1
|
Yuan Y, Wu XQ, Yin X, Ruan HY, Wu YP, Li S, Hai G, Zhang G, Sun S, Li DS. Dilute Pd-Ni Alloy through Low-temperature Pyrolysis for Enhanced Electrocatalytic Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202412680. [PMID: 39166757 DOI: 10.1002/anie.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Designing highly active and cost-effective electrocatalysts for the alkaline hydrogen oxidation reaction (HOR) is critical for advancing anion-exchange membrane fuel cells (AEMFCs). While dilute metal alloys have demonstrated substantial potential in enhancing alkaline HOR performance, there has been limited exploration in terms of rational design, controllable synthesis, and mechanism study. Herein, we developed a series of dilute Pd-Ni alloys, denoted as x% Pd-Ni, based on a trace-Pd decorated Ni-based coordination polymer through a facile low-temperature pyrolysis approach. The x% Pd-Ni alloys exhibit efficient electrocatalytic activity for HOR in alkaline media. Notably, the optimal 0.5 % Pd-Ni catalyst demonstrates high intrinsic activity with an exchange current density of 0.055 mA cm-2, surpassing that of many other alkaline HOR catalysts. The mechanism study reveals that the strong synergy between Pd single atoms (SAs)/Pd dimer and Ni substrate can modulate the binding strength of proton (H)/hydroxyl (OH), thereby significantly reducing the activation energy barrier of a decisive reaction step. This work offers new insights into designing advanced dilute metal or single-atom-alloys (SAAs) for alkaline HOR and potentially other energy conversion processes.
Collapse
Affiliation(s)
- Yi Yuan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xue-Qian Wu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xi Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Heng-Yu Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Energy, Materials and Telecommunications, Varennes, Québec J3X 1P7, Canada
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
2
|
Wei K, Wang X, Ge J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms. Chem Soc Rev 2024; 53:8903-8948. [PMID: 39129479 DOI: 10.1039/d3cs00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), as a feasible alternative to replace the traditional fossil fuel-based energy converter, contribute significantly to the global sustainability agenda. At the PEMFC anode, given the high exchange current density, Pt/C is deemed the catalyst-of-choice to ensure that the hydrogen oxidation reaction (HOR) occurs at a sufficiently fast pace. The high performance of Pt/C, however, can only be achieved under the premise that high purity hydrogen is used. For instance, in the presence of trace level carbon monoxide, a typical contaminant during H2 production, Pt is severely deactivated by CO surface blockage. Addressing the poisoning issue necessitates for either developing anti-poisoning electrocatalysts or using pre-purified H2 obtained via a thermo-catalysis route. In other words, the CO poisoning issue can be addressed by either thermal-catalysis from the H2 supply side or electrocatalysis at the user side, respectively. In spite of the distinction between thermo-catalysis and electro-catalysis, there are high similarities between the two routes. Essentially, a reduction in the kinetic barrier for the combination of CO to oxygen containing intermediates is required in both techniques. Therefore, bridging electrocatalysis and thermocatalysis might offer new insight into the development of cutting edge catalysts to solve the poisoning issue, which, however, stands as an underexplored frontier in catalysis science. This review provides a critical appraisal of the recent advancements in preferential CO oxidation (CO-PROX) thermocatalysts and anti-poisoning HOR electrocatalysts, aiming to bridge the gap in cognition between the two routes. First, we discuss the differences in thermal/electrocatalysis, CO oxidation mechanisms, and anti-CO poisoning strategies. Second, we comprehensively summarize the progress of supported and unsupported CO-tolerant catalysts based on the timeline of development (nanoparticles to clusters to single atoms), focusing on metal-support interactions and interface reactivity. Third, we elucidate the stability issue and theoretical understanding of CO-tolerant electrocatalysts, which are critical factors for the rational design of high-performance catalysts. Finally, we underscore the imminent challenges in bridging thermal/electrocatalytic CO oxidation, with theory, materials, and the mechanism as the three main weapons to gain a more in-depth understanding. We anticipate that this review will contribute to the cognition of both thermocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Kai Wei
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Cui Z, Ren Z, Ma C, Chen B, Chen G, Lu R, Zhu W, Gan T, Wang Z, Zhuang Z, Han Y. Dilute RuCo Alloy Synergizing Single Ru and Co Atoms as Efficient and CO-Resistant Anode Catalyst for Anion Exchange Membrane Fuel Cells. Angew Chem Int Ed Engl 2024; 63:e202404761. [PMID: 38664844 DOI: 10.1002/anie.202404761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 06/05/2024]
Abstract
Ruthenium (Ru) is considered a promising candidate catalyst for alkaline hydroxide oxidation reaction (HOR) due to its hydrogen binding energy (HBE) like that of platinum (Pt) and its much higher oxygenophilicity than that of Pt. However, Ru still suffers from insufficient intrinsic activity and CO resistance, which hinders its widespread use in anion exchange membrane fuel cells (AEMFCs). Here, we report a hybrid catalyst (RuCo)NC+SAs/N-CNT consisting of dilute RuCo alloy nanoparticles and atomically single Ru and Co atoms on N-doped carbon nanotubes The catalyst exhibits a state-of-the-art activity with a high mass activity of 7.35 A mgRu -1. More importantly, when (RuCo)NC+SAs/N-CNT is used as an anode catalyst for AEMFCs, its peak power density reaches 1.98 W cm-2, which is one of the best AEMFCs properties of noble metal-based catalysts at present. Moreover, (RuCo)NC+SAs/N-CNT has superior long-time stability and CO resistance. The experimental and density functional theory (DFT) results demonstrate that the dilute alloying and monodecentralization of the exotic element Co greatly modulates the electronic structure of the host element Ru, thus optimizing the adsorption of H and OH and promoting the oxidation of CO on the catalyst surface, and then stimulates alkaline HOR activity and CO tolerance of the catalyst.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhanghao Ren
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bowen Chen
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facilities, Shanghai institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
He S, Tu Y, Zhang J, Zhang L, Ke J, Wang L, Du L, Cui Z, Song H. Ammonia-Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308053. [PMID: 38009478 DOI: 10.1002/smll.202308053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.
Collapse
Affiliation(s)
- Shunyi He
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanhua Tu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Ke
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
5
|
Teng X, Qi Y, Guo R, Zhang S, Wei J, Ajarem JS, Maodaa S, Allam AA, Wang Z, Qu R. Enhanced electrochemical degradation of perfluorooctanoic acid by ligand-bridged Pt II at Pt anodes. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133008. [PMID: 37984143 DOI: 10.1016/j.jhazmat.2023.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
A new mechanism for the electro-oxidation (EO) degradation of perfluorooctanoic acid (PFOA) by Pt anode was reported. Using bridge-based ligand anions (SCN-, Cl- and N3-) as electrolytes, the degradation effect of PFOA by Pt-EO system was significant. Characterization of the Pt anode, the detection and addition of dissolved platinum ions, and the comparison of Pt with DSA anodes determined that the Pt- ligand complexes resulting from the specific binding of anodically dissolved PtII with ligand ions and C7F15COO- ((C7F15-COO)PtII-L3, L = SCN-, Cl- and N3-) on the electrode surface played a decisive role in the degradation of PFOA. Density functional theory (DFT) calculations showed that inside (C7F15-COO)PtII-L3 complexes, the electron density of the perfluorocarbon chain (including the F atom) compensated toward the carboxyl group and electrons in the PFOA ion transferred to the PtII-Cl3. Moreover, the (C7F15-COO)PtII-Cl3, as a whole, was calculated to migrate electrons toward the Pt anode, leading to the formation of PFOA radical (C7F15-COO•). Finally, with the detection of a series of short chain homologues, the CF2-unzipping degradation pathway of PFOA was proposed. The newly developed Pt-EO system is not affected by water quality conditions and can directly degrade alcohol eluent of PFOA, which has great potential for treating industrial wastewater contaminated with PFOA.
Collapse
Affiliation(s)
- Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
6
|
Zhang L, Liu T, Liu X, Li S, Zhang X, Luo Q, Ding T, Yao T, Zhang W. Highly dispersed ultrafine PtCo alloy nanoparticles on unique composite carbon supports for proton exchange membrane fuel cells. NANOSCALE 2024; 16:2868-2876. [PMID: 38235504 DOI: 10.1039/d3nr05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The design of highly efficient and robust platinum-based electrocatalysts is pivotal for proton exchange membrane fuel cells (PEMFC). One of the long-standing issues for PEMFC is the rapid deactivation of the catalyst under working conditions. Here, we report a simple synthesis strategy for ultrafine PtCo alloy nanoparticles loaded on a unique carbon support derived from a zeolitic imidazolate framework-67 (ZIF-67) and Ketjen Black (KB) composite, exhibiting a remarkable catalytic performance toward the oxygen reduction reaction (ORR) and PEMFC. Benefitting from the N-doping and wide pore size distribution of the composite carbon supports, the growth of PtCo nanoparticles can be evenly restricted, leading to a uniform distribution. The Pt-integrated catalyst delivers an outstanding electrochemical performance with a mass activity that is 8.6 times higher than that of the commercial Pt/C catalyst. Impressively, the accelerated durability test (ADT) demonstrates that the hybrid carbon support can significantly enhance the durability. Theoretical simulations highlight the synergistic contribution between the supports and the PtCo nanoparticles. Moreover, hydrogen-oxygen fuel cells assembled with the catalyst exhibited a high power density of 1.83 W cm-2 at 4 A cm-2. These results provide a new opportunity to design advanced catalysts for PEMFC.
Collapse
Affiliation(s)
- Lingling Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Tong Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Sicheng Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Mu X, Zhang X, Chen Z, Gao Y, Yu M, Chen D, Pan H, Liu S, Wang D, Mu S. Constructing Symmetry-Mismatched Ru xFe 3-xO 4 Heterointerface-Supported Ru Clusters for Efficient Hydrogen Evolution and Oxidation Reactions. NANO LETTERS 2024; 24:1015-1023. [PMID: 38215497 DOI: 10.1021/acs.nanolett.3c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Ru-related catalysts have shown excellent performance for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR); however, a deep understanding of Ru-active sites on a nanoscale heterogeneous support for hydrogen catalysis is still lacking. Herein, a click chemistry strategy is proposed to design Ru cluster-decorated nanometer RuxFe3-xO4 heterointerfaces (Ru/RuxFe3-xO4) as highly effective bifunctional hydrogen catalysts. It is found that introducing Ru into nanometric Fe3O4 species breaks the symmetry configuration and optimizes the active site in Ru/RuxFe3-xO4 for HER and HOR. As expected, the catalyst displays prominent alkaline HER and HOR performance with mass activity much higher than that of commercial Pt/C as well as robust stability during catalysis because of the strong interaction between the Ru cluster and the RuxFe3-xO4 support, and the optimized adsorption intermediate (Had and OHad). This work sheds light on a promsing approach to improving the electrocatalysis performance of catalysts by the breaking of atomic dimension symmetry.
Collapse
Affiliation(s)
- Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyue Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ziyue Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yun Gao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Yu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haozhe Pan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
8
|
Jeon B, Kim D, Kim TS, Lee HK, Park JY. Enhanced Hot Electron Flow and Catalytic Synergy by Engineering Core-Shell Structures on Au-Pd Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37927055 DOI: 10.1021/acsami.3c10325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The synergistic catalytic performances of bimetallic catalysts are often attributed to the reaction mechanism associated with the alloying process of the catalytic metals. Chemically induced hot electron flux is strongly correlated with catalytic activity, and the interference between two metals at the atomic level can have a huge impact on the hot electron generation on the bimetallic catalysts. In this study, we investigate the correlation between catalytic synergy and hot electron chemistry driven by the electron coupling effect using a model system of Au-Pd bimetallic nanoparticles. We show that the bimetallic nanocatalysts exhibit enhanced catalytic activity under the hydrogen oxidation reaction compared with that of monometallic Pd nanocatalysts. Analysis of the hot electron flux generated in each system revealed the formation of Au/PdOx interfaces, resulting in high reactivity on the bimetallic catalyst. In further experiments with engineering the Au@Pd core-shell structures, we reveal that the hot electron flux, when the topmost surface Pd atoms were less affected by inner Au, due to the concrete shell, was smaller than the alloyed one. The alloyed bimetallic catalyst forming the metal-oxide interfaces has a more direct effect on the hot electron chemistry, as well as on the catalytic reactivity. The great significance of this study is in the confirmation that the change in the hot electron formation rate with the metal-oxide interfaces can be observed by shell engineering of nanocatalysts.
Collapse
Affiliation(s)
- Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taek-Seung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Han-Koo Lee
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|