1
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
2
|
Zhu L, Luo J, Ren K. Nucleic acid-based artificial nanocarriers for gene therapy. J Mater Chem B 2023; 11:261-279. [PMID: 36524395 DOI: 10.1039/d2tb01179d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid nanotechnology is a powerful tool in the fields of biosensing and nanomedicine owing to their high editability and easy synthesis and modification. Artificial nucleic acid nanostructures have become an emerging research hotspot as gene carriers with low cytotoxicity and immunogenicity for therapeutic approaches. In this review, recent progress in the design and functional mechanisms of nucleic acid-based artificial nano-vectors especially for exogenous siRNA and antisense oligonucleotide delivery is summarized. Different types of DNA nanocarriers, including DNA junctions, tetrahedrons, origami, hydrogels and scaffolds, are introduced. The enhanced targeting strategies to improve the delivery efficacy are demonstrated. Furthermore, RNA based gene nanocarrier systems by self-assembly of short strands, rolling circle transcription, chemical crosslinking and using RNA motifs and DNA-RNA hybrids are demonstrated. Finally, the outlook and potential challenges are highlighted. The nucleic acid-based artificial nanocarriers offer a promising and precise tool for gene delivery and therapy.
Collapse
Affiliation(s)
- Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
3
|
Wu C, Zhang Y, Li F, Bei S, Pan M, Feng L. Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
4
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
5
|
Shah SS, Cultrara CN, Ramos JA, Samuni U, Zilberberg J, Sabatino D. Bifunctional Au-templated RNA nanoparticles enable direct cell uptake detection and GRP75 knockdown in prostate cancer. J Mater Chem B 2021; 8:2169-2176. [PMID: 32096520 DOI: 10.1039/c9tb02438g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleic acids templated on gold (Au) surfaces have led to a wide range of functional materials ranging from microarrays, sensors and probes in addition to drug delivery and treatment. In this application, we describe a simple and novel method for templating amino-functionalized RNA onto Au surfaces and their self-assembly into small, discrete nanoparticles. In our method, sample hybridization with a complementary RNA strand with and without a fatty acid (palmitamide) appendage produced functionalized double-stranded RNA on the Au surface. The resulting Au-functionalized RNA particles were found to be stable under reducing conditions according to UV-Vis spectroscopy. Sample characterization by DLS and TEM confirmed self-assembly into primarily small (∼10-40 nm) spherical shaped nanoparticles expected to be amenable to cell biology. However, fluorescence emission (λexc: 350 nm, λem: 650 nm) revealed radiative properties which limited cell uptake detection. Introduction of FITC within the Au-functionalized RNA particles produced a bifunctional probe, in which FITC fluorescence emission (λexc: 494 nm, λem: 522 nm) facilitated cell uptake detection, in a time-dependent manner. The dual encapsulation-release profiles of the FITC-labeled Au-functionalized RNA particles were validated by time-dependent UV-Vis spectroscopy and spectrofluorimetry. These experiments respectively indicated an increase in FITC absorption (λabs: 494 nm) and fluorescence emission (λem: 522 nm) with increased sample incubation times, under physiological conditions. The release of Au-functionalized siRNA particles in prostate cancer (PC-3) cells resulted in concomitant knockdown of GRP75, which led to detectable levels of cell death in the absence of a transfection vector. Thus, the formulation of stable, small and discrete Au-functionalized RNA nanoparticles may prove to be valuable bifunctional probes in the theranostic study of cancer cells.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079, USA.
| | - Christopher N Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079, USA.
| | - Jorge A Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA and The PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA and The PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, 340 Kingsland Street, Building 102, Nutley, New Jersey 07110, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079, USA.
| |
Collapse
|
6
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Cultrara CN, Shah S, Antuono G, Heller CJ, Ramos JA, Samuni U, Zilberberg J, Sabatino D. Size Matters: Arginine-Derived Peptides Targeting the PSMA Receptor Can Efficiently Complex but Not Transfect siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:863-870. [PMID: 31739211 PMCID: PMC6861565 DOI: 10.1016/j.omtn.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 10/26/2022]
Abstract
Oligoarginine sequences conjugated to a short cancer-targeting peptide (CTP) selective for the prostate-specific membrane antigen (PSMA) receptor was developed for selective small interfering RNA (siRNA) delivery to a human metastatic/castration-resistant prostate cancer (PCa) cell line, which expresses PSMA on the surface. The PSMA-Rn (n = 6 and 9) peptides were synthesized by solid-phase peptide synthesis, characterized by liquid chromatography-mass spectrometry (LC-MS) and condensed with glucose-regulated protein (GRP)-silencing siRNAs. Native gels showed formation of stable CTP:siRNA ionic complexes. Furthermore, siRNA release was effected by heparin competition, supporting the peptides' capabilities to act as condensing and releasing agents. However, dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies revealed large anionic complexes that were prone to aggregation and limited cell uptake for RNAi activity. Taken together, these data support the notion that the development of efficient peptide-based siRNA delivery systems is in part contingent on the formulation of discrete nanoparticles that can effectively condense and release siRNA in cells.
Collapse
Affiliation(s)
- Christopher N Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Sunil Shah
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Claudia J Heller
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Jorge A Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA; PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA; PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, 340 Kingsland Street, Building 102, Nutley, NJ 07110, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA.
| |
Collapse
|
8
|
Cultrara CN, Shah S, Kozuch SD, Patel MR, Sabatino D. Solid phase synthesis and self-assembly of higher-order siRNAs and their bioconjugates. Chem Biol Drug Des 2018; 93:999-1010. [PMID: 30480355 DOI: 10.1111/cbdd.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022]
Abstract
New methods for the synthesis of higher-order siRNA motifs and their bioconjugates have recently gained widespread attention in the development of new and improved gene therapeutics. Our efforts aim to produce new chemical tools and protocols for the generation of modified siRNAs that screen for important oncogene targets as well as silence their activity for effective gene therapy in cancer models. More specifically, we have developed an efficient solution-phase synthesis for the production of a ribouridine branchpoint synthon that can be effectively incorporated by solid phase synthesis within higher-order RNA structures, including those adopting V-, and Y- and >-< shape RNA templates. Self-assembly of complementary RNA to the template strands produced higher-order siRNA nanostructures that were characterized by a combination of PAGE, DLS, and TEM techniques. In an effort to extend the repertoire of functionally diverse siRNAs, we have also developed solid phase bioconjugation strategies for incorporating bio-active probes such as fatty acid appendages and fluorescent reporters. Taken together, these methods highlight the ability to generate higher-order siRNAs and their bioconjugates for exploring the influence of modified siRNA structure on anti-cancer activity.
Collapse
Affiliation(s)
- Christopher N Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| | - Sunil Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| | | | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| |
Collapse
|
9
|
Kozuch S, Cultrara CN, Beck AE, Heller CJ, Shah S, Patel MR, Zilberberg J, Sabatino D. Enhanced Cancer Theranostics with Self-Assembled, Multilabeled siRNAs. ACS OMEGA 2018; 3:12975-12984. [PMID: 30411024 PMCID: PMC6217585 DOI: 10.1021/acsomega.8b01999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
The integration of therapy and diagnostics, termed "theranostics", has recently gained widespread utility in the development of new and improved therapeutics that effectively diagnose and treat diseases, such as cancer. In this study, the covalent attachment of multiple fluorescent labels (i.e., fluorescein isothiocyanate (FITC)) to a wide range of siRNAs, including those adopting linear, V- and Y-shape nanostructures, was successfully accomplished by solid-phase bioconjugation for monitoring cell uptake, co-localization, and biological activity in cell culture. The FITC-labeled higher-order V- and Y-shape siRNAs maintained the requisite hybrid stabilities and A-type helical structures for invoking RNAi activity. The FITC-siRNA hybrids with sense-strand modifiers enabled efficient mRNA knockdown (∼50-90%), which also translated to increased cell death (∼20-95%) in a bone metastatic prostate cancer cell line, over a 72 h incubation period. Significantly, the Y-shaped siRNA containing three FITC probes enhanced fluorescent signaling relative to the siRNA constructs containing single and double fluorophores while retaining potent knockdown and cell death effects post-transfection. Taken together, this data highlights the theranostic utility of the multilabeled FITC-siRNA constructs for potential cancer gene therapy applications.
Collapse
Affiliation(s)
- Stephen
D. Kozuch
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Christopher N. Cultrara
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Adah E. Beck
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Claudia J. Heller
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Sunil Shah
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Mayurbhai R. Patel
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
- Nitto
Denko Avecia Inc, 8560
Reading Road, Cincinnati, Ohio 45215, United
States
| | - Jenny Zilberberg
- Department
of Biomedical Research, Hackensack University
Medical Center, Hackensack, New Jersey 07601, United States
| | - David Sabatino
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
- E-mail: . Tel: +1-973-313-6359
| |
Collapse
|
10
|
Shah SS, Cultrara CN, Kozuch SD, Patel MR, Ramos JA, Samuni U, Zilberberg J, Sabatino D. Direct Transfection of Fatty Acid Conjugated siRNAs and Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer Cells. Bioconjug Chem 2018; 29:3638-3648. [PMID: 30235926 DOI: 10.1021/acs.bioconjchem.8b00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emerging field of RNAi nanotechnology has led to rapid advances in the applications of siRNAs in chemical biology, medicinal chemistry, and biotechnology. In our RNAi approach, bioconjugation of linear, V-, and Y-shaped RNA templates were designed using a series of saturated and unsaturated fatty acids to improve cell uptake and knockdown efficacy of the oncogenic glucose regulated proteins (GRPs) in prostate (PC-3) cancer cells. An optimized HCTU-coupling procedure was developed for tagging variable saturated and unsaturated fatty acids onto the 5'-ends of linear and V-shaped RNA templates that were constructed by semiautomated solid phase RNA synthesis. Hybridization and self-assembly of complementary strands yielded linear, V-, and Y-shaped fatty acid-conjugated siRNAs which were characterized by native PAGE. CD spectroscopy confirmed their A-type helix conformations. RP IP HPLC provided trends in amphiphilic properties, whereas DLS and TEM confirmed multicomponent self-assembled structures that were prone to aggregation. Subsequently, the fatty acid conjugated siRNA bioconjugates were tested for their RNAi activity by direct transfection within PC-3 cells known to overexpress oncogenic GRP activity. The siRNA bioconjugates with sense strand modifiers provided more potent GRP knockdown relative to the antisense modified siRNAs, but to a lesser extent when compared to the unconjugated siRNA controls that were transfected with the commercial Trans-IT X2 dynamic delivery system. Flow cytometry revealed that the latter may be at least in part attributed to limited cell uptake of the fatty acid conjugated siRNAs. Nonetheless, these new constructs represent an entry point in modifying higher-order siRNA constructs that may lead to the generation of more efficient siRNA bioconjugates for screening important oncogene targets and for cancer gene therapy applications.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry , Seton Hall University , South Orange , New Jersey 07079 , United States
| | - Christopher N Cultrara
- Department of Chemistry and Biochemistry , Seton Hall University , South Orange , New Jersey 07079 , United States
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry , Seton Hall University , South Orange , New Jersey 07079 , United States
| | - Mayurbhai R Patel
- Nitto Denko Avecia Inc. , 8560 Reading Road , Cincinnati , Ohio 45215 , United States
| | - Jorge A Ramos
- Department of Chemistry and Biochemistry , Queens College, City University of New York , Flushing , New York 11367 , United States.,Ph.D. Programs in Biochemistry and Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Uri Samuni
- Department of Chemistry and Biochemistry , Queens College, City University of New York , Flushing , New York 11367 , United States.,Ph.D. Programs in Biochemistry and Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Jenny Zilberberg
- Department of Biomedical Research , Hackensack University Medical Center , 40 Prospect Avenue , Hackensack , New Jersey 07601 , United States
| | - David Sabatino
- Department of Chemistry and Biochemistry , Seton Hall University , South Orange , New Jersey 07079 , United States
| |
Collapse
|
11
|
Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018; 6:6685-6704. [DOI: 10.1039/c8tb01978a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progress on self-assembled nanodrugs for anticancer treatment was discussed.
Collapse
Affiliation(s)
- Chuanqing Lan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
12
|
Onizuka K, Hazemi ME, Thomas JM, Monteleone LR, Yamada K, Imoto S, Beal PA, Nagatsugi F. Synthesis of native-like crosslinked duplex RNA and study of its properties. Bioorg Med Chem 2017; 25:2191-2199. [PMID: 28268052 PMCID: PMC5969911 DOI: 10.1016/j.bmc.2017.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
A variety of enzymes have been found to interact with double-stranded RNA (dsRNA) in order to carry out its functions. We have endeavored to prepare the covalently crosslinked native-like duplex RNA, which could be useful for biochemical studies and RNA nanotechnology. In this study, the interstrand covalently linked duplex RNA was formed by a crosslinking reaction between vinylpurine (VP) and the target cytosine or uracil in RNA. We measured melting temperatures and CD spectra to identify the properties of the VP crosslinked duplex RNA. The crosslinking formation increased the thermodynamic stability without disturbing the natural conformation of dsRNA. In addition, a competitive binding experiment with the duplex RNA binding enzyme, ADAR2, showed the crosslinked dsRNA bound the protein with nearly the same binding affinity as the natural dsRNA, confirming that it has finely preserved the natural traits of duplex RNA.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Madoka E Hazemi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Justin M Thomas
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Leanna R Monteleone
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ken Yamada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
13
|
Lee AS, Brandhorst S, Rangel DF, Navarrete G, Cohen P, Longo VD, Chen J, Groshen S, Morgan TE, Dubeau L. Effects of Prolonged GRP78 Haploinsufficiency on Organ Homeostasis, Behavior, Cancer and Chemotoxic Resistance in Aged Mice. Sci Rep 2017; 7:40919. [PMID: 28145503 PMCID: PMC5286507 DOI: 10.1038/srep40919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
GRP78, a multifunctional protein with potent cytoprotective properties, is an emerging therapeutic target to combat cancer development, progression and drug resistance. The biological consequences of prolonged reduction in expression of this essential chaperone which so far has been studied primarily in young mice, was investigated in older mice, as older individuals are likely to be important recipients of anti-GRP78 therapy. We followed cohorts of Grp78+/+ and Grp78+/- male and female mice up to 2 years of age in three different genetic backgrounds and characterized them with respect to body weight, organ integrity, behavioral and memory performance, cancer, inflammation and chemotoxic response. Our results reveal that body weight, organ development and integrity were not impaired in aged Grp78+/- mice. No significant effect on cancer incidence and inflammation was observed in aging mice. Interestingly, our studies detected some subtle differential trends between the WT and Grp78+/- mice in some test parameters dependent on gender and genetic background. Our studies provide the first evidence that GRP78 haploinsufficiency for up to 2 years of age has no major deleterious effect in rodents of different genetic background, supporting the merit of anti-GRP78 drugs in treatment of cancer and other diseases affecting the elderly.
Collapse
Affiliation(s)
- Amy S. Lee
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, United States
| | - Sebastian Brandhorst
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Daisy F. Rangel
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, United States
| | - Gerardo Navarrete
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Pinchas Cohen
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Valter D. Longo
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology & Department of Ophthalmology, University of Southern California Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90033, United States
| | - Susan Groshen
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Todd E. Morgan
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Louis Dubeau
- Department of Pathology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, United States
| |
Collapse
|