TN) up to 772 K. Moreover, both Mn4(B12)2 and Fe4(B12)2 showcase strain-independent room-temperature magnetism, making them potential candidates for spintronics applications. The MBnenes family provides a fresh avenue for the design of 2D materials featuring unique structures and excellent physicochemical properties.
Collapse
Affiliation(s)
- Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Chunxia Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yiming Song
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences Center for Excellence in Nanoscience, and School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Novák P, Duda J, Průša F, Skotnicová K, Szurman I, Smetana B. Synthesis of FeSi-FeAl Composites from Separately Prepared FeSi and FeAl Alloys and Their Structure and Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7685. [PMID: 38138827 PMCID: PMC10744454 DOI: 10.3390/ma16247685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Composites consisting of iron aluminide and iron silicide phases were studied in this work. Powders of iron aluminide and iron silicide were prepared by mechanical alloying separately. Subsequently, they were blended in three different proportions and sintered by the SPS method under various conditions. After sintering, the composites are composed of FeAl and amounts of other silicides (Fe5Si3 and Fe3Si). Ternary Fe-Al-Si phases were not determined, even though their presence was predicted by DFT calculations. This disagreement was explained by steric factors, i.e., by differences in the space lattice of the present phases. Hardness and tribological properties were measured on composites with various weight ratios of iron aluminide and iron silicide. The results show that sintered silicides with the matrix composed of iron aluminide reach comparable hardness to tool steels. The composites with higher mass ratios of iron aluminide than silicide have higher hardness and better tribological properties.
Collapse
Affiliation(s)
- Pavel Novák
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.D.); (F.P.)
| | - Jiří Duda
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.D.); (F.P.)
| | - Filip Průša
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.D.); (F.P.)
| | - Kateřina Skotnicová
- Department of Materials and Technologies for Vehicles, Faculty of Materials Science and Technology, VSB—Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; (K.S.); (I.S.)
| | - Ivo Szurman
- Department of Materials and Technologies for Vehicles, Faculty of Materials Science and Technology, VSB—Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; (K.S.); (I.S.)
| | - Bedřich Smetana
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB—Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic;
| |
Collapse
|
3
|
Zhang J, He Z, Gao C, Tao Y, Liang F, Li G, Gao B, Song G. Intrinsic half-metallicity in two-dimensional Cr 2TeX 2 (X = I, Br, Cl) monolayers. RSC Adv 2023; 13:29721-29728. [PMID: 37822665 PMCID: PMC10562977 DOI: 10.1039/d3ra05780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Two-dimensional (2D) materials with intrinsic half-metallicity at or above room temperature are important in spin nanodevices. Nevertheless, such 2D materials in experiment are still rarely realized. In this work, a new family of 2D Cr2TeX2 (X = I, Br, Cl) monolayers has been predicted using first-principles calculations. The monolayer is made of five atomic sublayers with ABCAB-type stacking along the perpendicular direction. It is found that the energies for all the ferromagnetic (FM) half-metallic states are the lowest. The phonon spectrum calculations and molecular dynamics simulations both demonstrate that the FM states are stable, indicating the possibility of experimentally obtaining the 2D Cr2TeX2 monolayers with half-metallicity. The Curie temperatures from Monte Carlo simulations are 486, 445, and 451 K for Cr2TeI2, Cr2TeBr2, and Cr2TeCl2 monolayers, respectively, and their half-metallic bandgaps are 1.72, 1.86 and 1.90 eV. The corresponding magnetocrystalline anisotropy energies (MAEs) are about 1185, 502, 899 μeV per Cr atom for Cr2TeX2 monolayers, in which the easy axes are along the plane for the Cr2TeBr2 and Cr2TeCl2 monolayers, but being out of the plane in the Cr2TeI2. Our study implies the potential application of the 2D Cr2TeX2 (X = I, Br, Cl) monolayers in spin nanodevices.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Zixin He
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Chuchu Gao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Yanyan Tao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Feng Liang
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Guannan Li
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Benling Gao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Guang Song
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
- Department of Physics, Nanjing University 22 Hankou Road Nanjing 210093 China
| |
Collapse
|