1
|
Ghorai N, Yang Z, Gebre ST, Wu S, Zhao F, Ivanov IN, Lian T. Efficient Size-Dependent Hot Electron Transfer from Au to TiO 2 Nanoparticles. NANO LETTERS 2025; 25:3253-3258. [PMID: 39951516 PMCID: PMC11869363 DOI: 10.1021/acs.nanolett.4c06154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/16/2025]
Abstract
Harvesting of plasmon-induced hot carriers at the metal/semiconductor interface offers a promising and innovative avenue for solar energy conversion. However, their practical implementation is often hampered by their limited efficiencies. Herein, we have demonstrated a highly efficient plasmonic hot electron transfer with a quantum efficiency (QE) of up to 57 ± 4% from 5.25 nm Au nanoparticles (NPs) to TiO2 films under 400 nm ultrafast laser excitation. The observed hot electron transfer QEs decrease at larger particle sizes, to 20% for 9.1 nm Au, and show negligible changes with excitation wavelengths at 400, 500, and 600 nm. Analysis of the size and excitation wavelength dependent hot electron transfer QEs suggests they contain contributions of interband absorption, indirect plasmon-induced hot electron transfer (PHET), and direct plasmon-induced interfacial charge transfer transition (PICTT) pathways, and QEs of all three pathways increase at smaller Au size. Our result suggests that reducing plasmon particle sizes is a promising approach for efficient plasmonic hot-carrier extraction.
Collapse
Affiliation(s)
- Nandan Ghorai
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Zhicheng Yang
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sara T. Gebre
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Shengxiang Wu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fengyi Zhao
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ilia N. Ivanov
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Kiani F, Bowman AR, Sabzehparvar M, Sundararaman R, Tagliabue G. Distinguishing Inner and Outer-Sphere Hot Electron Transfer in Au/p-GaN Photocathodes. NANO LETTERS 2024; 24:16008-16014. [PMID: 39485682 DOI: 10.1021/acs.nanolett.4c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Exploring nonequilibrium hot carriers from plasmonic metal nanostructures is a dynamic field in optoelectronics, with applications including photochemical reactions for solar fuel generation. The hot carrier injection mechanism and the reaction rate are highly impacted by the metal/molecule interaction. However, determining the primary type of reaction and thus the injection mechanism of hot carriers has remained elusive. In this work, we reveal an electron injection mechanism deviating from a purely outer-sphere process for the reduction of ferricyanide redox molecule in a gold/p-type gallium nitride (Au/p-GaN) photocathode system. Combining our experimental approach with ab initio simulations, we discovered that an efficient inner-sphere transfer of low-energy electrons leads to an enhancement in the photocathode device performance in the interband regime. These findings provide important mechanistic insights, showing our methodology as a powerful tool for analyzing and engineering hot-carrier-driven processes in plasmonic photocatalytic systems and optoelectronic devices.
Collapse
Affiliation(s)
- Fatemeh Kiani
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alan R Bowman
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milad Sabzehparvar
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ravishankar Sundararaman
- Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Hoffman L, Hennes DJ, Lyu P. Deciphering the Photocatalysis Mechanism of Semimetallic Bismuth Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20118-20128. [PMID: 39634023 PMCID: PMC11613560 DOI: 10.1021/acs.jpcc.4c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Metallic nanoparticle photocatalysts have been developed in various catalytic systems over the past few decades, including diverse noble and non-noble metals with plasmonic properties. The hot-carrier-induced mechanism is one of the most appealing pathways as it can provide energetic electrons or holes for driving thermodynamically unfavorable reactions or increasing the reaction rate. In this work, we evaluate the photocatalytic performance of semimetallic bismuth nanoparticles and offer detailed mechanistic interpretations in terms of hot carriers and interband transitions. The photocatalyzed nitrophenol reduction with sodium borohydride serves as a model reaction, and a wavelength-dependent study reveals the contribution of hot carriers. It is demonstrated that light irradiation under shorter wavelengths could produce deeper hot holes in bismuth nanoparticles, which can be quenched more effectively by hole scavengers, thus facilitating the electron-transfer process and resulting in larger apparent reaction rate constants. The observed photocatalysis enhancement accounts for the unique band structure with an extremely small band gap and exclusive interband absorption in the visible region. This proof-of-concept work offers a different perspective on the photocatalysis mechanism of bismuth nanoparticles and could help us better understand the role of hot carriers involved in photocatalysis, especially with interband transitions.
Collapse
Affiliation(s)
- Lauren
M. Hoffman
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Delaney J. Hennes
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Pin Lyu
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| |
Collapse
|
4
|
Lyu P, Hoffman L, Cahua DV, Nguyen SC. From Precious to Earth-Abundant Metallic Nanoparticles: A Trend of Interband Transitions in Photocatalyzed Nitrobenzene Reduction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:14674-14682. [PMID: 39257549 PMCID: PMC11382268 DOI: 10.1021/acs.jpcc.4c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Metallic nanoparticles have been demonstrated to be versatile photocatalysts, as exemplified by those made from noble and precious metals. Transitioning from precious to earth-abundant metals for sustainable photocatalysis requires benchmarking their catalytic performance. In this work, we attempt to compare the photocatalytic activities of Au, Pd, and Co-B nanoparticles in the reduction of nitrobenzene by hydrazine. Despite their different morphologies and surface structures, Co-B nanoparticles offer the highest catalytic enhancement when comparing their reaction rates under irradiation to those under nonirradiation conditions. The trend of improved photocatalytic performance when transitioning from Au to Pd, and then to Co-B, can be explained by the nature of their d-band positions and corresponding hot carriers photogenerated from interband transitions.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
- Department of Chemistry and Biochemistry, University of North Carolina, Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Lauren Hoffman
- Department of Chemistry and Biochemistry, University of North Carolina, Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Daniel Valenzuela Cahua
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C Nguyen
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
5
|
Lee A, Wu S, Yim JE, Zhao B, Sheldon MT. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold. ACS NANO 2024; 18:19077-19085. [PMID: 38996185 PMCID: PMC11271177 DOI: 10.1021/acsnano.4c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Understanding the dynamics of "hot", highly energetic electrons resulting from nonradiative plasmon decay is crucial for optimizing applications in photocatalysis and energy conversion. This study presents an analysis of electron kinetics within plasmonic metals, focusing on the steady-state behavior during continuous-wave (CW) illumination. Using an inelastic spectroscopy technique, we quantify the temperature and lifetimes of distinct carrier populations during excitation. A significant finding is the monotonic increase in hot electron lifetime with decreases in electronic temperature. We also observe a 1.22× increase in hot electron temperature during intraband excitation compared to interband excitation and a corresponding 2.34× increase in carrier lifetime. The shorter lifetimes during interband excitation are hypothesized to result from direct recombination of nonthermal holes and hot electrons, highlighting steady-state kinetics. Our results help bridge the knowledge gap between ultrafast and steady-state spectroscopies, offering critical insights for optimizing plasmonic applications.
Collapse
Affiliation(s)
- Annika Lee
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shengxiang Wu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ju Eun Yim
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Boqin Zhao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew T. Sheldon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
6
|
Ostovar B, Lee SA, Mehmood A, Farrell K, Searles EK, Bourgeois B, Chiang WY, Misiura A, Gross N, Al-Zubeidi A, Dionne JA, Landes CF, Zanni M, Levine BG, Link S. The role of the plasmon in interfacial charge transfer. SCIENCE ADVANCES 2024; 10:eadp3353. [PMID: 38968358 PMCID: PMC11225779 DOI: 10.1126/sciadv.adp3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
The lack of a detailed mechanistic understanding for plasmon-mediated charge transfer at metal-semiconductor interfaces severely limits the design of efficient photovoltaic and photocatalytic devices. A major remaining question is the relative contribution from indirect transfer of hot electrons generated by plasmon decay in the metal to the semiconductor compared to direct metal-to-semiconductor interfacial charge transfer. Here, we demonstrate an overall electron transfer efficiency of 44 ± 3% from gold nanorods to titanium oxide shells when excited on resonance. We prove that half of it originates from direct interfacial charge transfer mediated specifically by exciting the plasmon. We are able to distinguish between direct and indirect pathways through multimodal frequency-resolved approach measuring the homogeneous plasmon linewidth by single-particle scattering spectroscopy and time-resolved transient absorption spectroscopy with variable pump wavelengths. Our results signify that the direct plasmon-induced charge transfer pathway is a promising way to improve hot carrier extraction efficiency by circumventing metal intrinsic decay that results mainly in nonspecific heating.
Collapse
Affiliation(s)
- Behnaz Ostovar
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Stephen A. Lee
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Arshad Mehmood
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Kieran Farrell
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA
| | - Emily K. Searles
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Briley Bourgeois
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Wei-Yi Chiang
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anastasiia Misiura
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Niklas Gross
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander Al-Zubeidi
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer A. Dionne
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christy F. Landes
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin Zanni
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA
| | - Benjamin G. Levine
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stephan Link
- Center for Adopting Flaws as Features, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Lemasters R, Manjare M, Freeman R, Wang F, Pierce LG, Hua G, Urazhdin S, Harutyunyan H. Non-thermal emission in gap-mode plasmon photoluminescence. Nat Commun 2024; 15:4468. [PMID: 38796475 PMCID: PMC11127923 DOI: 10.1038/s41467-024-48928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Photoluminescence from spatially inhomogeneous plasmonic nanostructures exhibits fascinating wavelength-dependent nonlinear behaviors due to the intraband recombination of hot electrons excited into the conduction band of the metal. The properties of the excited carrier distribution and the role of localized plasmonic modes are subjects of debate. In this work, we use plasmonic gap-mode resonators with precise nanometer-scale confinement to show that the nonlinear photoluminescence behavior can become dominated by non-thermal contributions produced by the excited carrier population that strongly deviates from the Fermi-Dirac distribution due to the confinement-induced large-momentum free carrier absorption beyond the dipole approximation. These findings open new pathways for controllable light conversion using nonequilibrium electron states at the nanoscale.
Collapse
Affiliation(s)
- Robert Lemasters
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| | - Manoj Manjare
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Ryan Freeman
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Feng Wang
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Luka Guy Pierce
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Gordon Hua
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Sergei Urazhdin
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Bowman AR, Rodríguez Echarri A, Kiani F, Iyikanat F, Tsoulos TV, Cox JD, Sundararaman R, García de Abajo FJ, Tagliabue G. Quantum-mechanical effects in photoluminescence from thin crystalline gold films. LIGHT, SCIENCE & APPLICATIONS 2024; 13:91. [PMID: 38637531 PMCID: PMC11026419 DOI: 10.1038/s41377-024-01408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 04/20/2024]
Abstract
Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its microscopic origin strongly debated, and its potential for unraveling nanoscale carrier dynamics largely unexploited. Here, we reveal quantum-mechanical effects in the luminescence emanating from thin monocrystalline gold flakes. Specifically, we present experimental evidence, supported by first-principles simulations, to demonstrate its photoluminescence origin (i.e., radiative emission from electron/hole recombination) when exciting in the interband regime. Our model allows us to identify changes to the measured gold luminescence due to quantum-mechanical effects as the gold film thickness is reduced. Excitingly, such effects are observable in the luminescence signal from flakes up to 40 nm in thickness, associated with the out-of-plane discreteness of the electronic band structure near the Fermi level. We qualitatively reproduce the observations with first-principles modeling, thus establishing a unified description of luminescence in gold monocrystalline flakes and enabling its widespread application as a probe of carrier dynamics and light-matter interactions in this material. Our study paves the way for future explorations of hot carriers and charge-transfer dynamics in a multitude of material systems.
Collapse
Affiliation(s)
- Alan R Bowman
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alvaro Rodríguez Echarri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- MBI-Max-Born-Institut, Berlin, Germany
| | - Fatemeh Kiani
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fadil Iyikanat
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Ted V Tsoulos
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joel D Cox
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M, Denmark
| | - Ravishankar Sundararaman
- Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Roche B, Vo T, Chang WS. Promoting plasmonic photocatalysis with ligand-induced charge separation under interband excitation. Chem Sci 2023; 14:8598-8606. [PMID: 37592991 PMCID: PMC10430595 DOI: 10.1039/d3sc02167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Plasmonic nanoparticles have been demonstrated to enhance photocatalysis due to their strong photon absorption and efficient hot-carrier generation. However, plasmonic photocatalysts suffer from a short lifetime of plasmon-generated hot carriers that decay through internal relaxation pathways before being harnessed for chemical reactions. Here, we demonstrate the enhanced photocatalytic reduction of gold ions on gold nanorods functionalized with polyvinylpyrrolidone. The catalytic activities of the reaction are quantified by in situ monitoring of the spectral evolution of single nanorods using a dark-field scattering microscope. We observe a 13-fold increase in the reduction rate with the excitation of d-sp interband transition compared to dark conditions, and a negligible increase in the reduction rate when excited with intraband transition. The hole scavenger only plays a minor role in the photocatalytic reduction reaction. We attribute the enhanced photocatalysis to an efficient charge separation at the gold-polyvinylpyrrolidone interface, where photogenerated d-band holes at gold transfer to the HOMO of polyvinylpyrrolidone, leading to the prolonged lifetime of the electrons that subsequently reduce gold ions to gold atoms. These results provide new insight into the design of plasmonic photocatalysts with capping ligands.
Collapse
Affiliation(s)
- Ben Roche
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Tamie Vo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| |
Collapse
|