1
|
Liu X, Tan S, Månsson LK, Gunnarsson L, Andersson JM, Wacklin-Knecht H, Crassous JJ, Sparr E. Encapsulation of single vesicles and single cells in a crosslinked microgel cage. J Colloid Interface Sci 2025; 690:137339. [PMID: 40112525 DOI: 10.1016/j.jcis.2025.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Cell encapsulation provides an efficient strategy to enhance cell durability against harsh external conditions, that offers new possibilities for single-cell applications, such as, tissue engineering and regenerative medicine. Cell encapsulations in hydrogels is developed through various approaches. Still, it remains challenging to achieve single-cell encapsulation where the individual cells are surrounded by a hydrogel layer of well-defined thickness. In this study, temperature-responsive poly(N-isopropylacrylamide)-co-allylamine microgel particles are first assembled into a monolayer at the surface of giant unilamellar lipid vesicles and then inter-microgel crosslinked leading to single-vesicle encapsulation with a pre-defined hydrogel thickness. The same strategy is then extended to yeast cells. The successful encapsulation process is evidenced by the response of the encapsulated lipid vesicles/cells to osmotic gradient, the addition of detergent or salt, as well as changes in temperature. Moreover, cell viability tests show that the hydrogel cage can efficiently protect the cell against external harsh conditions, including elevated temperature, ultraviolet irradiation and osmotic stress. Furthermore, it is demonstrated that the microgel adsorption and interfacial assembly are significantly affected by membrane charge and structural heterogeneity of cell membrane, providing insight into rational design of single-cell encapsulation approach by regulating microgel adsorption on cell membranes with complex composition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062 Xi'an, China; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden.
| | - Shuwen Tan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062 Xi'an, China
| | - Linda K Månsson
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Linnéa Gunnarsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Jenny Marie Andersson
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden; European Spallation Source ERIC, 22100 Lund, Sweden
| | - Hanna Wacklin-Knecht
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden; European Spallation Source ERIC, 22100 Lund, Sweden
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| |
Collapse
|
2
|
Sahu AK, Malik R, Midya J. Wrapping nonspherical vesicles at bio-membranes. SOFT MATTER 2025; 21:4275-4287. [PMID: 40341340 DOI: 10.1039/d5sm00150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The wrapping of particles and vesicles by lipid bilayer membranes is a fundamental process in cellular transport and targeted drug delivery. Here, we investigate the wrapping behavior of nonspherical vesicles, such as ellipsoidal, prolate, oblate, and stomatocytes, by systematically varying the bending rigidity of the vesicle membrane and the tension of the initially planar membrane. Using the Helfrich Hamiltonian, triangulated membrane models, and energy minimization techniques, we predict multiple stable-wrapped states and identify the conditions for their coexistence. Our results demonstrate that softer vesicles bind more easily to initially planar membranes; however, complete wrapping requires significantly higher adhesion strength than rigid vesicles. As membrane tension increases, deep-wrapped states disappear at a triple point where shallow-wrapped, deep-wrapped, and complete-wrapped states coexist. The coordinates of the triple point are highly sensitive to the vesicle shape and stiffness. For stomatocytes, increasing stiffness shifts the triple point to higher adhesion strengths and membrane tensions, while for oblates, it shifts to lower values, influenced by shape changes during wrapping. Oblate shapes are preferred in shallow-wrapped states and stomatocytes in deep-wrapped states. In contrast to hard particles, where optimal adhesion strength for complete wrapping occurs at tensionless membranes, complete wrapping of soft vesicles requires finite membrane tension for optimal adhesion strength. These findings provide insights into the interplay between vesicle deformability, shape, and membrane properties, advancing our understanding of endocytosis and the design of advanced biomimetic delivery systems.
Collapse
Affiliation(s)
- Ajit Kumar Sahu
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Odisha-752050, India.
| | - Rajkumar Malik
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Odisha-752050, India.
| | - Jiarul Midya
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Odisha-752050, India.
| |
Collapse
|
3
|
Azadbakht A, Kraft DJ. Repulsions and attractions between membrane-deforming spheres, Janus-particles, and opposite tube-like deformations in giant unilamellar vesicles. SOFT MATTER 2025. [PMID: 40401502 DOI: 10.1039/d4sm01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Lipid membrane deformations have been predicted to lead to indirect forces between the objects that induce these deformations. Recent experimental measurements have found an attractive interaction between spherical particles that all induce a deformation towards the inside of a giant unilamellar vesicle. Here, we complement these experimental observations by investigating the interactions between deformations pointing in opposite directions with respect to the membrane normal vector. This is experimentally realized by a particle deforming the membrane towards the inside of the GUV and pulling a membrane tube towards the outside of the membrane. Particles completely wrapped by the membrane are repelled from the tube with a strength of 3 kBT at a distance of 0.5 μm. However, particles that strongly curve the membrane by adhering only to a patch of about 50% of its surface area are attracted to the center of the tube with a strength of -5.3 kBT at a minimum distance of about 1 μm. We find that such Janus particles also experience attractive interactions when both deforming the membrane in the same way. These quantitative experimental observations provide new insights into interactions between oppositely membrane deforming objects, important for cooperative protein assembly at or interactions of microplastics with cell membranes.
Collapse
Affiliation(s)
- Ali Azadbakht
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands.
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
4
|
Karabiyik G, Jesorka A, Gözen I. Ring-shaped nanoparticle assembly and cross-linking on lipid vesicle scaffolds. SOFT MATTER 2024; 20:8947-8951. [PMID: 39508507 DOI: 10.1039/d4sm01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We show the assembly of carboxylate-modified polystyrene nanoparticles into flexible circular, ring-shaped structures with micrometer sized diameters around the base of surface-adhered lipid vesicles. The rings remain around the vesicles but disintegrate when the lipid membranes are dissolved in detergent. The aqueous medium allows carbodiimide-based cross-linking chemistry to be applied to the particle assemblies resulting in the preservation of the rings even after the lipid compartments are dissolved.
Collapse
Affiliation(s)
- Gizem Karabiyik
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
| |
Collapse
|
5
|
Azadbakht A, Weikl TR, Kraft DJ. Nonadditivity in Many-Body Interactions between Membrane-Deforming Spheres Increases Disorder. ACS NANO 2024; 18:23067-23076. [PMID: 39145618 PMCID: PMC11363220 DOI: 10.1021/acsnano.4c05222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Membrane-induced interactions play an important role in organizing membrane proteins. Measurements of the interactions between two and three membrane deforming objects have revealed their nonadditive nature. They are thought to lead to complex many-body effects, however, experimental evidence is lacking. We here present an experimental method to measure many-body effects in membrane-mediated interactions using colloidal spheres placed between a deflated giant unilamellar vesicles and a planar substrate. The confined colloidal particles cause a large deformation of the membrane while not being physicochemically attached to it and interact through it. Two particles attract with a maximum force of 0.2 pN. For three particles, compact equilateral triangles were preferred over linear arrangements. We use numerical energy minimization to establish that the attraction stems from a reduction in the membrane-deformation energy caused by the particles. Confining up to 36 particles, we find a preference for hexagonally close packed clusters. However, with increasing number of particles the order of the confined particles decreases, at the same time, diffusivity of the particles increases. Our experiments show that the nonadditive nature of membrane-mediated interactions affects the interactions and arrangements and ultimately leads to spherical aggregates with liquid-like order of potential importance for cellular processes.
Collapse
Affiliation(s)
- Ali Azadbakht
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Thomas R. Weikl
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Daniela J. Kraft
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
van der Ham S, Agudo-Canalejo J, Vutukuri HR. Role of Shape in Particle-Lipid Membrane Interactions: From Surfing to Full Engulfment. ACS NANO 2024; 18:10407-10416. [PMID: 38513125 PMCID: PMC11025115 DOI: 10.1021/acsnano.3c11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Understanding and manipulating the interactions between foreign bodies and cell membranes during endo- and phagocytosis is of paramount importance, not only for the fate of living cells but also for numerous biomedical applications. This study aims to elucidate the role of variables such as anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength in this essential process using a minimal experimental biomimetic system comprising giant unilamellar vesicles and rod-like particles with different curvatures and aspect ratios. We find that the particle wrapping process is dictated by the balance between the elastic free energy penalty and adhesion free energy gain, leading to two distinct engulfment pathways, tip-first and side-first, emphasizing the significance of the particle orientation in determining the pathway. Moreover, our experimental results are consistent with theoretical predictions in a state diagram, showcasing how to control the wrapping pathway from surfing to partial to complete wrapping by the interplay between membrane tension and adhesive strength. At moderate particle concentrations, we observed the formation of rod clusters, which exhibited cooperative and sequential wrapping. Our study contributes to a comprehensive understanding of the mechanistic intricacies of endocytosis by highlighting how the interplay between the anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength can influence the engulfment pathway.
Collapse
Affiliation(s)
- Stijn van der Ham
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Jaime Agudo-Canalejo
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, Göttingen, D-37077, Germany
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Hanumantha Rao Vutukuri
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
7
|
Azadbakht A, Meadowcroft B, Májek J, Šarić A, Kraft DJ. Nonadditivity in interactions between three membrane-wrapped colloidal spheres. Biophys J 2024; 123:307-316. [PMID: 38158654 PMCID: PMC10870171 DOI: 10.1016/j.bpj.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
Many cell functions require a concerted effort from multiple membrane proteins, for example, for signaling, cell division, and endocytosis. One contribution to their successful self-organization stems from the membrane deformations that these proteins induce. While the pairwise interaction potential of two membrane-deforming spheres has recently been measured, membrane-deformation-induced interactions have been predicted to be nonadditive, and hence their collective behavior cannot be deduced from this measurement. We here employ a colloidal model system consisting of adhesive spheres and giant unilamellar vesicles to test these predictions by measuring the interaction potential of the simplest case of three membrane-deforming, spherical particles. We quantify their interactions and arrangements and, for the first time, experimentally confirm and quantify the nonadditive nature of membrane-deformation-induced interactions. We furthermore conclude that there exist two favorable configurations on the membrane: (1) a linear and (2) a triangular arrangement of the three spheres. Using Monte Carlo simulations, we corroborate the experimentally observed energy minima and identify a lowering of the membrane deformation as the cause for the observed configurations. The high symmetry of the preferred arrangements for three particles suggests that arrangements of many membrane-deforming objects might follow simple rules.
Collapse
Affiliation(s)
- Ali Azadbakht
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - Billie Meadowcroft
- Institute of Science and Technology Austria, Klosterneuburg, Austria; Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Juraj Májek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
8
|
Marín-Aguilar S, Camerin F, van der Ham S, Feasson A, Vutukuri HR, Dijkstra M. A colloidal viewpoint on the sausage catastrophe and the finite sphere packing problem. Nat Commun 2023; 14:7896. [PMID: 38036561 PMCID: PMC10689752 DOI: 10.1038/s41467-023-43722-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
It is commonly believed that the most efficient way to pack a finite number of equal-sized spheres is by arranging them tightly in a cluster. However, mathematicians have conjectured that a linear arrangement may actually result in the densest packing. Here, our combined experimental and simulation study provides a physical realization of the finite sphere packing problem by studying arrangements of colloids in a flaccid lipid vesicle. We map out a state diagram displaying linear, planar, and cluster conformations of spheres, as well as bistable states which alternate between cluster-plate and plate-linear conformations due to membrane fluctuations. Finally, by systematically analyzing truncated polyhedral packings, we identify clusters of 56 ≤ N ≤ 70 number of spheres, excluding N = 57 and 63, that pack more efficiently than linear arrangements.
Collapse
Affiliation(s)
- Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, Utrecht, The Netherlands.
| | - Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, Utrecht, The Netherlands.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan.
| | - Stijn van der Ham
- Active Soft Matter and Bio-inspired Materials Lab, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Andréa Feasson
- Active Soft Matter and Bio-inspired Materials Lab, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Hanumantha Rao Vutukuri
- Active Soft Matter and Bio-inspired Materials Lab, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, Utrecht, The Netherlands.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan.
| |
Collapse
|