1
|
Tognato R, Bronte Ciriza D, Maragò OM, Jones PH. Modelling red blood cell optical trapping by machine learning improved geometrical optics calculations. BIOMEDICAL OPTICS EXPRESS 2023; 14:3748-3762. [PMID: 37497516 PMCID: PMC10368044 DOI: 10.1364/boe.488931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023]
Abstract
Optically trapping red blood cells allows for the exploration of their biophysical properties, which are affected in many diseases. However, because of their nonspherical shape, the numerical calculation of the optical forces is slow, limiting the range of situations that can be explored. Here we train a neural network that improves both the accuracy and the speed of the calculation and we employ it to simulate the motion of a red blood cell under different beam configurations. We found that by fixing two beams and controlling the position of a third, it is possible to control the tilting of the cell. We anticipate this work to be a promising approach to study the trapping of complex shaped and inhomogeneous biological materials, where the possible photodamage imposes restrictions in the beam power.
Collapse
Affiliation(s)
- R. Tognato
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - D. Bronte Ciriza
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, I- 98158, Italy
| | - O. M. Maragò
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, I- 98158, Italy
| | - P. H. Jones
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Zielińska JA, van der Laan F, Norrman A, Rimlinger M, Reimann R, Novotny L, Frimmer M. Controlling Optomechanical Libration with the Degree of Polarization. PHYSICAL REVIEW LETTERS 2023; 130:203603. [PMID: 37267539 DOI: 10.1103/physrevlett.130.203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
Control of the potential energy and free evolution lie at the heart of levitodynamics as key requirements for sensing, wave function expansion, and mechanical squeezing protocols. Here, we experimentally demonstrate versatile control over the optical potential governing the libration motion of a levitated anisotropic nanoparticle. This control is achieved by introducing the degree of polarization as a new tool for rotational levitodynamics. We demonstrate thermally driven free rotation of a levitated anisotropic scatterer around its short axis and we use the rotational degrees of freedom to probe the local spin of a strongly focused laser beam.
Collapse
Affiliation(s)
- J A Zielińska
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - F van der Laan
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - A Norrman
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - M Rimlinger
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - R Reimann
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
- Quantum Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - L Novotny
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - M Frimmer
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
3
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Wu Y, Zhao S, Dai G, Tao S. Optical Force-Induced Nanowire Cut. J Phys Chem Lett 2022; 13:11899-11904. [PMID: 36524798 DOI: 10.1021/acs.jpclett.2c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One-dimensional nanometer scale-sized materials, such as nanowires, nanotubes, etc., have gradually become new types of structural components, which can be integrated into micro/nano-opto-electromechanical systems. In this paper, optical forces were applied to cut nanowires precisely, which were broken with arbitrary length ratios. The optical force exerted by the optical tweezers proved to be the cause of the fracture of the high-aspect ratio nanowires, and the fracture mechanism of the nanowires was developed. Nanowires of different semiconductor materials were cut with optical tweezers in the experiments. The precise cut with optical tweezers can provide nanowires of appropriate lengths for the construction of nanowire-based structures, which have potential applications for micromachining and microfabrication of micro-electro-mechanical system or semiconductor devices.
Collapse
Affiliation(s)
- Yixuan Wu
- School of Physics and Electronics, Central South University, Changsha410083, China
| | - Shangdong Zhao
- School of Physics and Electronics, Central South University, Changsha410083, China
| | - Guozhang Dai
- School of Physics and Electronics, Central South University, Changsha410083, China
| | - Shaohua Tao
- School of Physics and Electronics, Central South University, Changsha410083, China
- Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha410083, China
| |
Collapse
|
5
|
Lo Faro MJ, Leonardi AA, Priolo F, Fazio B, Irrera A. Future Prospects of Luminescent Silicon Nanowires Biosensors. BIOSENSORS 2022; 12:1052. [PMID: 36421170 PMCID: PMC9688548 DOI: 10.3390/bios12111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we exploit the perspective of luminescent Si nanowires (NWs) in the growing field of commercial biosensing nanodevices for the selective recognition of proteins and pathogen genomes. We fabricated quantum confined fractal arrays of Si NWs with room temperature emission at 700 nm obtained by thin-film, metal-assisted, chemical etching with high production output at low cost. The fascinating optical features arising from multiple scattering and weak localization of light promote the use of Si NWs as optical biosensing platforms with high sensitivity and selectivity. In this work, label-free Si NW optical sensors are surface modified for the selective detection of C-reactive protein through antigen-gene interaction. In this case, we report the lowest limit of detection (LOD) of 1.6 fM, fostering the flexibility of different dynamic ranges for detection either in saliva or for serum analyses. By varying the NW surface functionalization with the specific antigen, the luminescence quenching of NW biosensors is used to measure the hepatitis B-virus pathogen genome without PCR-amplification, with an LOD of about 20 copies in real samples or blood matrix. The promising results show that NW optical biosensors can detect and isolate extracellular vesicles (EV) marked with CD81 protein with unprecedented sensitivity (LOD 2 × 105 sEV/mL), thus enabling their measurement even in a small amount of blastocoel fluid.
Collapse
Affiliation(s)
- Maria Josè Lo Faro
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonio Alessio Leonardi
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Priolo
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| |
Collapse
|
6
|
Chen Z, Cai Z, Liu W, Yan Z. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 2022; 157:050901. [DOI: 10.1063/5.0086328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects of sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Collapse
Affiliation(s)
- Zhenzhen Chen
- The University of North Carolina at Chapel Hill, United States of America
| | - Zhewei Cai
- Clarkson University, United States of America
| | - Wenbo Liu
- The University of North Carolina at Chapel Hill, United States of America
| | - Zijie Yan
- University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
7
|
Leonardi AA, Lo Faro MJ, Fazio B, Spinella C, Conoci S, Livreri P, Irrera A. Fluorescent Biosensors Based on Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2970. [PMID: 34835735 PMCID: PMC8624671 DOI: 10.3390/nano11112970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023]
Abstract
Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability, and real-time in situ analysis. In fluorescent sensors, Si NWs are employed as substrate and coupled with several fluorophores, NWs can be used as quenchers in stem-loop configuration, and have recently been used for direct fluorescent sensing. In this review, an overview on fluorescent sensors based on Si NWs is presented, analyzing the literature of the field and highlighting the advantages and drawbacks for each strategy.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Corrado Spinella
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Sabrina Conoci
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Patrizia Livreri
- Dipartimento di ingegneria, Università degli Studi di Palermo, Viale delle Scienze BLDG 9, 90128 Palermo, Italy;
| | - Alessia Irrera
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| |
Collapse
|
8
|
Leonardi AA, Battaglia R, Morganti D, Lo Faro MJ, Fazio B, De Pascali C, Francioso L, Palazzo G, Mallardi A, Purrello M, Priolo F, Musumeci P, Di Pietro C, Irrera A. A Novel Silicon Platform for Selective Isolation, Quantification, and Molecular Analysis of Small Extracellular Vesicles. Int J Nanomedicine 2021; 16:5153-5165. [PMID: 34611399 PMCID: PMC8487288 DOI: 10.2147/ijn.s310896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. Methods Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. Results In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. Discussion This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy.,CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Catania, 95123, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Dario Morganti
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Catania, 95123, Italy
| | - Barbara Fazio
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| | - Chiara De Pascali
- CNR-IMM, Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Luca Francioso
- CNR-IMM, Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari 'Aldo Moro', Bari, 70125, Italy.,CSGI, Center for Colloid and Surface Science c/o Chemistry Department, Bari, 70125, Italy
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, Bari, 70125, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Priolo
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy
| | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| |
Collapse
|
9
|
Li X, Zheng H, Yuen CH, Du J, Chen J, Lin Z, Ng J. Quantitative study of conservative gradient force and non-conservative scattering force exerted on a spherical particle in optical tweezers. OPTICS EXPRESS 2021; 29:25377-25387. [PMID: 34614870 DOI: 10.1364/oe.434208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
We rigorously calculate the conservative gradient force (GF) and the non-conservative scattering force (SF) associated with the optical tweezers (the single beam optical trap). A wide range of parameters are considered, with particle size ranging from the Rayleigh to Mie regime (radius ∼3 µm), dielectric constant ranging from metallic (large and negative) to high dielectrics (large and positive), numerical aperture (NA) ranging from 0.5 to 1.33, and different polarizations. The trap depth associated with GF can reach 123 and 168 kBT per mW for a 0.5 µm-radius polystyrene particle illuminated by a 1064 nm Gaussian beam with NA = 0.9 and 1.3, respectively. This indicates that unless at a low beam power or with a small NA, the Brownian fluctuations do not play a role in the stability. The transverse GF orthogonal to beam propagation always dominates over the transverse SF. While the longitudinal SF can be larger than the longitudinal GF when the scattering is strong, the NA is small, or when absorption is present, optical trapping under these conditions is difficult. Generally speaking, absorption reduces GF and enhances SF, while increasing a dielectric constant enhances GF slightly but boosts SF significantly owing to stronger scattering. These results verify previous experimental observations and explain why optical tweezers are so robust across such a wide range of conditions. Our quantitative calculations will also provide a guide to future studies.
Collapse
|
10
|
Morganti D, Leonardi AA, Lo Faro MJ, Leonardi G, Salvato G, Fazio B, Musumeci P, Livreri P, Conoci S, Neri G, Irrera A. Ultrathin Silicon Nanowires for Optical and Electrical Nitrogen Dioxide Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1767. [PMID: 34361153 PMCID: PMC8308154 DOI: 10.3390/nano11071767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022]
Abstract
The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO2) is reported. A modification of the metal-assisted chemical etching method allows light-emitting silicon nanowires to be obtained through a fast, low-cost, and industrially compatible approach. NO2 is a well-known dangerous gas that, even with a small concentration of 3 ppm, represents a serious hazard for human health. We exploit the particular optical and electrical properties of these Si NWs to reveal low NO2 concentrations through their photoluminescence (PL) and resistance variations reaching 2 ppm of NO2. Indeed, these Si NWs offer a fast response and reversibility with both electrical and optical transductions. Despite the macro contacts affecting the electrical transduction, the sensing performances are of high interest for further developments. These promising performances coupled with the scalable Si NW synthesis could unfold opportunities for smaller sized and better performing sensors reaching the market for environmental monitoring.
Collapse
Affiliation(s)
- Dario Morganti
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (D.M.); (A.A.L.); (G.S.); (B.F.)
- Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (P.M.)
| | - Antonio Alessio Leonardi
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (D.M.); (A.A.L.); (G.S.); (B.F.)
- Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (P.M.)
- CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (P.M.)
- CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania, Italy
| | - Gianluca Leonardi
- Institute of Advanced Technologies for Energy (ITAE)—CNR, Salita Santa Lucia Sopra Contesse 5, 98126 Messina, Italy;
| | - Gabriele Salvato
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (D.M.); (A.A.L.); (G.S.); (B.F.)
| | - Barbara Fazio
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (D.M.); (A.A.L.); (G.S.); (B.F.)
| | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (P.M.)
| | - Patrizia Livreri
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.9, 90128 Palermo, Italy;
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy;
| | - Giovanni Neri
- Dipartimento di Ingegneria, Università Degli Studi di Messina, C.da Di Dio, 98166 Messina, Italy;
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (D.M.); (A.A.L.); (G.S.); (B.F.)
| |
Collapse
|
11
|
Leonardi AA, Lo Faro MJ, Irrera A. Biosensing platforms based on silicon nanostructures: A critical review. Anal Chim Acta 2021; 1160:338393. [PMID: 33894957 DOI: 10.1016/j.aca.2021.338393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022]
Abstract
Biosensors are revolutionizing the health-care systems worldwide, permitting to survey several diseases, even at their early stage, by using different biomolecules such as proteins, DNA, and other biomarkers. However, these sensing approaches are still scarcely diffused outside the specialized medical and research facilities. Silicon is the undiscussed leader of the whole microelectronics industry, and novel sensors based on this material may completely change the health-care scenario. In this review, we will show how novel sensing platforms based on Si nanostructures may have a disruptive impact on applications with a real commercial transfer. A critical study for the main Si-based biosensors is herein presented with a comparison of their advantages and drawbacks. The most appealing sensing devices are discussed, starting from electronic transducers, with Si nanowires field-effect transistor (FET) and porous Si, to their optical alternatives, such as effective optical thickness porous silicon, photonic crystals, luminescent Si quantum dots, and finally luminescent Si NWs. All these sensors are investigated in terms of working principle, sensitivity, and selectivity with a specific focus on the possibility of their industrial transfer, and which ones may be preferred for a medical device.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy; CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy.
| |
Collapse
|
12
|
Leonardi AA, Faro MJL, Irrera A. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:383. [PMID: 33546133 PMCID: PMC7913243 DOI: 10.3390/nano11020383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Silicon is the undisputed leader for microelectronics among all the industrial materials and Si nanostructures flourish as natural candidates for tomorrow's technologies due to the rising of novel physical properties at the nanoscale. In particular, silicon nanowires (Si NWs) are emerging as a promising resource in different fields such as electronics, photovoltaic, photonics, and sensing. Despite the plethora of techniques available for the synthesis of Si NWs, metal-assisted chemical etching (MACE) is today a cutting-edge technology for cost-effective Si nanomaterial fabrication already adopted in several research labs. During these years, MACE demonstrates interesting results for Si NW fabrication outstanding other methods. A critical study of all the main MACE routes for Si NWs is here presented, providing the comparison among all the advantages and drawbacks for different MACE approaches. All these fabrication techniques are investigated in terms of equipment, cost, complexity of the process, repeatability, also analyzing the possibility of a commercial transfer of these technologies for microelectronics, and which one may be preferred as industrial approach.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Consiglio Nazionale delle Ricerche—Instituto Processi Chimico-Fisici (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM) UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM) UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Alessia Irrera
- Consiglio Nazionale delle Ricerche—Instituto Processi Chimico-Fisici (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
13
|
Arita Y, Simpson SH, Zemánek P, Dholakia K. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. SCIENCE ADVANCES 2020; 6:eaaz9858. [PMID: 32537499 PMCID: PMC7269642 DOI: 10.1126/sciadv.aaz9858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 05/08/2023]
Abstract
We demonstrate an effect whereby stochastic, thermal fluctuations combine with nonconservative optical forces to break detailed balance and produce increasingly coherent, apparently deterministic motion for a vacuum-trapped particle. The particle is birefringent and held in a linearly polarized Gaussian optical trap. It undergoes oscillations that grow rapidly in amplitude as the air pressure is reduced, seemingly in contradiction to the equipartition of energy. This behavior is reproduced in direct simulations and captured in a simplified analytical model, showing that the underlying mechanism involves nonsymmetric coupling between rotational and translational degrees of freedom. When parametrically driven, these self-sustained oscillators exhibit an ultranarrow linewidth of 2.2 μHz and an ultrahigh mechanical quality factor in excess of 2 × 108 at room temperature. Last, nonequilibrium motion is seen to be a generic feature of optical vacuum traps, arising for any system with symmetry lower than that of a perfect isotropic microsphere in a Gaussian trap.
Collapse
Affiliation(s)
- Yoshihiko Arita
- SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
- Molecular Chirality Research Centre, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-0022, Japan
- Corresponding author. (Y.A.); (S.H.S.); (K.D.)
| | - Stephen H. Simpson
- Institute of Scientific Instruments of the Czech Academy of Science, v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
- Corresponding author. (Y.A.); (S.H.S.); (K.D.)
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Science, v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
| | - Kishan Dholakia
- SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-0022, Japan
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721-0094, USA
- Department of Physics, College of Science, Yonsei University, Seoul 03722, South Korea
- Corresponding author. (Y.A.); (S.H.S.); (K.D.)
| |
Collapse
|
14
|
Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering. Nat Commun 2019; 10:4942. [PMID: 31666504 PMCID: PMC6821866 DOI: 10.1038/s41467-019-12827-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/06/2019] [Indexed: 11/17/2022] Open
Abstract
As devices approach the single-nanoparticle scale, the rational assembly of nanomaterial heterojunctions remains a persistent challenge. While optical traps can manipulate objects in three dimensions, to date, nanoscale materials have been trapped primarily in aqueous solvents or vacuum. Here, we demonstrate the use of optical traps to manipulate, align, and assemble metal-seeded nanowire building blocks in a range of organic solvents. Anisotropic radiation pressure generates an optical torque that orients each nanowire, and subsequent trapping of aligned nanowires enables deterministic fabrication of arbitrarily long heterostructures of periodically repeating bismuth-nanocrystal/germanium-nanowire junctions. Heat transport calculations, back-focal-plane interferometry, and optical images reveal that the bismuth nanocrystal melts during trapping, facilitating tip-to-tail “nanosoldering” of the germanium nanowires. These bismuth-semiconductor interfaces may be useful for quantum computing or thermoelectric applications. In addition, the ability to trap nanostructures in oxygen- and water-free organic media broadly expands the library of materials available for optical manipulation and single-particle spectroscopy. The use of optical traps has been limited to materials dispersed in aqueous media, which restricts the materials and range of experiments. Here, the authors demonstrate the alignment and assembly of composite structures made of a bismuth nanocrystal and a germanium nanowire in organic solvents.
Collapse
|
15
|
Donato MG, Brzobohatý O, Simpson SH, Irrera A, Leonardi AA, Lo Faro MJ, Svak V, Maragò OM, Zemánek P. Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams. NANO LETTERS 2019; 19:342-352. [PMID: 30525673 DOI: 10.1021/acs.nanolett.8b03978] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silicon nanowires are held and manipulated in controlled optical traps based on counter-propagating beams focused by low numerical aperture lenses. The double-beam configuration compensates light scattering forces enabling an in-depth investigation of the rich dynamics of trapped nanowires that are prone to both optical and hydrodynamic interactions. Several polarization configurations are used, allowing the observation of optical binding with different stable structure as well as the transfer of spin and orbital momentum of light to the trapped silicon nanowires. Accurate modeling based on Brownian dynamics simulations with appropriate optical and hydrodynamic coupling confirms that this rich scenario is crucially dependent on the non-spherical shape of the nanowires. Such an increased level of optical control of multiparticle structure and dynamics open perspectives for nanofluidics and multi-component light-driven nanomachines.
Collapse
Affiliation(s)
- Maria G Donato
- CNR-IPCF, Istituto per i Processi Chimico-Fisici , I-98158 Messina , Italy
| | - Oto Brzobohatý
- CNR-IPCF, Istituto per i Processi Chimico-Fisici , I-98158 Messina , Italy
| | - Stephen H Simpson
- Institute of Scientific Instruments of the CAS , Kralovopolska 147 , 61264 Brno , Czech Republic
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici , I-98158 Messina , Italy
| | - Antonio A Leonardi
- CNR-IPCF, Istituto per i Processi Chimico-Fisici , I-98158 Messina , Italy
- Dipartimento di Fisica e Astronomia , Università di Catania , I-95123 Catania , Italy
| | - Maria J Lo Faro
- CNR-IPCF, Istituto per i Processi Chimico-Fisici , I-98158 Messina , Italy
- Dipartimento di Fisica e Astronomia , Università di Catania , I-95123 Catania , Italy
| | - Vojtěch Svak
- Institute of Scientific Instruments of the CAS , Kralovopolska 147 , 61264 Brno , Czech Republic
| | - Onofrio M Maragò
- CNR-IPCF, Istituto per i Processi Chimico-Fisici , I-98158 Messina , Italy
| | - Pavel Zemánek
- Institute of Scientific Instruments of the CAS , Kralovopolska 147 , 61264 Brno , Czech Republic
| |
Collapse
|
16
|
Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat Commun 2018; 9:5453. [PMID: 30575734 PMCID: PMC6303319 DOI: 10.1038/s41467-018-07866-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022] Open
Abstract
We provide a vivid demonstration of the mechanical effect of transverse spin momentum in an optical beam in free space. This component of the Poynting momentum was previously thought to be virtual, and unmeasurable. Here, its effect is revealed in the inertial motion of a probe particle in a circularly polarized Gaussian trap, in vacuum. Transverse spin forces combine with thermal fluctuations to induce a striking range of non-equilibrium phenomena. With increasing beam power we observe (i) growing departures from energy equipartition, (ii) the formation of coherent, thermally excited orbits and, ultimately, (iii) the ejection of the particle from the trap. As well as corroborating existing measurements of spin momentum, our results reveal its dynamic effect. We show how the under-damped motion of probe particles in structured light fields can expose the nature and morphology of optical momentum flows, and provide a testbed for elementary non-equilibrium statistical mechanics. Here, the authors provide a vivid demonstration of the dynamic effect of transverse spin momentum in an optical beam in free space revealed by placing a dielectric bead in a counter-propagating optical beam trap in vacuum.
Collapse
|
17
|
Donato MG, Rajamanickam VP, Foti A, Gucciardi PG, Liberale C, Maragò OM. Optical force decoration of 3D microstructures with plasmonic particles. OPTICS LETTERS 2018; 43:5170-5173. [PMID: 30320847 DOI: 10.1364/ol.43.005170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Optical forces are used to push and aggregate gold nanorods onto several substrates creating surface-enhanced Raman scattering (SERS) active hot spots for Raman-based identification of proteins. By monitoring the increase of the protein SERS signal, we observe different aggregation times for different curvatures of the substrates. The slower aggregation dynamics on curved surfaces is justified by a simple geometrical model. In particular, this technique is used to decorate three-dimensional microstructures and to quickly realize hybrid micro/nanosensors for highly sensitive detection of biological material directly in a liquid environment.
Collapse
|
18
|
Ortega-Piwonka I, Angstmann CN, Henry BI, Reece PJ. Noise induced aperiodic rotations of particles trapped by a non-conservative force. CHAOS (WOODBURY, N.Y.) 2018; 28:043101. [PMID: 31906650 DOI: 10.1063/1.5018443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a mechanism whereby random noise can play a constructive role in the manifestation of a pattern, aperiodic rotations, that would otherwise be damped by internal dynamics. The mechanism is described physically in a theoretical model of overdamped particle motion in two dimensions with symmetric damping and a non-conservative force field driven by noise. Cyclic motion only occurs as a result of stochastic noise in this system. However, the persistence of the cyclic motion is quantified by parameters associated with the non-conservative forcing. Unlike stochastic resonance or coherence resonance, where noise can play a constructive role in amplifying a signal that is otherwise below the threshold for detection, in the mechanism considered here, the signal that is detected does not exist without the noise. Moreover, the system described here is a linear system.
Collapse
Affiliation(s)
| | | | - Bruce I Henry
- School of Mathematics and Statistics, UNSW, Sydney NSW 2052, Australia
| | | |
Collapse
|
19
|
Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu CW. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17039. [PMID: 30167291 PMCID: PMC6062326 DOI: 10.1038/lsa.2017.39] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 05/07/2023]
Abstract
Since the invention of optical tweezers, optical manipulation has advanced significantly in scientific areas such as atomic physics, optics and biological science. Especially in the past decade, numerous optical beams and nanoscale devices have been proposed to mechanically act on nanoparticles in increasingly precise, stable and flexible ways. Both the linear and angular momenta of light can be exploited to produce optical tractor beams, tweezers and optical torque from the microscale to the nanoscale. Research on optical forces helps to reveal the nature of light-matter interactions and to resolve the fundamental aspects, which require an appropriate description of momenta and the forces on objects in matter. In this review, starting from basic theories and computational approaches, we highlight the latest optical trapping configurations and their applications in bioscience, as well as recent advances down to the nanoscale. Finally, we discuss the future prospects of nanomanipulation, which has considerable potential applications in a variety of scientific fields and everyday life.
Collapse
Affiliation(s)
- Dongliang Gao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Weiqiang Ding
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Xumin Ding
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Mahdy Rahman
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh
| | - Tianhang Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - ChweeTeck Lim
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
20
|
Simpson SH, Zemánek P, Maragò OM, Jones PH, Hanna S. Optical Binding of Nanowires. NANO LETTERS 2017; 17:3485-3492. [PMID: 28535340 DOI: 10.1021/acs.nanolett.7b00494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multiple scattering of light induces structured interactions, or optical binding forces, between collections of small particles. This has been extensively studied in the case of microspheres. However, binding forces are strongly shape dependent: here, we turn our attention to dielectric nanowires. Using a novel numerical model we uncover rich behavior. The extreme geometry of the nanowires produces a sequence of stationary and dynamic states. In linearly polarized light, thermally stable ladder-like structures emerge. Lower symmetry, sagittate arrangements can also arise, whose configurational asymmetry unbalances the optical forces leading to nonconservative, translational motion. Finally, the addition of circular polarization drives a variety of coordinated rotational states whose dynamics expose fundamental properties of optical spin. These results suggest that optical binding can provide an increased level of control over the positions and motions of nanoparticles, opening new possibilities for driven self-organization and heralding a new field of self-assembling optically driven micromachines.
Collapse
Affiliation(s)
- Stephen H Simpson
- Institute of Scientific Instruments of the CAS , Kràlovopolskà 147, 612 64 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the CAS , Kràlovopolskà 147, 612 64 Brno, Czech Republic
| | - Onofrio M Maragò
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche , Viale F. Stagno D'Alcontres 37, I-98158 Messina, Italy
| | - Philip H Jones
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, U.K
| | - Simon Hanna
- H. H. Wills Physics Laboratory, University of Bristol , Tyndall Avenue, Bristol BS8 1TL, U.K
| |
Collapse
|