1
|
Ryou S, Mo S, Kim D, Choi S, Oh J, Yang Y, Eom K, Lee H. Atomic-Scale Interface Modification in Complex Oxide Heterojunctions for Near-Infrared Photodetection. ACS NANO 2024; 18:34606-34614. [PMID: 39668479 DOI: 10.1021/acsnano.4c09023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Photodetectors that detect near-infrared (NIR) light serve as important components in contemporary energy-efficient optoelectronic devices. However, detecting the low-energy photons of the NIR light has long been challenging since the ease of photoexcitation inevitably involves increasing the background current in the dark. Herein, we report the atomic-scale interface modification in SrRuO3/LaAlO3/Nb-doped SrTiO3 (SRO/LAO/Nb:STO) heterostructures for NIR photodetection. The interfacial band alignment by a polar monolayer LAO allows precise tuning of the Schottky barrier to achieve a specific energy band profile suitable for the NIR photodetection. The SRO/LAO/Nb:STO heterojunctions show a high photoresponsivity up to ∼1.1 mA/W under NIR light irradiation (λ = 850 nm), while keeping the pA-scale dark current. The increase in the responsivity by interface modification is evaluated at a maximum of 1371%. Based on the enhanced NIR photoresponsivity, as a proof of concept, we demonstrate the spatial imaging of NIR signals using a conceptual array of SRO/LAO/Nb:STO heterojunctions. In addition, the experimental-data-based simulation verifies that the array device can implement pulse-number-dependent plasticity, which is based on the characteristic persistent photoconductivity. This study suggests that atomic-scale interface modification is a facile and powerful method for optimizing the photoresponsive properties of complex-oxide-based heterojunctions.
Collapse
Affiliation(s)
- Sanghyeok Ryou
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sanghyeon Mo
- Department of Physics, Ajou University, Suwon 16499, Republic of Korea
| | - Doyeop Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sungjun Choi
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jaewhan Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Semiconductor Technology, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kitae Eom
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyungwoo Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Physics, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Lee M, Kim Y, Mo SH, Kim S, Eom K, Lee H. Optoelectronic Synapse Based on 2D Electron Gas in Stoichiometry-Controlled Oxide Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309851. [PMID: 38214690 DOI: 10.1002/smll.202309851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Indexed: 01/13/2024]
Abstract
Emulating synaptic functionalities in optoelectronic devices is significant in developing artificial visual-perception systems and neuromorphic photonic computing. Persistent photoconductivity (PPC) in metal oxides provides a facile way to realize the optoelectronic synaptic devices, but the PPC performance is often limited due to the oxygen vacancy defects that release excess conduction electrons without external stimuli. Herein, a high-performance optoelectronic synapse based on the stoichiometry-controlled LaAlO3/SrTiO3 (LAO/STO) heterostructure is developed. By increasing La/Al ratio up to 1.057:1, the PPC is effectively enhanced but suppressed the background conductivity at the LAO/STO interface, achieving strong synaptic behaviors. The spectral noise analyses reveal that the synaptic behaviors are attributed to the cation-related point defects and their charge compensation mechanism near the LAO/STO interface. The short-term and long-term plasticity is demonstrated, including the paired-pulse facilitation, in the La-rich LAO/STO device upon exposure to UV light pulses. As proof of concepts, two essential synaptic functionalities, the pulse-number-dependent plasticity and the self-noise cancellation, are emulated using the 5 × 5 array of La-rich LAO/STO synapses. Beyond the typical oxygen deficiency control, the results show how harnessing the cation stoichiometry can be used to design oxide heterostructures for advanced optoelectronic synapses and neuromorphic applications.
Collapse
Affiliation(s)
- Minkyung Lee
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Youngmin Kim
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Sang Hyeon Mo
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Kitae Eom
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyungwoo Lee
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|